Properties

Label 475.2.e.d.201.2
Level $475$
Weight $2$
Character 475.201
Analytic conductor $3.793$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(26,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 201.2
Root \(0.610938 - 1.05818i\) of defining polynomial
Character \(\chi\) \(=\) 475.201
Dual form 475.2.e.d.26.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.610938 - 1.05818i) q^{2} +(1.14257 - 1.97899i) q^{3} +(0.253509 + 0.439091i) q^{4} +(-1.39608 - 2.41808i) q^{6} +1.28514 q^{7} +3.06327 q^{8} +(-1.11094 - 1.92420i) q^{9} +0.285142 q^{11} +1.15861 q^{12} +(-2.50000 - 4.33013i) q^{13} +(0.785142 - 1.35991i) q^{14} +(1.36445 - 2.36329i) q^{16} +(-3.11796 + 5.40046i) q^{17} -2.71486 q^{18} +(2.92771 + 3.22932i) q^{19} +(1.46837 - 2.54329i) q^{21} +(0.174204 - 0.301731i) q^{22} +(-2.61796 - 4.53443i) q^{23} +(3.50000 - 6.06218i) q^{24} -6.10938 q^{26} +1.77812 q^{27} +(0.325796 + 0.564295i) q^{28} +(-0.642571 - 1.11297i) q^{29} -1.22188 q^{31} +(1.39608 + 2.41808i) q^{32} +(0.325796 - 0.564295i) q^{33} +(3.80976 + 6.59869i) q^{34} +(0.563266 - 0.975606i) q^{36} -10.8695 q^{37} +(5.20584 - 1.12512i) q^{38} -11.4257 q^{39} +(0.420695 - 0.728665i) q^{41} +(-1.79416 - 3.10758i) q^{42} +(-2.47539 + 4.28749i) q^{43} +(0.0722863 + 0.125204i) q^{44} -6.39764 q^{46} +(2.86445 + 4.96137i) q^{47} +(-3.11796 - 5.40046i) q^{48} -5.34841 q^{49} +(7.12498 + 12.3408i) q^{51} +(1.26755 - 2.19546i) q^{52} +(6.18122 + 10.7062i) q^{53} +(1.08632 - 1.88157i) q^{54} +3.93673 q^{56} +(9.73591 - 2.10419i) q^{57} -1.57028 q^{58} +(-2.86445 + 4.96137i) q^{59} +(-2.22889 - 3.86056i) q^{61} +(-0.746491 + 1.29296i) q^{62} +(-1.42771 - 2.47287i) q^{63} +8.86946 q^{64} +(-0.398082 - 0.689498i) q^{66} +(-0.492981 - 0.853869i) q^{67} -3.16172 q^{68} -11.9648 q^{69} +(1.46135 - 2.53113i) q^{71} +(-3.40310 - 5.89434i) q^{72} +(-0.382043 + 0.661718i) q^{73} +(-6.64057 + 11.5018i) q^{74} +(-0.675762 + 2.10419i) q^{76} +0.366449 q^{77} +(-6.98040 + 12.0904i) q^{78} +(7.72889 - 13.3868i) q^{79} +(5.36445 - 9.29150i) q^{81} +(-0.514037 - 0.890339i) q^{82} -1.66563 q^{83} +1.48898 q^{84} +(3.02461 + 5.23879i) q^{86} -2.93673 q^{87} +0.873467 q^{88} +(8.01404 + 13.8807i) q^{89} +(-3.21286 - 5.56483i) q^{91} +(1.32735 - 2.29904i) q^{92} +(-1.39608 + 2.41808i) q^{93} +7.00000 q^{94} +6.38049 q^{96} +(5.87147 - 10.1697i) q^{97} +(-3.26755 + 5.65956i) q^{98} +(-0.316776 - 0.548672i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + q^{3} - 7 q^{4} + 6 q^{6} - 4 q^{7} + 12 q^{8} - 4 q^{9} - 10 q^{11} + 8 q^{12} - 15 q^{13} - 7 q^{14} - 3 q^{16} + q^{17} - 28 q^{18} + 12 q^{21} - 8 q^{22} + 4 q^{23} + 21 q^{24} - 10 q^{26}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.610938 1.05818i 0.431998 0.748243i −0.565047 0.825059i \(-0.691142\pi\)
0.997045 + 0.0768155i \(0.0244753\pi\)
\(3\) 1.14257 1.97899i 0.659664 1.14257i −0.321039 0.947066i \(-0.604032\pi\)
0.980703 0.195505i \(-0.0626347\pi\)
\(4\) 0.253509 + 0.439091i 0.126755 + 0.219546i
\(5\) 0 0
\(6\) −1.39608 2.41808i −0.569948 0.987178i
\(7\) 1.28514 0.485738 0.242869 0.970059i \(-0.421911\pi\)
0.242869 + 0.970059i \(0.421911\pi\)
\(8\) 3.06327 1.08303
\(9\) −1.11094 1.92420i −0.370313 0.641400i
\(10\) 0 0
\(11\) 0.285142 0.0859737 0.0429868 0.999076i \(-0.486313\pi\)
0.0429868 + 0.999076i \(0.486313\pi\)
\(12\) 1.15861 0.334462
\(13\) −2.50000 4.33013i −0.693375 1.20096i −0.970725 0.240192i \(-0.922790\pi\)
0.277350 0.960769i \(-0.410544\pi\)
\(14\) 0.785142 1.35991i 0.209838 0.363450i
\(15\) 0 0
\(16\) 1.36445 2.36329i 0.341112 0.590823i
\(17\) −3.11796 + 5.40046i −0.756216 + 1.30980i 0.188552 + 0.982063i \(0.439621\pi\)
−0.944768 + 0.327741i \(0.893713\pi\)
\(18\) −2.71486 −0.639898
\(19\) 2.92771 + 3.22932i 0.671664 + 0.740856i
\(20\) 0 0
\(21\) 1.46837 2.54329i 0.320424 0.554990i
\(22\) 0.174204 0.301731i 0.0371405 0.0643292i
\(23\) −2.61796 4.53443i −0.545882 0.945495i −0.998551 0.0538163i \(-0.982861\pi\)
0.452669 0.891679i \(-0.350472\pi\)
\(24\) 3.50000 6.06218i 0.714435 1.23744i
\(25\) 0 0
\(26\) −6.10938 −1.19815
\(27\) 1.77812 0.342200
\(28\) 0.325796 + 0.564295i 0.0615696 + 0.106642i
\(29\) −0.642571 1.11297i −0.119322 0.206673i 0.800177 0.599764i \(-0.204739\pi\)
−0.919499 + 0.393091i \(0.871406\pi\)
\(30\) 0 0
\(31\) −1.22188 −0.219455 −0.109728 0.993962i \(-0.534998\pi\)
−0.109728 + 0.993962i \(0.534998\pi\)
\(32\) 1.39608 + 2.41808i 0.246795 + 0.427461i
\(33\) 0.325796 0.564295i 0.0567137 0.0982311i
\(34\) 3.80976 + 6.59869i 0.653368 + 1.13167i
\(35\) 0 0
\(36\) 0.563266 0.975606i 0.0938777 0.162601i
\(37\) −10.8695 −1.78693 −0.893464 0.449134i \(-0.851733\pi\)
−0.893464 + 0.449134i \(0.851733\pi\)
\(38\) 5.20584 1.12512i 0.844498 0.182519i
\(39\) −11.4257 −1.82958
\(40\) 0 0
\(41\) 0.420695 0.728665i 0.0657015 0.113798i −0.831303 0.555819i \(-0.812405\pi\)
0.897005 + 0.442020i \(0.145738\pi\)
\(42\) −1.79416 3.10758i −0.276845 0.479510i
\(43\) −2.47539 + 4.28749i −0.377493 + 0.653837i −0.990697 0.136088i \(-0.956547\pi\)
0.613204 + 0.789925i \(0.289880\pi\)
\(44\) 0.0722863 + 0.125204i 0.0108976 + 0.0188751i
\(45\) 0 0
\(46\) −6.39764 −0.943280
\(47\) 2.86445 + 4.96137i 0.417823 + 0.723690i 0.995720 0.0924193i \(-0.0294600\pi\)
−0.577898 + 0.816109i \(0.696127\pi\)
\(48\) −3.11796 5.40046i −0.450038 0.779489i
\(49\) −5.34841 −0.764058
\(50\) 0 0
\(51\) 7.12498 + 12.3408i 0.997696 + 1.72806i
\(52\) 1.26755 2.19546i 0.175777 0.304455i
\(53\) 6.18122 + 10.7062i 0.849056 + 1.47061i 0.882051 + 0.471153i \(0.156162\pi\)
−0.0329952 + 0.999456i \(0.510505\pi\)
\(54\) 1.08632 1.88157i 0.147830 0.256049i
\(55\) 0 0
\(56\) 3.93673 0.526068
\(57\) 9.73591 2.10419i 1.28955 0.278707i
\(58\) −1.57028 −0.206189
\(59\) −2.86445 + 4.96137i −0.372919 + 0.645915i −0.990013 0.140974i \(-0.954977\pi\)
0.617094 + 0.786889i \(0.288310\pi\)
\(60\) 0 0
\(61\) −2.22889 3.86056i −0.285381 0.494294i 0.687321 0.726354i \(-0.258787\pi\)
−0.972701 + 0.232060i \(0.925453\pi\)
