Newspace parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.e (of order \(3\), degree \(2\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{3})\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - 3 x^{11} + 17 x^{10} - 18 x^{9} + 109 x^{8} - 93 x^{7} + 484 x^{6} - 147 x^{5} + 1009 x^{4} - 552 x^{3} + 1107 x^{2} + 33 x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 3 x^{11} + 17 x^{10} - 18 x^{9} + 109 x^{8} - 93 x^{7} + 484 x^{6} - 147 x^{5} + 1009 x^{4} - 552 x^{3} + 1107 x^{2} + 33 x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( - 3959208 \nu^{11} - 46922925 \nu^{10} + 38785859 \nu^{9} - 621660414 \nu^{8} - 801763109 \nu^{7} - 3678052623 \nu^{6} + \cdots - 68499350729 ) / 66494854340 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 690858 \nu^{11} - 11701549 \nu^{10} + 76199247 \nu^{9} - 313859676 \nu^{8} + 833713615 \nu^{7} - 1701731499 \nu^{6} + 2957264154 \nu^{5} + \cdots - 6178545 ) / 1955731010 \)
|
\(\beta_{4}\) | \(=\) |
\( ( - 54841341 \nu^{11} + 153015320 \nu^{10} - 731712017 \nu^{9} + 251450977 \nu^{8} - 3244495858 \nu^{7} + 1416907499 \nu^{6} + \cdots - 263970961763 ) / 66494854340 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 134211789 \nu^{11} - 998274384 \nu^{10} + 3072233475 \nu^{9} - 7500316929 \nu^{8} + 1833052570 \nu^{7} - 27189880401 \nu^{6} + \cdots - 148724948799 ) / 66494854340 \)
|
\(\beta_{6}\) | \(=\) |
\( ( - 5051595 \nu^{11} + 9282581 \nu^{10} - 64765518 \nu^{9} - 29949491 \nu^{8} - 345971017 \nu^{7} - 412414770 \nu^{6} - 1358444363 \nu^{5} + \cdots - 4335298296 ) / 1955731010 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 6178545 \nu^{11} + 17844777 \nu^{10} - 93333716 \nu^{9} + 35014563 \nu^{8} - 359601729 \nu^{7} - 259108930 \nu^{6} - 1288684281 \nu^{5} + \cdots - 612082342 ) / 1955731010 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - 469619124 \nu^{11} + 1742271771 \nu^{10} - 9648336987 \nu^{9} + 16279393858 \nu^{8} - 67720087321 \nu^{7} + 86418671699 \nu^{6} + \cdots + 402309009 ) / 66494854340 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 2004496389 \nu^{11} + 6017448375 \nu^{10} - 34029515688 \nu^{9} + 36042149143 \nu^{8} - 217868445987 \nu^{7} + \cdots - 65422139102 ) / 66494854340 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - 4220156417 \nu^{11} + 12953281828 \nu^{10} - 72904583371 \nu^{9} + 81775705089 \nu^{8} - 469415474758 \nu^{7} + \cdots + 2372026047 ) / 66494854340 \)
|
\(\beta_{11}\) | \(=\) |
\( ( 6424307742 \nu^{11} - 19688524501 \nu^{10} + 111043957893 \nu^{9} - 124776050724 \nu^{8} + 717279166315 \nu^{7} - 650339598681 \nu^{6} + \cdots - 3616495515 ) / 66494854340 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{11} + 3\beta_{9} + \beta_{8} - \beta_{4} - \beta_{2} + \beta _1 - 2 \)
|
\(\nu^{3}\) | \(=\) |
\( -\beta_{7} + 2\beta_{6} - 2\beta_{4} - 6\beta_{2} - 10 \)
|
\(\nu^{4}\) | \(=\) |
\( -10\beta_{11} - 6\beta_{10} - 18\beta_{9} - 6\beta_{8} + \beta_{3} - 11\beta _1 - 18 \)
|
\(\nu^{5}\) | \(=\) |
\( - 28 \beta_{11} - 27 \beta_{10} - 31 \beta_{9} - 8 \beta_{8} + 20 \beta_{7} - 31 \beta_{6} + 4 \beta_{5} + 28 \beta_{4} + 4 \beta_{3} + 45 \beta_{2} - 45 \beta _1 + 73 \)
