Properties

Label 475.2.g.d
Level $475$
Weight $2$
Character orbit 475.g
Analytic conductor $3.793$
Analytic rank $0$
Dimension $24$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(18,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q + 24 q^{6} + 24 q^{11} - 48 q^{16} - 24 q^{26} - 120 q^{36} + 88 q^{61} - 56 q^{66} + 176 q^{76} + 56 q^{81} - 208 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
18.1 −1.82464 1.82464i −0.857273 + 0.857273i 4.65859i 0 3.12842 −2.60677 + 2.60677i 4.85095 4.85095i 1.53017i 0
18.2 −1.82464 1.82464i −0.857273 + 0.857273i 4.65859i 0 3.12842 2.60677 2.60677i 4.85095 4.85095i 1.53017i 0
18.3 −1.24481 1.24481i 0.534241 0.534241i 1.09911i 0 −1.33006 −2.85373 + 2.85373i −1.12143 + 1.12143i 2.42917i 0
18.4 −1.24481 1.24481i 0.534241 0.534241i 1.09911i 0 −1.33006 2.85373 2.85373i −1.12143 + 1.12143i 2.42917i 0
18.5 −0.348065 0.348065i −1.72617 + 1.72617i 1.75770i 0 1.20164 −0.246957 + 0.246957i −1.30792 + 1.30792i 2.95934i 0
18.6 −0.348065 0.348065i −1.72617 + 1.72617i 1.75770i 0 1.20164 0.246957 0.246957i −1.30792 + 1.30792i 2.95934i 0
18.7 0.348065 + 0.348065i 1.72617 1.72617i 1.75770i 0 1.20164 −0.246957 + 0.246957i 1.30792 1.30792i 2.95934i 0
18.8 0.348065 + 0.348065i 1.72617 1.72617i 1.75770i 0 1.20164 0.246957 0.246957i 1.30792 1.30792i 2.95934i 0
18.9 1.24481 + 1.24481i −0.534241 + 0.534241i 1.09911i 0 −1.33006 −2.85373 + 2.85373i 1.12143 1.12143i 2.42917i 0
18.10 1.24481 + 1.24481i −0.534241 + 0.534241i 1.09911i 0 −1.33006 2.85373 2.85373i 1.12143 1.12143i 2.42917i 0
18.11 1.82464 + 1.82464i 0.857273 0.857273i 4.65859i 0 3.12842 −2.60677 + 2.60677i −4.85095 + 4.85095i 1.53017i 0
18.12 1.82464 + 1.82464i 0.857273 0.857273i 4.65859i 0 3.12842 2.60677 2.60677i −4.85095 + 4.85095i 1.53017i 0
132.1 −1.82464 + 1.82464i −0.857273 0.857273i 4.65859i 0 3.12842 −2.60677 2.60677i 4.85095 + 4.85095i 1.53017i 0
132.2 −1.82464 + 1.82464i −0.857273 0.857273i 4.65859i 0 3.12842 2.60677 + 2.60677i 4.85095 + 4.85095i 1.53017i 0
132.3 −1.24481 + 1.24481i 0.534241 + 0.534241i 1.09911i 0 −1.33006 −2.85373 2.85373i −1.12143 1.12143i 2.42917i 0
132.4 −1.24481 + 1.24481i 0.534241 + 0.534241i 1.09911i 0 −1.33006 2.85373 + 2.85373i −1.12143 1.12143i 2.42917i 0
132.5 −0.348065 + 0.348065i −1.72617 1.72617i 1.75770i 0 1.20164 −0.246957 0.246957i −1.30792 1.30792i 2.95934i 0
132.6 −0.348065 + 0.348065i −1.72617 1.72617i 1.75770i 0 1.20164 0.246957 + 0.246957i −1.30792 1.30792i 2.95934i 0
132.7 0.348065 0.348065i 1.72617 + 1.72617i 1.75770i 0 1.20164 −0.246957 0.246957i 1.30792 + 1.30792i 2.95934i 0
132.8 0.348065 0.348065i 1.72617 + 1.72617i 1.75770i 0 1.20164 0.246957 + 0.246957i 1.30792 + 1.30792i 2.95934i 0
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 18.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner
19.b odd 2 1 inner
95.d odd 2 1 inner
95.g even 4 2 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.g.d 24
5.b even 2 1 inner 475.2.g.d 24
5.c odd 4 2 inner 475.2.g.d 24
19.b odd 2 1 inner 475.2.g.d 24
95.d odd 2 1 inner 475.2.g.d 24
95.g even 4 2 inner 475.2.g.d 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
475.2.g.d 24 1.a even 1 1 trivial
475.2.g.d 24 5.b even 2 1 inner
475.2.g.d 24 5.c odd 4 2 inner
475.2.g.d 24 19.b odd 2 1 inner
475.2.g.d 24 95.d odd 2 1 inner
475.2.g.d 24 95.g even 4 2 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{12} + 54T_{2}^{8} + 429T_{2}^{4} + 25 \) acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\). Copy content Toggle raw display