\(62\) −0.746491 + 1.29296i −0.0948044 + 0.164206i
\(63\) −1.42771 2.47287i −0.179875 0.311553i
\(64\) 8.86946 1.10868
\(65\) 0 0
\(66\) −0.398082 0.689498i −0.0490005 0.0848713i
\(67\) −0.492981 0.853869i −0.0602273 0.104317i 0.834340 0.551251i \(-0.185849\pi\)
−0.894567 + 0.446934i \(0.852516\pi\)
\(68\) −3.16172 −0.383415
\(69\) −11.9648 −1.44039
\(70\) 0 0
\(71\) 1.46135 2.53113i 0.173430 0.300390i −0.766187 0.642618i \(-0.777848\pi\)
0.939617 + 0.342228i \(0.111182\pi\)
\(72\) −3.40310 5.89434i −0.401059 0.694655i
\(73\) −0.382043 + 0.661718i −0.0447148 + 0.0774483i −0.887517 0.460776i \(-0.847571\pi\)
0.842802 + 0.538224i \(0.180905\pi\)
\(74\) −6.64057 + 11.5018i −0.771951 + 1.33706i
\(75\) 0 0
\(76\) −0.675762 + 2.10419i −0.0775152 + 0.241368i
\(77\) 0.366449 0.0417607
\(78\) −6.98040 + 12.0904i −0.790375 + 1.36897i
\(79\) 7.72889 13.3868i 0.869569 1.50614i 0.00713043 0.999975i \(-0.497730\pi\)
0.862438 0.506162i \(-0.168936\pi\)
\(80\) 0 0
\(81\) 5.36445 9.29150i 0.596050 1.03239i
\(82\) −0.514037 0.890339i −0.0567659 0.0983215i
\(83\) −1.66563 −0.182826 −0.0914132 0.995813i \(-0.529138\pi\)
−0.0914132 + 0.995813i \(0.529138\pi\)
\(84\) 1.48898 0.162461
\(85\) 0 0
\(86\) 3.02461 + 5.23879i 0.326153 + 0.564913i
\(87\) −2.93673 −0.314851
\(88\) 0.873467 0.0931119
\(89\) 8.01404 + 13.8807i 0.849486 + 1.47135i 0.881667 + 0.471871i \(0.156421\pi\)
−0.0321812 + 0.999482i \(0.510245\pi\)
\(90\) 0 0
\(91\) −3.21286 5.56483i −0.336799 0.583353i
\(92\) 1.32735 2.29904i 0.138386 0.239692i
\(93\) −1.39608 + 2.41808i −0.144767 + 0.250743i
\(94\) 7.00000 0.721995
\(95\) 0 0
\(96\) 6.38049 0.651206
\(97\) 5.87147 10.1697i 0.596157 1.03257i −0.397225 0.917721i \(-0.630027\pi\)
0.993382 0.114853i \(-0.0366398\pi\)
\(98\) −3.26755 + 5.65956i −0.330072 + 0.571702i
\(99\) −0.316776 0.548672i −0.0318371 0.0551436i
\(100\) 0 0
\(101\) 3.95935 + 6.85779i 0.393970 + 0.682376i 0.992969 0.118374i \(-0.0377681\pi\)
−0.598999 + 0.800750i \(0.704435\pi\)
\(102\) 17.4117 1.72401
\(103\) 12.8202 1.26322 0.631608 0.775288i \(-0.282395\pi\)
0.631608 + 0.775288i \(0.282395\pi\)
\(104\) −7.65817 13.2643i −0.750945 1.30067i
\(105\) 0 0
\(106\) 15.1054 1.46716
\(107\) −13.8062 −1.33470 −0.667348 0.744746i \(-0.732571\pi\)
−0.667348 + 0.744746i \(0.732571\pi\)
\(108\) 0.450771 + 0.780758i 0.0433755 + 0.0751285i
\(109\) 4.60192 7.97076i 0.440784 0.763460i −0.556964 0.830537i \(-0.688034\pi\)
0.997748 + 0.0670767i \(0.0213672\pi\)
\(110\) 0 0
\(111\) −12.4191 + 21.5106i −1.17877 + 2.04169i
\(112\) 1.75351 3.03717i 0.165691 0.286985i
\(113\) 17.3273 1.63001 0.815005 0.579453i \(-0.196734\pi\)
0.815005 + 0.579453i \(0.196734\pi\)
\(114\) 3.72143 11.5878i 0.348544 1.08530i
\(115\) 0 0
\(116\) 0.325796 0.564295i 0.0302494 0.0523934i
\(117\) −5.55469 + 9.62101i −0.513531 + 0.889462i
\(118\) 3.50000 + 6.06218i 0.322201 + 0.558069i
\(119\) −4.00702 + 6.94036i −0.367323 + 0.636222i
\(120\) 0 0
\(121\) −10.9187 −0.992609
\(122\) −5.44687 −0.493136
\(123\) −0.961348 1.66510i −0.0866818 0.150137i
\(124\) −0.309757 0.536515i −0.0278170 0.0481805i
\(125\) 0 0
\(126\) −3.48898 −0.310823
\(127\) 4.66563 + 8.08111i 0.414008 + 0.717082i 0.995324 0.0965956i \(-0.0307954\pi\)
−0.581316 + 0.813678i \(0.697462\pi\)
\(128\) 2.62653 4.54929i 0.232155 0.402104i
\(129\) 5.65661 + 9.79753i 0.498037 + 0.862625i
\(130\) 0 0
\(131\) −6.21286 + 10.7610i −0.542820 + 0.940191i 0.455921 + 0.890020i \(0.349310\pi\)
−0.998741 + 0.0501711i \(0.984023\pi\)
\(132\) 0.330369 0.0287549
\(133\) 3.76253 + 4.15013i 0.326253 + 0.359862i
\(134\) −1.20472 −0.104072
\(135\) 0 0
\(136\) −9.55113 + 16.5430i −0.819003 + 1.41855i
\(137\) −9.26755 16.0519i −0.791780 1.37140i −0.924864 0.380298i \(-0.875821\pi\)
0.133084 0.991105i \(-0.457512\pi\)
\(138\) −7.30976 + 12.6609i −0.622248 + 1.07776i
\(139\) 3.00702 + 5.20831i 0.255052 + 0.441763i 0.964910 0.262582i \(-0.0845741\pi\)
−0.709858 + 0.704345i \(0.751241\pi\)
\(140\) 0 0
\(141\) 13.0913 1.10249
\(142\) −1.78559 3.09273i −0.149843 0.259536i
\(143\) −0.712856 1.23470i −0.0596120 0.103251i
\(144\) −6.06327 −0.505272
\(145\) 0 0
\(146\) 0.466810 + 0.808538i 0.0386334 + 0.0669151i
\(147\) −6.11094 + 10.5845i −0.504022 + 0.872991i
\(148\) −2.75551 4.77268i −0.226502 0.392312i
\(149\) 3.39608 5.88218i 0.278218 0.481887i −0.692724 0.721203i \(-0.743590\pi\)
0.970942 + 0.239315i \(0.0769230\pi\)
\(150\) 0 0
\(151\) −15.8875 −1.29291 −0.646453 0.762953i \(-0.723749\pi\)
−0.646453 + 0.762953i \(0.723749\pi\)
\(152\) 8.96837 + 9.89226i 0.727431 + 0.802368i
\(153\) 13.8554 1.12014
\(154\) 0.223877 0.387767i 0.0180406 0.0312472i
\(155\) 0 0
\(156\) −2.89652 5.01693i −0.231908 0.401676i
\(157\) 3.75351 6.50127i 0.299563 0.518858i −0.676473 0.736467i \(-0.736493\pi\)
0.976036 + 0.217609i \(0.0698259\pi\)
\(158\) −9.44375 16.3571i −0.751305 1.30130i
\(159\) 28.2500 2.24037
\(160\) 0 0
\(161\) −3.36445 5.82739i −0.265156 0.459263i
\(162\) −6.55469 11.3531i −0.514985 0.891980i
\(163\) −21.8202 −1.70909 −0.854546 0.519375i \(-0.826165\pi\)
−0.854546 + 0.519375i \(0.826165\pi\)
\(164\) 0.426600 0.0333119
\(165\) 0 0
\(166\) −1.01760 + 1.76253i −0.0789808 + 0.136799i
\(167\) 5.64257 + 9.77322i 0.436635 + 0.756274i 0.997428 0.0716821i \(-0.0228367\pi\)
−0.560792 + 0.827957i \(0.689503\pi\)
\(168\) 4.49800 7.79076i 0.347028 0.601070i
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) 2.96135 9.22108i 0.226460 0.705154i
\(172\) −2.51013 −0.191396
\(173\) −2.92771 + 5.07095i −0.222590 + 0.385537i −0.955594 0.294688i \(-0.904784\pi\)
0.733004 + 0.680225i \(0.238118\pi\)
\(174\) −1.79416 + 3.10758i −0.136015 + 0.235585i
\(175\) 0 0
\(176\) 0.389062 0.673875i 0.0293266 0.0507952i
\(177\) 6.54567 + 11.3374i 0.492003 + 0.852174i
\(178\) 19.5843 1.46791
\(179\) −18.7922 −1.40459 −0.702296 0.711885i \(-0.747842\pi\)
−0.702296 + 0.711885i \(0.747842\pi\)
\(180\) 0 0
\(181\) −6.67265 11.5574i −0.495974 0.859052i 0.504015 0.863695i \(-0.331856\pi\)
−0.999989 + 0.00464265i \(0.998522\pi\)
\(182\) −7.85142 −0.581986