|
\(\nu^{6}\) | \(=\) |
\( 71\beta_{7} - 107\beta_{6} + 20\beta_{5} + 104\beta_{4} + 112\beta_{2} + 358 \)
|
\(\nu^{7}\) | \(=\) |
\( 323\beta_{11} + 315\beta_{10} + 359\beta_{9} + 52\beta_{8} - 71\beta_{3} + 391\beta _1 + 359 \)
|
\(\nu^{8}\) | \(=\) |
\( 1100 \beta_{11} + 1032 \beta_{10} + 1307 \beta_{9} + 178 \beta_{8} - 922 \beta_{7} + 1303 \beta_{6} - 271 \beta_{5} - 1100 \beta_{4} - 271 \beta_{3} - 1125 \beta_{2} + 1125 \beta _1 - 2225 \)
|
\(\nu^{9}\) | \(=\) |
\( -3216\beta_{7} + 4425\beta_{6} - 922\beta_{5} - 3528\beta_{4} - 3710\beta_{2} - 11087 \)
|
\(\nu^{10}\) | \(=\) |
\( -11663\beta_{11} - 11481\beta_{10} - 12949\beta_{9} - 944\beta_{8} + 3216\beta_{3} - 11399\beta _1 - 12949 \)
|
\(\nu^{11}\) | \(=\) |
\( - 37759 \beta_{11} - 38023 \beta_{10} - 40447 \beta_{9} - 1751 \beta_{8} + 36008 \beta_{7} - 48742 \beta_{6} + 10719 \beta_{5} + 37759 \beta_{4} + 10719 \beta_{3} + 36955 \beta_{2} - 36955 \beta _1 + 74714 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).
\(n\) | \(77\) | \(401\) |
\(\chi(n)\) | \(1\) | \(-1 - \beta_{9}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
26.1 |
|
−0.740597 | − | 1.28275i | −0.0908038 | − | 0.157277i | −0.0969683 | + | 0.167954i | 0 | −0.134498 | + | 0.232958i | 1.30422 | −2.67513 | 1.48351 | − | 2.56951i | 0 | ||||||||||||||||||||||||||||||||||||||||||||
26.2 | −0.740597 | − | 1.28275i | 1.42837 | + | 2.47401i | −0.0969683 | + | 0.167954i | 0 | 2.11569 | − | 3.66449i | −3.78541 | −2.67513 | −2.58048 | + | 4.46952i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.3 | 0.155554 | + | 0.269427i | −1.12208 | − | 1.94349i | 0.951606 | − | 1.64823i | 0 | 0.349087 | − | 0.604636i | −3.96928 | 1.21432 | −1.01811 | + | 1.76343i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.4 | 0.155554 | + | 0.269427i | 0.514917 | + | 0.891863i | 0.951606 | − | 1.64823i | 0 | −0.160195 | + | 0.277466i | 3.28038 | 1.21432 | 0.969720 | − | 1.67960i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.5 | 1.08504 | + | 1.87935i | −0.706345 | − | 1.22342i | −1.35464 | + | 2.34630i | 0 | 1.53283 | − | 2.65494i | 1.76171 | −1.53919 | 0.502155 | − | 0.869757i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
26.6 | 1.08504 | + | 1.87935i | 1.47594 | + | 2.55640i | −1.35464 | + | 2.34630i | 0 | −3.20292 | + | 5.54761i | −0.591620 | −1.53919 | −2.85679 | + | 4.94811i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.1 | −0.740597 | + | 1.28275i | −0.0908038 | + | 0.157277i | −0.0969683 | − | 0.167954i | 0 | −0.134498 | − | 0.232958i | 1.30422 | −2.67513 | 1.48351 | + | 2.56951i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.2 | −0.740597 | + | 1.28275i | 1.42837 | − | 2.47401i | −0.0969683 | − | 0.167954i | 0 | 2.11569 | + | 3.66449i | −3.78541 | −2.67513 | −2.58048 | − | 4.46952i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.3 | 0.155554 | − | 0.269427i | −1.12208 | + | 1.94349i | 0.951606 | + | 1.64823i | 0 | 0.349087 | + | 0.604636i | −3.96928 | 1.21432 | −1.01811 | − | 1.76343i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.4 | 0.155554 | − | 0.269427i | 0.514917 | − | 0.891863i | 0.951606 | + | 1.64823i | 0 | −0.160195 | − | 0.277466i | 3.28038 | 1.21432 | 0.969720 | + | 1.67960i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.5 | 1.08504 | − | 1.87935i | −0.706345 | + | 1.22342i | −1.35464 | − | 2.34630i | 0 | 1.53283 | + | 2.65494i | 1.76171 | −1.53919 | 0.502155 | + | 0.869757i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
