Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(96,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([6, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.96");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.h (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(84\) |
Relative dimension: | \(21\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
96.1 | −0.798184 | + | 2.45656i | 1.57386 | + | 1.14348i | −3.77954 | − | 2.74600i | 0.794270 | + | 2.09025i | −4.06524 | + | 2.95357i | 2.92921 | 5.58312 | − | 4.05637i | 0.242447 | + | 0.746174i | −5.76878 | + | 0.282769i | ||
96.2 | −0.792539 | + | 2.43918i | −1.31286 | − | 0.953851i | −3.70346 | − | 2.69072i | −1.80442 | + | 1.32064i | 3.36711 | − | 2.44635i | −4.04488 | 5.34852 | − | 3.88593i | −0.113274 | − | 0.348620i | −1.79120 | − | 5.44796i | ||
96.3 | −0.673159 | + | 2.07177i | 1.35439 | + | 0.984022i | −2.22105 | − | 1.61369i | 1.06862 | − | 1.96419i | −2.95038 | + | 2.14358i | 3.71610 | 1.31361 | − | 0.954392i | −0.0609786 | − | 0.187673i | 3.35000 | + | 3.53615i | ||
96.4 | −0.624361 | + | 1.92158i | 0.195933 | + | 0.142353i | −1.68463 | − | 1.22395i | −2.22797 | − | 0.190171i | −0.395877 | + | 0.287621i | 0.918631 | 0.134550 | − | 0.0977560i | −0.908926 | − | 2.79739i | 1.75648 | − | 4.16249i | ||
96.5 | −0.486653 | + | 1.49777i | −2.72464 | − | 1.97956i | −0.388435 | − | 0.282215i | 2.16402 | − | 0.563050i | 4.29088 | − | 3.11751i | −3.30777 | −1.93643 | + | 1.40690i | 2.57792 | + | 7.93402i | −0.209810 | + | 3.51520i | ||
96.6 | −0.480220 | + | 1.47796i | 0.183137 | + | 0.133057i | −0.335734 | − | 0.243925i | 1.08074 | + | 1.95755i | −0.284600 | + | 0.206774i | −4.09551 | −1.99272 | + | 1.44780i | −0.911216 | − | 2.80443i | −3.41218 | + | 0.657242i | ||
96.7 | −0.348213 | + | 1.07169i | −1.39728 | − | 1.01518i | 0.590766 | + | 0.429217i | 2.15112 | − | 0.610485i | 1.57451 | − | 1.14395i | 5.08951 | −2.48897 | + | 1.80834i | −0.00525905 | − | 0.0161857i | −0.0947964 | + | 2.51791i | ||
96.8 | −0.207777 | + | 0.639473i | 1.91077 | + | 1.38826i | 1.25228 | + | 0.909834i | −0.623025 | + | 2.14752i | −1.28477 | + | 0.933439i | −1.46029 | −1.92995 | + | 1.40219i | 0.796743 | + | 2.45212i | −1.24383 | − | 0.844614i | ||
96.9 | −0.151456 | + | 0.466135i | 1.61572 | + | 1.17389i | 1.42369 | + | 1.03437i | 1.59666 | − | 1.56547i | −0.791900 | + | 0.575349i | −0.642137 | −1.49082 | + | 1.08314i | 0.305477 | + | 0.940161i | 0.487895 | + | 0.981358i | ||
96.10 | −0.104113 | + | 0.320426i | −0.352507 | − | 0.256111i | 1.52620 | + | 1.10885i | −1.42960 | + | 1.71938i | 0.118765 | − | 0.0862879i | 4.00453 | −1.05934 | + | 0.769656i | −0.868383 | − | 2.67261i | −0.402093 | − | 0.637088i | ||