\(183\) −10.1867 −0.753021
\(184\) −8.01950 13.8902i −0.591205 1.02400i
\(185\) 0 0
\(186\) 1.70584 + 2.95460i 0.125078 + 0.216642i
\(187\) −0.889062 + 1.53990i −0.0650146 + 0.112609i
\(188\) −1.45233 + 2.51551i −0.105922 + 0.183462i
\(189\) 2.28514 0.166220
\(190\) 0 0
\(191\) −0.668743 −0.0483885 −0.0241943 0.999707i \(-0.507702\pi\)
−0.0241943 + 0.999707i \(0.507702\pi\)
\(192\) 10.1340 17.5526i 0.731358 1.26675i
\(193\) −1.88204 + 3.25979i −0.135472 + 0.234645i −0.925778 0.378068i \(-0.876589\pi\)
0.790305 + 0.612713i \(0.209922\pi\)
\(194\) −7.17420 12.4261i −0.515078 0.892141i
\(195\) 0 0
\(196\) −1.35587 2.34844i −0.0968480 0.167746i
\(197\) −14.6164 −1.04138 −0.520688 0.853747i \(-0.674324\pi\)
−0.520688 + 0.853747i \(0.674324\pi\)
\(198\) −0.774121 −0.0550144
\(199\) −5.76053 9.97753i −0.408353 0.707288i 0.586352 0.810056i \(-0.300563\pi\)
−0.994705 + 0.102768i \(0.967230\pi\)
\(200\) 0 0
\(201\) −2.25307 −0.158919
\(202\) 9.67566 0.680777
\(203\) −0.825796 1.43032i −0.0579595 0.100389i
\(204\) −3.61250 + 6.25703i −0.252925 + 0.438079i
\(205\) 0 0
\(206\) 7.83237 13.5661i 0.545707 0.945192i
\(207\) −5.81678 + 10.0750i −0.404294 + 0.700257i
\(208\) −13.6445 −0.946074
\(209\) 0.834816 + 0.920816i 0.0577454 + 0.0636941i
\(210\) 0 0
\(211\) 8.57028 14.8442i 0.590003 1.02191i −0.404229 0.914658i \(-0.632460\pi\)
0.994231 0.107257i \(-0.0342067\pi\)
\(212\) −3.13400 + 5.42824i −0.215244 + 0.372813i
\(213\) −3.33939 5.78399i −0.228811 0.396313i
\(214\) −8.43473 + 14.6094i −0.576586 + 0.998677i
\(215\) 0 0
\(216\) 5.44687 0.370612
\(217\) −1.57028 −0.106598
\(218\) −5.62297 9.73928i −0.380836 0.659627i
\(219\) 0.873023 + 1.51212i 0.0589934 + 0.102180i
\(220\) 0 0
\(221\) 31.1796 2.09736
\(222\) 15.1746 + 26.2833i 1.01846 + 1.76402i
\(223\) 0.762085 1.31997i 0.0510330 0.0883918i −0.839380 0.543544i \(-0.817082\pi\)
0.890413 + 0.455153i \(0.150415\pi\)
\(224\) 1.79416 + 3.10758i 0.119878 + 0.207634i
\(225\) 0 0
\(226\) 10.5859 18.3353i 0.704162 1.21964i
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) 3.39208 + 3.74152i 0.224646 + 0.247788i
\(229\) 18.4397 1.21853 0.609266 0.792966i \(-0.291464\pi\)
0.609266 + 0.792966i \(0.291464\pi\)
\(230\) 0 0
\(231\) 0.418694 0.725199i 0.0275480 0.0477146i
\(232\) −1.96837 3.40931i −0.129230 0.223832i
\(233\) 6.35587 11.0087i 0.416387 0.721203i −0.579186 0.815195i \(-0.696629\pi\)
0.995573 + 0.0939920i \(0.0299628\pi\)
\(234\) 6.78714 + 11.7557i 0.443689 + 0.768493i
\(235\) 0 0
\(236\) −2.90466 −0.189077
\(237\) −17.6616 30.5908i −1.14725 1.98709i
\(238\) 4.89608 + 8.48026i 0.317366 + 0.549694i
\(239\) −10.8343 −0.700811 −0.350405 0.936598i \(-0.613956\pi\)
−0.350405 + 0.936598i \(0.613956\pi\)
\(240\) 0 0
\(241\) 4.93673 + 8.55067i 0.318003 + 0.550797i 0.980071 0.198646i \(-0.0636545\pi\)
−0.662068 + 0.749444i \(0.730321\pi\)
\(242\) −6.67065 + 11.5539i −0.428805 + 0.742713i
\(243\) −9.59134 16.6127i −0.615285 1.06570i
\(244\) 1.13009 1.95738i 0.0723467 0.125308i
\(245\) 0 0
\(246\) −2.34930 −0.149786
\(247\) 6.66407 20.7507i 0.424025 1.32033i
\(248\) −3.74293 −0.237676
\(249\) −1.90310 + 3.29626i −0.120604 + 0.208892i
\(250\) 0 0
\(251\) −8.88550 15.3901i −0.560848 0.971417i −0.997423 0.0717492i \(-0.977142\pi\)
0.436575 0.899668i \(-0.356191\pi\)
\(252\) 0.723877 1.25379i 0.0456000 0.0789815i
\(253\) −0.746491 1.29296i −0.0469315 0.0812877i
\(254\) 11.4016 0.715403
\(255\) 0 0
\(256\) 5.66017 + 9.80370i 0.353760 + 0.612731i
\(257\) 4.07930 + 7.06556i 0.254460 + 0.440738i 0.964749 0.263173i \(-0.0847689\pi\)
−0.710289 + 0.703911i \(0.751436\pi\)
\(258\) 13.8234 0.860604
\(259\) −13.9688 −0.867980
\(260\) 0 0
\(261\) −1.42771 + 2.47287i −0.0883733 + 0.153067i
\(262\) 7.59134 + 13.1486i 0.468995 + 0.812322i
\(263\) 3.15861 5.47087i 0.194768 0.337348i −0.752056 0.659099i \(-0.770938\pi\)
0.946825 + 0.321750i \(0.104271\pi\)
\(264\) 0.997999 1.72858i 0.0614226 0.106387i
\(265\) 0 0
\(266\) 6.69024 1.44594i 0.410205 0.0886565i
\(267\) 36.6264 2.24150
\(268\) 0.249951 0.432927i 0.0152682 0.0264452i
\(269\) −4.11951 + 7.13521i −0.251171 + 0.435041i −0.963849 0.266451i \(-0.914149\pi\)
0.712677 + 0.701492i \(0.247482\pi\)
\(270\) 0 0
\(271\) 2.11094 3.65625i 0.128230 0.222101i −0.794761 0.606923i \(-0.792404\pi\)
0.922991 + 0.384821i \(0.125737\pi\)
\(272\) 8.50858 + 14.7373i 0.515908 + 0.893579i
\(273\) −14.6837 −0.888696
\(274\) −22.6476 −1.36819
\(275\) 0 0
\(276\) −3.03319 5.25364i −0.182577 0.316232i
\(277\) 9.83739 0.591071 0.295536 0.955332i \(-0.404502\pi\)
0.295536 + 0.955332i \(0.404502\pi\)
\(278\) 7.34841 0.440728
\(279\) 1.35743 + 2.35114i 0.0812671 + 0.140759i
\(280\) 0 0
\(281\) −2.69024 4.65964i −0.160486 0.277971i 0.774557 0.632504i \(-0.217973\pi\)
−0.935043 + 0.354534i \(0.884640\pi\)
\(282\) 7.99800 13.8529i 0.476274 0.824931i
\(283\) −2.48240 + 4.29965i −0.147564 + 0.255588i −0.930326 0.366732i \(-0.880476\pi\)
0.782763 + 0.622320i \(0.213810\pi\)
\(284\) 1.48186 0.0879323
\(285\) 0 0
\(286\) −1.74204 −0.103009
\(287\) 0.540653 0.936439i 0.0319137 0.0552762i
\(288\) 3.10192 5.37268i 0.182782 0.316588i
\(289\) −10.9433 18.9544i −0.643724 1.11496i
\(290\) 0 0
\(291\) −13.4171 23.2392i −0.786526 1.36230i
\(292\) −0.387406 −0.0226712
\(293\) 3.80620 0.222360 0.111180 0.993800i \(-0.464537\pi\)
0.111180 + 0.993800i \(0.464537\pi\)
\(294\) 7.46681 + 12.9329i 0.435473 + 0.754262i
\(295\) 0 0
\(296\) −33.2961 −1.93529
\(297\) 0.507019 0.0294202
\(298\) −4.14959 7.18730i −0.240379 0.416349i
\(299\) −13.0898 + 22.6722i −0.757002 + 1.31117i
\(300\) 0 0
\(301\) −3.18122 + 5.51004i −0.183363 + 0.317593i
\(302\) −9.70628 + 16.8118i −0.558534 + 0.967409i
\(303\) 18.0953 1.03955
\(304\) 11.6265 2.51281i 0.666827 0.144119i
\(305\) 0 0
\(306\) 8.46481 14.6615i 0.483901 0.838141i
\(307\) 0.287144 0.497348i 0.0163882 0.0283851i −0.857715 0.514125i \(-0.828117\pi\)
0.874103 + 0.485740i \(0.161450\pi\)
\(308\) 0.0928982 + 0.160904i 0.00529336 + 0.00916838i
