Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [475,2,Mod(18,475)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(475, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([3, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("475.18");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.g (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
18.1 | −1.82464 | − | 1.82464i | −0.857273 | + | 0.857273i | 4.65859i | 0 | 3.12842 | −2.60677 | + | 2.60677i | 4.85095 | − | 4.85095i | 1.53017i | 0 | ||||||||||
18.2 | −1.82464 | − | 1.82464i | −0.857273 | + | 0.857273i | 4.65859i | 0 | 3.12842 | 2.60677 | − | 2.60677i | 4.85095 | − | 4.85095i | 1.53017i | 0 | ||||||||||
18.3 | −1.24481 | − | 1.24481i | 0.534241 | − | 0.534241i | 1.09911i | 0 | −1.33006 | −2.85373 | + | 2.85373i | −1.12143 | + | 1.12143i | 2.42917i | 0 | ||||||||||
18.4 | −1.24481 | − | 1.24481i | 0.534241 | − | 0.534241i | 1.09911i | 0 | −1.33006 | 2.85373 | − | 2.85373i | −1.12143 | + | 1.12143i | 2.42917i | 0 | ||||||||||
18.5 | −0.348065 | − | 0.348065i | −1.72617 | + | 1.72617i | − | 1.75770i | 0 | 1.20164 | −0.246957 | + | 0.246957i | −1.30792 | + | 1.30792i | − | 2.95934i | 0 | ||||||||
18.6 | −0.348065 | − | 0.348065i | −1.72617 | + | 1.72617i | − | 1.75770i | 0 | 1.20164 | 0.246957 | − | 0.246957i | −1.30792 | + | 1.30792i | − | 2.95934i | 0 | ||||||||
18.7 | 0.348065 | + | 0.348065i | 1.72617 | − | 1.72617i | − | 1.75770i | 0 | 1.20164 | −0.246957 | + | 0.246957i | 1.30792 | − | 1.30792i | − | 2.95934i | 0 | ||||||||
18.8 | 0.348065 | + | 0.348065i | 1.72617 | − | 1.72617i | − | 1.75770i | 0 | 1.20164 | 0.246957 | − | 0.246957i | 1.30792 | − | 1.30792i | − | 2.95934i | 0 | ||||||||
18.9 | 1.24481 | + | 1.24481i | −0.534241 | + | 0.534241i | 1.09911i | 0 | −1.33006 | −2.85373 | + | 2.85373i | 1.12143 | − | 1.12143i | 2.42917i | 0 | ||||||||||
18.10 | 1.24481 | + | 1.24481i | −0.534241 | + | 0.534241i | 1.09911i | 0 | −1.33006 | 2.85373 | − | 2.85373i | 1.12143 | − | 1.12143i | 2.42917i | 0 | ||||||||||
18.11 | 1.82464 | + | 1.82464i | 0.857273 | − | 0.857273i | 4.65859i | 0 | 3.12842 | −2.60677 | + | 2.60677i | −4.85095 | + | 4.85095i | 1.53017i | 0 | ||||||||||
18.12 | 1.82464 | + | 1.82464i | 0.857273 | − | 0.857273i | 4.65859i | 0 | 3.12842 | 2.60677 | − | 2.60677i | −4.85095 | + | 4.85095i | 1.53017i | 0 | ||||||||||
132.1 | −1.82464 | + | 1.82464i | −0.857273 | − | 0.857273i | − | 4.65859i | 0 | 3.12842 | −2.60677 | − | 2.60677i | 4.85095 | + | 4.85095i | − | 1.53017i | 0 | ||||||||
132.2 | −1.82464 | + | 1.82464i | −0.857273 | − | 0.857273i | − | 4.65859i | 0 | 3.12842 | 2.60677 | + | 2.60677i | 4.85095 | + | 4.85095i | − | 1.53017i | 0 | ||||||||
132.3 | −1.24481 | + | 1.24481i | 0.534241 | + | 0.534241i | − | 1.09911i | 0 | −1.33006 | −2.85373 | − | 2.85373i | −1.12143 | − | 1.12143i | − | 2.42917i | 0 | ||||||||
132.4 | −1.24481 | + | 1.24481i | 0.534241 | + | 0.534241i | − | 1.09911i | 0 | −1.33006 | 2.85373 | + | 2.85373i | −1.12143 | − | 1.12143i | − | 2.42917i | 0 | ||||||||
132.5 | −0.348065 | + | 0.348065i | −1.72617 | − | 1.72617i | 1.75770i | 0 | 1.20164 | −0.246957 | − | 0.246957i | −1.30792 | − | 1.30792i | 2.95934i | 0 | ||||||||||
132.6 | −0.348065 | + | 0.348065i | −1.72617 | − | 1.72617i | 1.75770i | 0 | 1.20164 | 0.246957 | + | 0.246957i | −1.30792 | − | 1.30792i | 2.95934i | 0 | ||||||||||
132.7 | 0.348065 | − | 0.348065i | 1.72617 | + | 1.72617i | 1.75770i | 0 | 1.20164 | −0.246957 | − | 0.246957i | 1.30792 | + | 1.30792i | 2.95934i | 0 | ||||||||||
132.8 | 0.348065 | − | 0.348065i | 1.72617 | + | 1.72617i | 1.75770i | 0 | 1.20164 | 0.246957 | + | 0.246957i | 1.30792 | + | 1.30792i | 2.95934i | 0 | ||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
5.c | odd | 4 | 2 | inner |
19.b | odd | 2 | 1 | inner |
95.d | odd | 2 | 1 | inner |
95.g | even | 4 | 2 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.g.d | ✓ | 24 |
5.b | even | 2 | 1 | inner | 475.2.g.d | ✓ | 24 |
5.c | odd | 4 | 2 | inner | 475.2.g.d | ✓ | 24 |
19.b | odd | 2 | 1 | inner | 475.2.g.d | ✓ | 24 |
95.d | odd | 2 | 1 | inner | 475.2.g.d | ✓ | 24 |
95.g | even | 4 | 2 | inner | 475.2.g.d | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.g.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
475.2.g.d | ✓ | 24 | 5.b | even | 2 | 1 | inner |
475.2.g.d | ✓ | 24 | 5.c | odd | 4 | 2 | inner |
475.2.g.d | ✓ | 24 | 19.b | odd | 2 | 1 | inner |
475.2.g.d | ✓ | 24 | 95.d | odd | 2 | 1 | inner |
475.2.g.d | ✓ | 24 | 95.g | even | 4 | 2 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 54T_{2}^{8} + 429T_{2}^{4} + 25 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).