96.11 | −0.0370819 | + | 0.114126i | −1.94518 | − | 1.41325i | 1.60638 | + | 1.16711i | −0.396172 | − | 2.20069i | 0.233420 | − | 0.169590i | −2.00436 | −0.386929 | + | 0.281120i | 0.859377 | + | 2.64489i | 0.265848 | + | 0.0363922i | ||
96.12 | 0.124567 | − | 0.383378i | −0.404433 | − | 0.293838i | 1.48657 | + | 1.08006i | 2.23318 | + | 0.113670i | −0.163030 | + | 0.118448i | −1.36982 | 1.25149 | − | 0.909260i | −0.849825 | − | 2.61549i | 0.321759 | − | 0.841991i | ||
96.13 | 0.192824 | − | 0.593450i | −0.0659841 | − | 0.0479403i | 1.30303 | + | 0.946708i | −1.97016 | − | 1.05757i | −0.0411735 | + | 0.0299143i | 0.0995699 | 1.82272 | − | 1.32428i | −0.924995 | − | 2.84684i | −1.00751 | + | 0.965270i | ||
96.14 | 0.279723 | − | 0.860900i | 2.37071 | + | 1.72242i | 0.955131 | + | 0.693943i | −1.82014 | + | 1.29888i | 2.14597 | − | 1.55914i | −1.13919 | 2.32924 | − | 1.69229i | 1.72647 | + | 5.31353i | 0.609067 | + | 1.93029i | ||
96.15 | 0.409150 | − | 1.25924i | −2.56971 | − | 1.86700i | 0.199764 | + | 0.145137i | −2.08226 | + | 0.814974i | −3.40239 | + | 2.47198i | −2.53256 | 2.40683 | − | 1.74867i | 2.19065 | + | 6.74213i | 0.174286 | + | 2.95551i | ||
96.16 | 0.551726 | − | 1.69804i | −1.61783 | − | 1.17542i | −0.960894 | − | 0.698131i | 1.36964 | + | 1.76751i | −2.88850 | + | 2.09862i | 2.50181 | 1.17327 | − | 0.852432i | 0.308700 | + | 0.950081i | 3.75696 | − | 1.35052i | ||
96.17 | 0.573163 | − | 1.76401i | −1.32920 | − | 0.965723i | −1.16519 | − | 0.846563i | 0.188362 | − | 2.22812i | −2.46540 | + | 1.79122i | −1.03768 | 0.839925 | − | 0.610241i | −0.0928897 | − | 0.285885i | −3.82247 | − | 1.60935i | ||
96.18 | 0.595943 | − | 1.83413i | 1.94502 | + | 1.41314i | −1.39083 | − | 1.01050i | 2.17273 | + | 0.528449i | 3.75101 | − | 2.72526i | −1.88033 | 0.438159 | − | 0.318341i | 0.859095 | + | 2.64402i | 2.26406 | − | 3.67013i | ||
96.19 | 0.643199 | − | 1.97956i | 1.30761 | + | 0.950033i | −1.88693 | − | 1.37094i | −1.59256 | − | 1.56963i | 2.72170 | − | 1.97743i | 3.67802 | −0.559699 | + | 0.406645i | −0.119774 | − | 0.368626i | −4.13152 | + | 2.14299i | ||
96.20 | 0.801327 | − | 2.46623i | −0.562359 | − | 0.408578i | −3.82214 | − | 2.77695i | −1.56090 | + | 1.60112i | −1.45828 | + | 1.05950i | −0.170579 | −5.71557 | + | 4.15261i | −0.777739 | − | 2.39363i | 2.69794 | + | 5.13257i | ||
See all 84 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.h.a | ✓ | 84 |
25.d | even | 5 | 1 | inner | 475.2.h.a | ✓ | 84 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.h.a | ✓ | 84 | 1.a | even | 1 | 1 | trivial |
475.2.h.a | ✓ | 84 | 25.d | even | 5 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{84} + T_{2}^{83} + 31 T_{2}^{82} + 33 T_{2}^{81} + 554 T_{2}^{80} + 571 T_{2}^{79} + \cdots + 958441 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).