\(309\) 14.6480 25.3711i 0.833297 1.44331i
\(310\) 0 0
\(311\) −8.61640 −0.488591 −0.244296 0.969701i \(-0.578557\pi\)
−0.244296 + 0.969701i \(0.578557\pi\)
\(312\) −35.0000 −1.98148
\(313\) −17.0617 29.5517i −0.964385 1.67036i −0.711259 0.702930i \(-0.751875\pi\)
−0.253126 0.967433i \(-0.581459\pi\)
\(314\) −4.58632 7.94375i −0.258821 0.448291i
\(315\) 0 0
\(316\) 7.83739 0.440887
\(317\) −5.53865 9.59323i −0.311082 0.538809i 0.667515 0.744596i \(-0.267358\pi\)
−0.978597 + 0.205787i \(0.934025\pi\)
\(318\) 17.2590 29.8934i 0.967835 1.67634i
\(319\) −0.183224 0.317354i −0.0102586 0.0177684i
\(320\) 0 0
\(321\) −15.7746 + 27.3223i −0.880450 + 1.52498i
\(322\) −8.22188 −0.458187
\(323\) −26.5683 + 5.74213i −1.47830 + 0.319500i
\(324\) 5.43975 0.302208
\(325\) 0 0
\(326\) −13.3308 + 23.0896i −0.738325 + 1.27882i
\(327\) −10.5160 18.2143i −0.581538 1.00725i
\(328\) 1.28870 2.23210i 0.0711566 0.123247i
\(329\) 3.68122 + 6.37607i 0.202952 + 0.351524i
\(330\) 0 0
\(331\) 6.41168 0.352418 0.176209 0.984353i \(-0.443617\pi\)
0.176209 + 0.984353i \(0.443617\pi\)
\(332\) −0.422252 0.731363i −0.0231741 0.0401387i
\(333\) 12.0753 + 20.9150i 0.661722 + 1.14614i
\(334\) 13.7890 0.754503
\(335\) 0 0
\(336\) −4.00702 6.94036i −0.218601 0.378628i
\(337\) −12.6336 + 21.8820i −0.688193 + 1.19199i 0.284228 + 0.958757i \(0.408263\pi\)
−0.972422 + 0.233229i \(0.925071\pi\)
\(338\) 7.33126 + 12.6981i 0.398768 + 0.690686i
\(339\) 19.7976 34.2905i 1.07526 1.86240i
\(340\) 0 0
\(341\) −0.348409 −0.0188674
\(342\) −7.94833 8.76714i −0.429796 0.474072i
\(343\) −15.8695 −0.856871
\(344\) −7.58276 + 13.1337i −0.408835 + 0.708123i
\(345\) 0 0
\(346\) 3.57730 + 6.19607i 0.192317 + 0.333103i
\(347\) 6.20428 10.7461i 0.333063 0.576882i −0.650048 0.759893i \(-0.725251\pi\)
0.983111 + 0.183011i \(0.0585844\pi\)
\(348\) −0.744489 1.28949i −0.0399088 0.0691241i
\(349\) 6.20384 0.332084 0.166042 0.986119i \(-0.446901\pi\)
0.166042 + 0.986119i \(0.446901\pi\)
\(350\) 0 0
\(351\) −4.44531 7.69950i −0.237273 0.410969i
\(352\) 0.398082 + 0.689498i 0.0212178 + 0.0367504i
\(353\) 23.3484 1.24271 0.621355 0.783529i \(-0.286582\pi\)
0.621355 + 0.783529i \(0.286582\pi\)
\(354\) 15.9960 0.850178
\(355\) 0 0
\(356\) −4.06327 + 7.03778i −0.215353 + 0.373002i
\(357\) 9.15661 + 15.8597i 0.484619 + 0.839385i
\(358\) −11.4808 + 19.8854i −0.606782 + 1.05098i
\(359\) 18.8609 32.6680i 0.995440 1.72415i 0.415107 0.909773i \(-0.363744\pi\)
0.580333 0.814379i \(-0.302922\pi\)
\(360\) 0 0
\(361\) −1.85698 + 18.9090i −0.0977360 + 0.995212i
\(362\) −16.3063 −0.857040
\(363\) −12.4754 + 21.6080i −0.654788 + 1.13413i
\(364\) 1.62898 2.82147i 0.0853816 0.147885i
\(365\) 0 0
\(366\) −6.22343 + 10.7793i −0.325304 + 0.563443i
\(367\) 14.7038 + 25.4678i 0.767534 + 1.32941i 0.938896 + 0.344200i \(0.111850\pi\)
−0.171362 + 0.985208i \(0.554817\pi\)
\(368\) −14.2883 −0.744827
\(369\) −1.86946 −0.0973204
\(370\) 0 0
\(371\) 7.94375 + 13.7590i 0.412419 + 0.714331i
\(372\) −1.41568 −0.0733995
\(373\) 21.5491 1.11577 0.557886 0.829918i \(-0.311613\pi\)
0.557886 + 0.829918i \(0.311613\pi\)
\(374\) 1.08632 + 1.88157i 0.0561725 + 0.0972935i
\(375\) 0 0
\(376\) 8.77457 + 15.1980i 0.452514 + 0.783777i
\(377\) −3.21286 + 5.56483i −0.165471 + 0.286603i
\(378\) 1.39608 2.41808i 0.0718066 0.124373i
\(379\) −19.3945 −0.996230 −0.498115 0.867111i \(-0.665974\pi\)
−0.498115 + 0.867111i \(0.665974\pi\)
\(380\) 0 0
\(381\) 21.3233 1.09242
\(382\) −0.408561 + 0.707648i −0.0209038 + 0.0362064i
\(383\) 9.44331 16.3563i 0.482531 0.835767i −0.517268 0.855823i \(-0.673051\pi\)
0.999799 + 0.0200559i \(0.00638442\pi\)
\(384\) −6.00200 10.3958i −0.306288 0.530507i
\(385\) 0 0
\(386\) 2.29962 + 3.98307i 0.117048 + 0.202733i
\(387\) 11.0000 0.559161
\(388\) 5.95389 0.302263
\(389\) 4.54021 + 7.86387i 0.230198 + 0.398714i 0.957866 0.287215i \(-0.0927294\pi\)
−0.727668 + 0.685929i \(0.759396\pi\)
\(390\) 0 0
\(391\) 32.6507 1.65122
\(392\) −16.3836 −0.827497
\(393\) 14.1973 + 24.5904i 0.716157 + 1.24042i
\(394\) −8.92972 + 15.4667i −0.449873 + 0.779202i
\(395\) 0 0
\(396\) 0.160611 0.278187i 0.00807101 0.0139794i
\(397\) 8.49800 14.7190i 0.426502 0.738724i −0.570057 0.821605i \(-0.693079\pi\)
0.996559 + 0.0828814i \(0.0264123\pi\)
\(398\) −14.0773 −0.705631
\(399\) 12.5120 2.70419i 0.626385 0.135379i
\(400\) 0 0
\(401\) −0.795720 + 1.37823i −0.0397363 + 0.0688254i −0.885210 0.465192i \(-0.845985\pi\)
0.845473 + 0.534018i \(0.179318\pi\)
\(402\) −1.37648 + 2.38414i −0.0686528 + 0.118910i
\(403\) 3.05469 + 5.29088i 0.152165 + 0.263557i
\(404\) −2.00746 + 3.47703i −0.0998750 + 0.172989i
\(405\) 0 0
\(406\) −2.01804 −0.100154
\(407\) −3.09935 −0.153629
\(408\) 21.8257 + 37.8032i 1.08053 + 1.87154i
\(409\) 0.998443 + 1.72935i 0.0493698 + 0.0855110i 0.889654 0.456635i \(-0.150945\pi\)
−0.840284 + 0.542146i \(0.817612\pi\)
\(410\) 0 0
\(411\) −42.3553 −2.08923
\(412\) 3.25005 + 5.62925i 0.160118 + 0.277333i
\(413\) −3.68122 + 6.37607i −0.181141 + 0.313746i
\(414\) 7.10738 + 12.3103i 0.349309 + 0.605020i
\(415\) 0 0
\(416\) 6.98040 12.0904i 0.342242 0.592781i
\(417\) 13.7429 0.672994
\(418\) 1.48441 0.320820i 0.0726046 0.0156918i
\(419\) −22.7781 −1.11278 −0.556392 0.830920i \(-0.687815\pi\)
−0.556392 + 0.830920i \(0.687815\pi\)
\(420\) 0 0
\(421\) 6.92070 11.9870i 0.337294 0.584210i −0.646629 0.762805i \(-0.723822\pi\)
0.983923 + 0.178594i \(0.0571550\pi\)
\(422\) −10.4718 18.1377i −0.509761 0.882931i
\(423\) 6.36445 11.0235i 0.309450 0.535983i
\(424\) 18.9347 + 32.7959i 0.919552 + 1.59271i
\(425\) 0 0
\(426\) −8.16064 −0.395384
\(427\) −2.86445 4.96137i −0.138620 0.240097i
\(428\) −3.50000 6.06218i −0.169179 0.293026i
\(429\) −3.25796 −0.157296
\(430\) 0 0
\(431\) −1.71987 2.97891i −0.0828435 0.143489i 0.821627 0.570026i \(-0.193067\pi\)
−0.904470 + 0.426537i \(0.859733\pi\)
\(432\) 2.42616 4.20223i 0.116729 0.202180i
\(433\) −4.60036 7.96806i −0.221079 0.382920i 0.734057 0.679088i \(-0.237625\pi\)
−0.955136 + 0.296168i \(0.904291\pi\)