201.6 | 1.08504 | − | 1.87935i | 1.47594 | − | 2.55640i | −1.35464 | − | 2.34630i | 0 | −3.20292 | − | 5.54761i | −0.591620 | −1.53919 | −2.85679 | − | 4.94811i | 0 | |||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
19.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.e.h | yes | 12 |
5.b | even | 2 | 1 | 475.2.e.f | ✓ | 12 | |
5.c | odd | 4 | 2 | 475.2.j.d | 24 | ||
19.c | even | 3 | 1 | inner | 475.2.e.h | yes | 12 |
19.c | even | 3 | 1 | 9025.2.a.br | 6 | ||
19.d | odd | 6 | 1 | 9025.2.a.by | 6 | ||
95.h | odd | 6 | 1 | 9025.2.a.bs | 6 | ||
95.i | even | 6 | 1 | 475.2.e.f | ✓ | 12 | |
95.i | even | 6 | 1 | 9025.2.a.bz | 6 | ||
95.m | odd | 12 | 2 | 475.2.j.d | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.e.f | ✓ | 12 | 5.b | even | 2 | 1 | |
475.2.e.f | ✓ | 12 | 95.i | even | 6 | 1 | |
475.2.e.h | yes | 12 | 1.a | even | 1 | 1 | trivial |
475.2.e.h | yes | 12 | 19.c | even | 3 | 1 | inner |
475.2.j.d | 24 | 5.c | odd | 4 | 2 | ||
475.2.j.d | 24 | 95.m | odd | 12 | 2 | ||
9025.2.a.br | 6 | 19.c | even | 3 | 1 | ||
9025.2.a.bs | 6 | 95.h | odd | 6 | 1 | ||
9025.2.a.by | 6 | 19.d | odd | 6 | 1 | ||
9025.2.a.bz | 6 | 95.i | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} - T_{2}^{5} + 4T_{2}^{4} + T_{2}^{3} + 10T_{2}^{2} - 3T_{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{6} - T^{5} + 4 T^{4} + T^{3} + 10 T^{2} + \cdots + 1)^{2} \)
$3$
\( T^{12} - 3 T^{11} + 17 T^{10} - 18 T^{9} + \cdots + 25 \)
$5$
\( T^{12} \)
$7$
\( (T^{6} + 2 T^{5} - 21 T^{4} - 20 T^{3} + \cdots - 67)^{2} \)
$11$
\( (T^{6} + T^{5} - 46 T^{4} + 9 T^{3} + 522 T^{2} + \cdots + 247)^{2} \)
$13$
\( T^{12} - 5 T^{11} + 61 T^{10} + \cdots + 100489 \)
$17$
\( T^{12} + 3 T^{11} + 33 T^{10} + 34 T^{9} + \cdots + 1 \)
$19$
\( T^{12} + 6 T^{11} + 15 T^{10} + \cdots + 47045881 \)
$23$
\( T^{12} + 6 T^{11} + 93 T^{10} + \cdots + 1151329 \)
$29$
\( T^{12} + 3 T^{11} + 117 T^{10} + \cdots + 163353961 \)
$31$
\( (T^{6} + 3 T^{5} - 64 T^{4} - 189 T^{3} + \cdots - 631)^{2} \)
$37$
\( (T^{6} - 6 T^{5} - 32 T^{4} + 168 T^{3} + \cdots - 64)^{2} \)
$41$
\( T^{12} + 11 T^{11} + 145 T^{10} + \cdots + 1739761 \)
$43$
\( T^{12} - 13 T^{11} + 131 T^{10} + \cdots + 829921 \)
$47$
\( T^{12} + 6 T^{11} + 167 T^{10} + \cdots + 537266041 \)
$53$
\( T^{12} - 18 T^{11} + \cdots + 116868943321 \)
$59$
\( T^{12} + 4 T^{11} + 253 T^{10} + \cdots + 134397649 \)
$61$
\( T^{12} + 25 T^{11} + \cdots + 305935081 \)
$67$
\( T^{12} - 6 T^{11} + 200 T^{10} + \cdots + 145926400 \)
$71$
\( T^{12} + 18 T^{11} + \cdots + 135885649 \)
$73$
\( T^{12} - T^{11} + 167 T^{10} + \cdots + 4699788025 \)
$79$
\( T^{12} + 3 T^{11} + \cdots + 106504975201 \)
$83$
\( (T^{6} - 23 T^{5} - 74 T^{4} + \cdots + 378053)^{2} \)
$89$
\( T^{12} + 12 T^{11} + \cdots + 122226452881 \)
$97$
\( T^{12} - 3 T^{11} + \cdots + 25482056161 \)
show more
show less