\(434\) −0.959347 + 1.66164i −0.0460501 + 0.0797612i
\(435\) 0 0
\(436\) 4.66652 0.223486
\(437\) 6.97850 21.7297i 0.333827 1.03947i
\(438\) 2.13345 0.101940
\(439\) 18.7550 32.4846i 0.895126 1.55040i 0.0614769 0.998109i \(-0.480419\pi\)
0.833649 0.552295i \(-0.186248\pi\)
\(440\) 0 0
\(441\) 5.94175 + 10.2914i 0.282941 + 0.490067i
\(442\) 19.0488 32.9935i 0.906058 1.56934i
\(443\) 7.33939 + 12.7122i 0.348705 + 0.603975i 0.986020 0.166629i \(-0.0532882\pi\)
−0.637315 + 0.770604i \(0.719955\pi\)
\(444\) −12.5935 −0.597660
\(445\) 0 0
\(446\) −0.931174 1.61284i −0.0440924 0.0763702i
\(447\) −7.76053 13.4416i −0.367060 0.635767i
\(448\) 11.3985 0.538530
\(449\) −7.39052 −0.348780 −0.174390 0.984677i \(-0.555795\pi\)
−0.174390 + 0.984677i \(0.555795\pi\)
\(450\) 0 0
\(451\) 0.119958 0.207773i 0.00564860 0.00978367i
\(452\) 4.39262 + 7.60824i 0.206611 + 0.357862i
\(453\) −18.1526 + 31.4412i −0.852884 + 1.47724i
\(454\) −2.44375 + 4.23270i −0.114691 + 0.198651i
\(455\) 0 0
\(456\) 29.8237 6.44571i 1.39662 0.301848i
\(457\) −2.30007 −0.107593 −0.0537963 0.998552i \(-0.517132\pi\)
−0.0537963 + 0.998552i \(0.517132\pi\)
\(458\) 11.2655 19.5125i 0.526404 0.911759i
\(459\) −5.54411 + 9.60269i −0.258777 + 0.448215i
\(460\) 0 0
\(461\) −9.87848 + 17.1100i −0.460087 + 0.796894i −0.998965 0.0454900i \(-0.985515\pi\)
0.538878 + 0.842384i \(0.318848\pi\)
\(462\) −0.511592 0.886103i −0.0238014 0.0412253i
\(463\) −28.9468 −1.34527 −0.672635 0.739974i \(-0.734838\pi\)
−0.672635 + 0.739974i \(0.734838\pi\)
\(464\) −3.50702 −0.162809
\(465\) 0 0
\(466\) −7.76609 13.4513i −0.359757 0.623118i
\(467\) 3.31722 0.153503 0.0767513 0.997050i \(-0.475545\pi\)
0.0767513 + 0.997050i \(0.475545\pi\)
\(468\) −5.63266 −0.260370
\(469\) −0.633551 1.09734i −0.0292547 0.0506706i
\(470\) 0 0
\(471\) −8.57730 14.8563i −0.395221 0.684543i
\(472\) −8.77457 + 15.1980i −0.403882 + 0.699544i
\(473\) −0.705838 + 1.22255i −0.0324544 + 0.0562127i
\(474\) −43.1606 −1.98243
\(475\) 0 0
\(476\) −4.06327 −0.186240
\(477\) 13.7339 23.7878i 0.628833 1.08917i
\(478\) −6.61907 + 11.4646i −0.302749 + 0.524377i
\(479\) 19.7535 + 34.2141i 0.902561 + 1.56328i 0.824158 + 0.566360i \(0.191649\pi\)
0.0784026 + 0.996922i \(0.475018\pi\)
\(480\) 0 0
\(481\) 27.1737 + 47.0662i 1.23901 + 2.14603i
\(482\) 12.0642 0.549507
\(483\) −15.3765 −0.699654
\(484\) −2.76799 4.79430i −0.125818 0.217923i
\(485\) 0 0
\(486\) −23.4389 −1.06321
\(487\) 24.7781 1.12280 0.561402 0.827543i \(-0.310262\pi\)
0.561402 + 0.827543i \(0.310262\pi\)
\(488\) −6.82770 11.8259i −0.309075 0.535334i
\(489\) −24.9312 + 43.1821i −1.12743 + 1.95276i
\(490\) 0 0
\(491\) 6.81176 11.7983i 0.307410 0.532450i −0.670385 0.742014i \(-0.733871\pi\)
0.977795 + 0.209563i \(0.0672042\pi\)
\(492\) 0.487421 0.844239i 0.0219747 0.0380612i
\(493\) 8.01404 0.360934
\(494\) −17.8865 19.7291i −0.804752 0.887656i
\(495\) 0 0
\(496\) −1.66719 + 2.88765i −0.0748589 + 0.129659i
\(497\) 1.87804 3.25286i 0.0842416 0.145911i
\(498\) 2.32535 + 4.02763i 0.104201 + 0.180482i
\(499\) −4.09490 + 7.09257i −0.183313 + 0.317507i −0.943007 0.332774i \(-0.892015\pi\)
0.759694 + 0.650281i \(0.225349\pi\)
\(500\) 0 0
\(501\) 25.7882 1.15213
\(502\) −21.7140 −0.969142
\(503\) 9.14257 + 15.8354i 0.407647 + 0.706065i 0.994626 0.103537i \(-0.0330160\pi\)
−0.586978 + 0.809603i \(0.699683\pi\)
\(504\) −4.37347 7.57507i −0.194810 0.337420i
\(505\) 0 0
\(506\) −1.82424 −0.0810973
\(507\) 13.7109 + 23.7479i 0.608920 + 1.05468i
\(508\) −2.36556 + 4.09727i −0.104955 + 0.181787i
\(509\) −5.94220 10.2922i −0.263383 0.456193i 0.703756 0.710442i \(-0.251505\pi\)
−0.967139 + 0.254249i \(0.918172\pi\)
\(510\) 0 0
\(511\) −0.490980 + 0.850402i −0.0217197 + 0.0376196i
\(512\) 24.3382 1.07561
\(513\) 5.20584 + 5.74213i 0.229843 + 0.253521i
\(514\) 9.96881 0.439705
\(515\) 0 0
\(516\) −2.86801 + 4.96753i −0.126257 + 0.218683i
\(517\) 0.816776 + 1.41470i 0.0359218 + 0.0622183i
\(518\) −8.53408 + 14.7815i −0.374966 + 0.649460i
\(519\) 6.69024 + 11.5878i 0.293669 + 0.508650i
\(520\) 0 0
\(521\) 21.3725 0.936345 0.468173 0.883637i \(-0.344913\pi\)
0.468173 + 0.883637i \(0.344913\pi\)
\(522\) 1.74449 + 3.02154i 0.0763542 + 0.132249i
\(523\) −2.88862 5.00323i −0.126310 0.218776i 0.795934 0.605383i \(-0.206980\pi\)
−0.922244 + 0.386607i \(0.873647\pi\)
\(524\) −6.30007 −0.275220
\(525\) 0 0
\(526\) −3.85943 6.68473i −0.168279 0.291468i
\(527\) 3.80976 6.59869i 0.165956 0.287444i
\(528\) −0.889062 1.53990i −0.0386915 0.0670156i
\(529\) −2.20739 + 3.82332i −0.0959737 + 0.166231i
\(530\) 0 0
\(531\) 12.7289 0.552387
\(532\) −0.868450 + 2.70419i −0.0376521 + 0.117242i
\(533\) −4.20695 −0.182223
\(534\) 22.3765 38.7572i 0.968325 1.67719i
\(535\) 0 0
\(536\) −1.51013 2.61563i −0.0652278 0.112978i
\(537\) −21.4714 + 37.1895i −0.926559 + 1.60485i
\(538\) 5.03354 + 8.71834i 0.217011 + 0.375874i
\(539\) −1.52506 −0.0656889
\(540\) 0 0
\(541\) −1.31678 2.28072i −0.0566126 0.0980559i 0.836330 0.548226i \(-0.184697\pi\)
−0.892943 + 0.450170i \(0.851363\pi\)
\(542\) −2.57930 4.46749i −0.110791 0.191895i
\(543\) −30.4959 −1.30870
\(544\) −17.4117 −0.746519
\(545\) 0 0
\(546\) −8.97081 + 15.5379i −0.383915 + 0.664961i
\(547\) −18.1812 31.4908i −0.777373 1.34645i −0.933451 0.358705i \(-0.883218\pi\)
0.156078 0.987745i \(-0.450115\pi\)
\(548\) 4.69882 8.13859i 0.200724 0.347663i
\(549\) −4.95233 + 8.57768i −0.211360 + 0.366087i
\(550\) 0 0
\(551\) 1.71286 5.33351i 0.0729701 0.227215i
\(552\) −36.6514 −1.55999
\(553\) 9.93273 17.2040i 0.422383 0.731588i
\(554\) 6.01003 10.4097i 0.255342 0.442265i
\(555\) 0 0
\(556\) −1.52461 + 2.64071i −0.0646581 + 0.111991i
\(557\) 11.9824 + 20.7541i 0.507711 + 0.879381i 0.999960 + 0.00892662i \(0.00284147\pi\)
−0.492249 + 0.870454i \(0.663825\pi\)
\(558\) 3.31722 0.140429
\(559\) 24.7539 1.04698
\(560\) 0 0
\(561\) 2.03163 + 3.51889i 0.0857756 + 0.148568i
\(562\) −6.57429 −0.277320
\(563\) 8.52017 0.359082 0.179541 0.983750i \(-0.442539\pi\)
0.179541 + 0.983750i \(0.442539\pi\)
\(564\) 3.31878 + 5.74829i 0.139746 + 0.242047i
\(565\) 0 0
\(566\) 3.03319 + 5.25364i 0.127495 + 0.220827i
\(567\) 6.89408 11.9409i 0.289524 0.501470i
\(568\) 4.47650 7.75352i 0.187830 0.325331i
\(569\) 16.3734 0.686407 0.343204 0.939261i \(-0.388488\pi\)
0.343204 + 0.939261i \(0.388488\pi\)
\(570\) 0 0
\(571\) −5.21876 −0.218398 −0.109199 0.994020i \(-0.534829\pi\)
−0.109199 + 0.994020i \(0.534829\pi\)
\(572\) 0.361431 0.626018i 0.0151122 0.0261751i
\(573\) −0.764087 + 1.32344i −0.0319202 + 0.0552874i
\(574\) −0.660611 1.14421i −0.0275734 0.0477585i
\(575\) 0 0
\(576\) −9.85343 17.0666i −0.410559 0.711110i
\(577\) 32.0390 1.33380 0.666900 0.745147i \(-0.267621\pi\)
0.666900 + 0.745147i \(0.267621\pi\)
\(578\) −26.7427 −1.11235
\(579\) 4.30074 + 7.44910i 0.178733 + 0.309574i
\(580\) 0 0
\(581\) −2.14057 −0.0888058
\(582\) −32.7882 −1.35911
\(583\) 1.76253 + 3.05279i 0.0729965 + 0.126434i
\(584\) −1.17030 + 2.02702i −0.0484274 + 0.0838787i
\(585\) 0 0
\(586\) 2.32535 4.02763i 0.0960594 0.166380i
\(587\) −1.67220 + 2.89634i −0.0690192 + 0.119545i −0.898470 0.439035i \(-0.855320\pi\)
0.829451 + 0.558580i \(0.188654\pi\)
\(588\) −6.19672 −0.255548
\(589\) −3.57730 3.94583i −0.147400 0.162585i
\(590\) 0 0
\(591\) −16.7003 + 28.9257i −0.686958 + 1.18985i
\(592\) −14.8308 + 25.6877i −0.609543 + 1.05576i
\(593\) 21.1054 + 36.5556i 0.866694 + 1.50116i 0.865355 + 0.501159i \(0.167093\pi\)
0.00133875 + 0.999999i \(0.499574\pi\)
\(594\) 0.309757 0.536515i 0.0127095 0.0220135i
\(595\) 0 0
\(596\) 3.44375 0.141062
\(597\) −26.3273 −1.07750
\(598\) 15.9941 + 27.7026i 0.654047 + 1.13284i
\(599\) 2.60938 + 4.51958i 0.106616 + 0.184665i 0.914397 0.404818i \(-0.132665\pi\)
−0.807781 + 0.589483i \(0.799332\pi\)
\(600\) 0 0
\(601\) −10.1546 −0.414215 −0.207108 0.978318i \(-0.566405\pi\)
−0.207108 + 0.978318i \(0.566405\pi\)
\(602\) 3.88706 + 6.73259i 0.158425 + 0.274400i
\(603\) −1.09534 + 1.89719i −0.0446058 + 0.0772596i
\(604\) −4.02763 6.97606i −0.163882 0.283852i
\(605\) 0 0
\(606\) 11.0551 19.1481i 0.449084 0.777837i
\(607\) −42.8764 −1.74030 −0.870149 0.492788i \(-0.835978\pi\)
−0.870149 + 0.492788i \(0.835978\pi\)
\(608\) −3.72143 + 11.5878i −0.150924 + 0.469949i
\(609\) −3.77412 −0.152935
\(610\) 0 0
\(611\) 14.3222 24.8068i 0.579416 1.00358i
\(612\) 3.51248 + 6.08379i 0.141984 + 0.245923i
\(613\) 12.5367 21.7141i 0.506351 0.877025i −0.493622 0.869676i \(-0.664328\pi\)
0.999973 0.00734857i \(-0.00233914\pi\)
\(614\) −0.350854 0.607697i −0.0141593 0.0245247i
\(615\) 0 0
\(616\) 1.12253 0.0452280
\(617\) −2.74849 4.76053i −0.110650 0.191652i 0.805382 0.592756i \(-0.201960\pi\)
−0.916033 + 0.401104i \(0.868627\pi\)
\(618\) −17.8981 31.0004i −0.719966 1.24702i
\(619\) 15.4899 0.622590 0.311295 0.950313i \(-0.399237\pi\)
0.311295 + 0.950313i \(0.399237\pi\)
\(620\) 0 0
\(621\) −4.65505 8.06279i −0.186801 0.323548i
\(622\) −5.26409 + 9.11767i −0.211071 + 0.365585i
\(623\) 10.2992 + 17.8387i 0.412628 + 0.714693i
\(624\) −15.5898 + 27.0023i −0.624091 + 1.08096i
\(625\) 0 0
\(626\) −41.6946 −1.66645
\(627\) 2.77612 0.599995i 0.110868 0.0239615i
\(628\) 3.80620 0.151884
\(629\) 33.8905 58.7001i 1.35130 2.34053i
\(630\) 0 0
\(631\) −20.6616 35.7870i −0.822526 1.42466i −0.903795 0.427965i \(-0.859231\pi\)
0.0812689 0.996692i \(-0.474103\pi\)
\(632\) 23.6757 41.0075i 0.941767 1.63119i
\(633\) −19.5843 33.9210i −0.778407 1.34824i
\(634\) −13.5351 −0.537547
\(635\) 0 0
\(636\) 7.16163 + 12.4043i 0.283977 + 0.491862i
\(637\) 13.3710 + 23.1593i 0.529779 + 0.917604i
\(638\) −0.447755 −0.0177268
\(639\) −6.49387 −0.256894
\(640\) 0 0
\(641\) 15.3358 26.5624i 0.605729 1.04915i −0.386207 0.922412i \(-0.626215\pi\)
0.991936 0.126741i \(-0.0404517\pi\)
\(642\) 19.2746 + 33.3845i 0.760706 + 1.31758i
\(643\) −4.00902 + 6.94383i −0.158100 + 0.273838i −0.934184 0.356793i \(-0.883870\pi\)
0.776083 + 0.630630i \(0.217204\pi\)
\(644\) 1.70584 2.95460i 0.0672194 0.116427i
\(645\) 0 0
\(646\) −10.1554 + 31.6220i −0.399559 + 1.24415i
\(647\) −10.0272 −0.394209 −0.197105 0.980382i \(-0.563154\pi\)
−0.197105 + 0.980382i \(0.563154\pi\)
\(648\) 16.4327 28.4623i 0.645539 1.11811i
\(649\) −0.816776 + 1.41470i −0.0320612 + 0.0555317i
\(650\) 0 0
\(651\) −1.79416 + 3.10758i −0.0703188 + 0.121796i
\(652\) −5.53163 9.58107i −0.216635 0.375224i
\(653\) −20.4117 −0.798771 −0.399385 0.916783i \(-0.630776\pi\)
−0.399385 + 0.916783i \(0.630776\pi\)
\(654\) −25.6986 −1.00489
\(655\) 0 0
\(656\) −1.14803 1.98845i −0.0448231 0.0776360i
\(657\) 1.69771 0.0662338
\(658\) 8.99600 0.350700
\(659\) 18.4874 + 32.0212i 0.720168 + 1.24737i 0.960932 + 0.276783i \(0.0892685\pi\)
−0.240765 + 0.970584i \(0.577398\pi\)
\(660\) 0 0
\(661\) −1.59646 2.76514i −0.0620950 0.107552i 0.833307 0.552811i \(-0.186445\pi\)
−0.895402 + 0.445259i \(0.853112\pi\)
\(662\) 3.91714 6.78468i 0.152244 0.263694i
\(663\) 35.6249 61.7041i 1.38356 2.39639i
\(664\) −5.10226 −0.198006
\(665\) 0 0
\(666\) 29.5090 1.14345
\(667\) −3.36445 + 5.82739i −0.130272 + 0.225638i
\(668\) −2.86089 + 4.95520i −0.110691 + 0.191723i
\(669\) −1.74147 3.01632i −0.0673292 0.116618i
\(670\) 0 0
\(671\) −0.635553 1.10081i −0.0245352 0.0424963i
\(672\) 8.19983 0.316315
\(673\) 15.0742 0.581067 0.290534 0.956865i \(-0.406167\pi\)
0.290534 + 0.956865i \(0.406167\pi\)
\(674\) 15.4366 + 26.7370i 0.594597 + 1.02987i
\(675\) 0 0
\(676\) −6.08422 −0.234009
\(677\) −17.9648 −0.690444 −0.345222 0.938521i \(-0.612196\pi\)
−0.345222 + 0.938521i \(0.612196\pi\)
\(678\) −24.1902 41.8987i −0.929021 1.60911i
\(679\) 7.54567 13.0695i 0.289576 0.501561i
\(680\) 0 0
\(681\) −4.57028 + 7.91597i −0.175134 + 0.303340i
\(682\) −0.212856 + 0.368678i −0.00815069 + 0.0141174i
\(683\) 3.78524 0.144838 0.0724191 0.997374i \(-0.476928\pi\)
0.0724191 + 0.997374i \(0.476928\pi\)
\(684\) 4.79962 1.03733i 0.183518 0.0396633i
\(685\) 0 0
\(686\) −9.69526 + 16.7927i −0.370167 + 0.641148i
\(687\) 21.0687 36.4921i 0.803822 1.39226i
\(688\) 6.75507 + 11.7001i 0.257534 + 0.446063i
\(689\) 30.9061 53.5310i 1.17743 2.03937i
\(690\) 0 0
\(691\) −10.3335 −0.393104 −0.196552 0.980493i \(-0.562974\pi\)
−0.196552 + 0.980493i \(0.562974\pi\)
\(692\) −2.96881 −0.112857
\(693\) −0.407102 0.705121i −0.0154645 0.0267853i
\(694\) −7.58086 13.1304i −0.287766 0.498425i
\(695\) 0 0
\(696\) −8.99600 −0.340992
\(697\) 2.62342 + 4.54389i 0.0993690 + 0.172112i
\(698\) 3.79016 6.56475i 0.143460 0.248479i
\(699\) −14.5241 25.1564i −0.549351 0.951504i
\(700\) 0 0
\(701\) −17.9980 + 31.1734i −0.679775 + 1.17740i 0.295273 + 0.955413i \(0.404589\pi\)
−0.975048 + 0.221992i \(0.928744\pi\)
\(702\) −10.8632 −0.410006
\(703\) −31.8227 35.1010i −1.20022 1.32386i
\(704\) 2.52906 0.0953176
\(705\) 0 0
\(706\) 14.2644 24.7067i 0.536849 0.929850i
\(707\) 5.08832 + 8.81324i 0.191366 + 0.331456i
\(708\) −3.31878 + 5.74829i −0.124727 + 0.216034i
\(709\) −4.40266 7.62562i −0.165345 0.286386i 0.771433 0.636311i \(-0.219540\pi\)
−0.936778 + 0.349925i \(0.886207\pi\)
\(710\) 0 0
\(711\) −34.3453 −1.28805
\(712\) 24.5491 + 42.5203i 0.920018 + 1.59352i
\(713\) 3.19882 + 5.54052i 0.119797 + 0.207494i
\(714\) 22.3765 0.837419
\(715\) 0 0
\(716\) −4.76399 8.25147i −0.178039 0.308372i
\(717\) −12.3789 + 21.4409i −0.462300 + 0.800726i
\(718\) −23.0457 39.9163i −0.860057 1.48966i
\(719\) −9.49600 + 16.4475i −0.354141 + 0.613390i −0.986971 0.160901i \(-0.948560\pi\)
0.632830 + 0.774291i \(0.281893\pi\)
\(720\) 0 0
\(721\) 16.4758 0.613592
\(722\) 18.8746 + 13.5173i 0.702439 + 0.503061i
\(723\) 22.5623 0.839100
\(724\) 3.38316 5.85980i 0.125734 0.217778i
\(725\) 0 0
\(726\) 15.2434 + 26.4023i 0.565735 + 0.979881i
\(727\) 2.04567 3.54321i 0.0758697 0.131410i −0.825594 0.564264i \(-0.809160\pi\)
0.901464 + 0.432854i \(0.142493\pi\)
\(728\) −9.84183 17.0466i −0.364763 0.631787i
\(729\) −11.6485 −0.431425
\(730\) 0 0
\(731\) −15.4363 26.7364i −0.570932 0.988883i
\(732\) −2.58242 4.47288i −0.0954490 0.165322i
\(733\) 50.4678 1.86407 0.932036 0.362366i \(-0.118031\pi\)
0.932036 + 0.362366i \(0.118031\pi\)
\(734\) 35.9325 1.32629
\(735\) 0 0
\(736\) 7.30976 12.6609i 0.269441 0.466686i
\(737\) −0.140570 0.243474i −0.00517796 0.00896849i
\(738\) −1.14213 + 1.97822i −0.0420423 + 0.0728194i
\(739\) −17.1148 + 29.6438i −0.629580 + 1.09046i 0.358056 + 0.933700i \(0.383440\pi\)
−0.987636 + 0.156764i \(0.949894\pi\)
\(740\) 0 0
\(741\) −33.4512 36.8973i −1.22886 1.35545i
\(742\) 19.4126 0.712658
\(743\) 11.2996 19.5715i 0.414543 0.718010i −0.580837 0.814020i \(-0.697275\pi\)
0.995380 + 0.0960101i \(0.0306081\pi\)
\(744\) −4.27657 + 7.40723i −0.156787 + 0.271562i
\(745\) 0 0
\(746\) 13.1652 22.8028i 0.482012 0.834869i
\(747\) 1.85041 + 3.20500i 0.0677030 + 0.117265i
\(748\) −0.901542 −0.0329636
\(749\) −17.7429 −0.648313
\(750\) 0 0
\(751\) 12.7199 + 22.0315i 0.464155 + 0.803940i 0.999163 0.0409072i \(-0.0130248\pi\)
−0.535008 + 0.844847i \(0.679691\pi\)
\(752\) 15.6336 0.570097
\(753\) −40.6093 −1.47988
\(754\) 3.92571 + 6.79953i 0.142966 + 0.247624i
\(755\) 0 0
\(756\) 0.579305 + 1.00339i 0.0210691 + 0.0364928i
\(757\) 21.4015 37.0686i 0.777852 1.34728i −0.155325 0.987863i \(-0.549643\pi\)
0.933177 0.359416i \(-0.117024\pi\)
\(758\) −11.8489 + 20.5228i −0.430370 + 0.745422i
\(759\) −3.41168 −0.123836
\(760\) 0 0
\(761\) −29.8944 −1.08367 −0.541836 0.840484i \(-0.682271\pi\)
−0.541836 + 0.840484i \(0.682271\pi\)
\(762\) 13.0272 22.5637i 0.471925 0.817398i
\(763\) 5.91412 10.2436i 0.214106 0.370842i
\(764\) −0.169533 0.293639i −0.00613347 0.0106235i
\(765\) 0 0
\(766\) −11.5386 19.9854i −0.416905 0.722100i
\(767\) 28.6445 1.03429
\(768\) 25.8686 0.933452
\(769\) 8.32179 + 14.4138i 0.300092 + 0.519774i 0.976156 0.217068i \(-0.0696494\pi\)
−0.676065 + 0.736842i \(0.736316\pi\)
\(770\) 0 0
\(771\) 18.6436 0.671432
\(772\) −1.90846 −0.0686871
\(773\) 3.05669 + 5.29435i 0.109942 + 0.190424i 0.915746 0.401757i \(-0.131600\pi\)
−0.805805 + 0.592181i \(0.798267\pi\)
\(774\) 6.72032 11.6399i 0.241557 0.418389i
\(775\) 0 0
\(776\) 17.9859 31.1524i 0.645655 1.11831i
\(777\) −15.9604 + 27.6442i −0.572575 + 0.991729i
\(778\) 11.0951 0.397780
\(779\) 3.58477 0.774765i 0.128438 0.0277588i
\(780\) 0 0
\(781\) 0.416692 0.721732i 0.0149104 0.0258256i
\(782\) 19.9476 34.5502i 0.713323 1.23551i
\(783\) −1.14257 1.97899i −0.0408322 0.0707234i
\(784\) −7.29762 + 12.6399i −0.260629 + 0.451423i
\(785\) 0 0
\(786\) 34.6946 1.23752
\(787\) 18.7781 0.669368 0.334684 0.942330i \(-0.391370\pi\)
0.334684 + 0.942330i \(0.391370\pi\)
\(788\) −3.70539 6.41793i −0.131999 0.228629i
\(789\) −7.21787 12.5017i −0.256963 0.445073i
\(790\) 0 0
\(791\) 22.2680 0.791759
\(792\) −0.970368 1.68073i −0.0344805 0.0597220i
\(793\) −11.1445 + 19.3028i −0.395752 + 0.685462i
\(794\) −10.3835 17.9848i −0.368497 0.638255i
\(795\) 0 0
\(796\) 2.92070 5.05879i 0.103521 0.179304i
\(797\) −30.2851 −1.07275 −0.536377 0.843978i \(-0.680208\pi\)
−0.536377 + 0.843978i \(0.680208\pi\)
\(798\) 4.78257 14.8920i 0.169301 0.527172i
\(799\) −35.7249 −1.26386
\(800\) 0 0
\(801\) 17.8062 30.8412i 0.629151 1.08972i
\(802\) 0.972271 + 1.68402i 0.0343321 + 0.0594649i
\(803\) −0.108937 + 0.188684i −0.00384430 + 0.00665851i
\(804\) −0.571173 0.989301i −0.0201437 0.0348899i
\(805\) 0 0
\(806\) 7.46491 0.262940
\(807\) 9.41368 + 16.3050i 0.331377 + 0.573962i
\(808\) 12.1285 + 21.0072i 0.426680 + 0.739032i
\(809\) 13.6015 0.478202 0.239101 0.970995i \(-0.423147\pi\)
0.239101 + 0.970995i \(0.423147\pi\)
\(810\) 0 0
\(811\) −0.799180 1.38422i −0.0280630 0.0486065i 0.851653 0.524106i \(-0.175601\pi\)
−0.879716 + 0.475500i \(0.842267\pi\)
\(812\) 0.418694 0.725199i 0.0146933 0.0254495i
\(813\) −4.82379 8.35506i −0.169178 0.293025i
\(814\) −1.89351 + 3.27965i −0.0663674 + 0.114952i
\(815\) 0 0
\(816\) 38.8866 1.36130
\(817\) −21.0929 + 4.55875i −0.737947 + 0.159490i
\(818\) 2.43995 0.0853107
\(819\) −7.13857 + 12.3644i −0.249442 + 0.432046i
\(820\) 0 0
\(821\) 9.40110 + 16.2832i 0.328101 + 0.568287i 0.982135 0.188178i \(-0.0602582\pi\)
−0.654034 + 0.756465i \(0.726925\pi\)
\(822\) −25.8765 + 44.8194i −0.902546 + 1.56326i
\(823\) 26.5984 + 46.0697i 0.927161 + 1.60589i 0.788049 + 0.615612i \(0.211091\pi\)
0.139111 + 0.990277i \(0.455575\pi\)
\(824\) 39.2718 1.36810
\(825\) 0 0
\(826\) 4.49800 + 7.79076i 0.156505 + 0.271075i
\(827\) −12.5371 21.7149i −0.435957 0.755101i 0.561416 0.827534i \(-0.310257\pi\)
−0.997373 + 0.0724334i \(0.976924\pi\)
\(828\) −5.89843 −0.204985
\(829\) −28.2740 −0.981997 −0.490999 0.871160i \(-0.663368\pi\)
−0.490999 + 0.871160i \(0.663368\pi\)
\(830\) 0 0
\(831\) 11.2399 19.4681i 0.389908 0.675341i
\(832\) −22.1737 38.4059i −0.768733 1.33149i
\(833\) 16.6761 28.8839i 0.577793 1.00077i
\(834\) 8.39608 14.5424i 0.290732 0.503563i
\(835\) 0 0
\(836\) −0.192688 + 0.599995i −0.00666427 + 0.0207513i
\(837\) −2.17265 −0.0750977
\(838\) −13.9160 + 24.1033i −0.480721 + 0.832633i
\(839\) −7.33983 + 12.7130i −0.253399 + 0.438900i −0.964459 0.264231i \(-0.914882\pi\)
0.711060 + 0.703131i \(0.248215\pi\)
\(840\) 0 0
\(841\) 13.6742 23.6844i 0.471524 0.816704i
\(842\) −8.45623 14.6466i −0.291421 0.504756i
\(843\) −12.2952 −0.423468
\(844\) 8.69059 0.299142
\(845\) 0 0
\(846\) −7.77657 13.4694i −0.267364 0.463088i
\(847\) −14.0321 −0.482148
\(848\) 33.7358 1.15849
\(849\) 5.67265 + 9.82531i 0.194685 + 0.337204i
\(850\) 0 0
\(851\) 28.4558 + 49.2869i 0.975452 + 1.68953i
\(852\) 1.69313 2.93259i 0.0580058 0.100469i
\(853\) −12.9523 + 22.4341i −0.443479 + 0.768129i −0.997945 0.0640780i \(-0.979589\pi\)
0.554466 + 0.832207i \(0.312923\pi\)
\(854\) −7.00000 −0.239535
\(855\) 0 0
\(856\) −42.2921 −1.44551
\(857\) −6.45277 + 11.1765i −0.220423 + 0.381783i −0.954936 0.296811i \(-0.904077\pi\)
0.734514 + 0.678594i \(0.237410\pi\)
\(858\) −1.99041 + 3.44749i −0.0679515 + 0.117695i
\(859\) 14.3589 + 24.8703i 0.489919 + 0.848564i 0.999933 0.0116018i \(-0.00369304\pi\)
−0.510014 + 0.860166i \(0.670360\pi\)
\(860\) 0 0
\(861\) −1.23547 2.13990i −0.0421047 0.0729275i
\(862\) −4.20295 −0.143153
\(863\) 3.04300 0.103585 0.0517925 0.998658i \(-0.483507\pi\)
0.0517925 + 0.998658i \(0.483507\pi\)
\(864\) 2.48240 + 4.29965i 0.0844531 + 0.146277i
\(865\) 0 0
\(866\) −11.2421 −0.382024
\(867\) −50.0140 −1.69857
\(868\) −0.398082 0.689498i −0.0135118 0.0234031i
\(869\) 2.20384 3.81716i 0.0747600 0.129488i
\(870\) 0 0
\(871\) −2.46491 + 4.26934i −0.0835202 + 0.144661i
\(872\) 14.0969 24.4165i 0.477381 0.826849i
\(873\) −26.0913 −0.883058
\(874\) −18.7305 20.6600i −0.633567 0.698835i
\(875\) 0 0
\(876\) −0.442639 + 0.766673i −0.0149554 + 0.0259035i
\(877\) 5.68468 9.84616i 0.191958 0.332481i −0.753941 0.656942i \(-0.771850\pi\)
0.945899 + 0.324461i \(0.105183\pi\)
\(878\) −22.9162 39.6921i −0.773386 1.33954i
\(879\) 4.34885 7.53243i 0.146683 0.254063i
\(880\) 0 0
\(881\) 36.4014 1.22640 0.613198 0.789929i \(-0.289883\pi\)
0.613198 + 0.789929i \(0.289883\pi\)
\(882\) 14.5202 0.488919
\(883\) −24.8839 43.1003i −0.837411 1.45044i −0.892052 0.451933i \(-0.850735\pi\)
0.0546404 0.998506i \(-0.482599\pi\)
\(884\) 7.90431 + 13.6907i 0.265851 + 0.460467i
\(885\) 0 0
\(886\) 17.9356 0.602560
\(887\) −7.84885 13.5946i −0.263539 0.456462i 0.703641 0.710556i \(-0.251556\pi\)
−0.967180 + 0.254093i \(0.918223\pi\)
\(888\) −38.0431 + 65.8926i −1.27664 + 2.21121i
\(889\) 5.99600 + 10.3854i 0.201099 + 0.348314i
\(890\) 0 0
\(891\) 1.52963 2.64940i 0.0512446 0.0887582i
\(892\) 0.772783 0.0258747
\(893\) −7.63555 + 23.7757i −0.255514 + 0.795623i
\(894\) −18.9648 −0.634278
\(895\) 0 0
\(896\) 3.37547 5.84648i 0.112766 0.195317i
\(897\) 29.9120 + 51.8091i 0.998733 + 1.72986i
\(898\) −4.51515 + 7.82047i −0.150673 + 0.260972i
\(899\) 0.785142 + 1.35991i 0.0261860 + 0.0453554i
\(900\) 0 0
\(901\) −77.0911 −2.56828
\(902\) −0.146574 0.253873i −0.00488038 0.00845306i
\(903\) 7.26955 + 12.5912i 0.241915 + 0.419010i
\(904\) 53.0780 1.76535
\(905\) 0 0
\(906\) 22.1802 + 38.4173i 0.736889 + 1.27633i
\(907\) −16.4578 + 28.5057i −0.546472 + 0.946517i 0.452041 + 0.891997i \(0.350696\pi\)
−0.998513 + 0.0545199i \(0.982637\pi\)
\(908\) −1.01404 1.75636i −0.0336520 0.0582870i
\(909\) 8.79718 15.2372i 0.291784 0.505385i
\(910\) 0 0
\(911\) −18.7109 −0.619918 −0.309959 0.950750i \(-0.600315\pi\)
−0.309959 + 0.950750i \(0.600315\pi\)
\(912\) 8.31131 25.8799i 0.275215 0.856968i
\(913\) −0.474941 −0.0157183
\(914\) −1.40520 + 2.43388i −0.0464799 + 0.0805055i
\(915\) 0 0
\(916\) 4.67465 + 8.09673i 0.154455 + 0.267523i
\(917\) −7.98441 + 13.8294i −0.263668 + 0.456687i
\(918\) 6.77422 + 11.7333i 0.223583 + 0.387256i
\(919\) −50.9506 −1.68070 −0.840352 0.542041i \(-0.817652\pi\)
−0.840352 + 0.542041i \(0.817652\pi\)
\(920\) 0 0
\(921\) −0.656164 1.13651i −0.0216214 0.0374493i
\(922\) 12.0703 + 20.9063i 0.397514 + 0.688514i
\(923\) −14.6135 −0.481009
\(924\) 0.424571 0.0139674
\(925\) 0 0
\(926\) −17.6847 + 30.6308i −0.581155 + 1.00659i
\(927\) −14.2425 24.6687i −0.467785 0.810227i
\(928\) 1.79416 3.10758i 0.0588963 0.102011i
\(929\) −5.74249 + 9.94628i −0.188405 + 0.326327i −0.944719 0.327882i \(-0.893665\pi\)
0.756314 + 0.654209i \(0.226998\pi\)
\(930\) 0 0
\(931\) −15.6586 17.2717i −0.513190 0.566057i
\(932\) 6.44509 0.211116
\(933\) −9.84485 + 17.0518i −0.322306 + 0.558250i
\(934\) 2.02662 3.51020i 0.0663129 0.114857i
\(935\) 0 0
\(936\) −17.0155 + 29.4717i −0.556169 + 0.963313i
\(937\) 8.08477 + 14.0032i 0.264118 + 0.457465i 0.967332 0.253512i \(-0.0815859\pi\)
−0.703214 + 0.710978i \(0.748253\pi\)
\(938\) −1.54824 −0.0505519
\(939\) −77.9769 −2.54468
\(940\) 0 0
\(941\) 12.6937 + 21.9861i 0.413803 + 0.716728i 0.995302 0.0968194i \(-0.0308669\pi\)
−0.581499 + 0.813547i \(0.697534\pi\)
\(942\) −20.9608 −0.682940
\(943\) −4.40545 −0.143461
\(944\) 7.81678 + 13.5391i 0.254414 + 0.440659i
\(945\) 0 0
\(946\) 0.862446 + 1.49380i 0.0280405 + 0.0485676i
\(947\) 11.6902 20.2481i 0.379882 0.657975i −0.611163 0.791505i \(-0.709298\pi\)
0.991045 + 0.133530i \(0.0426313\pi\)
\(948\) 8.95477 15.5101i 0.290838 0.503745i
\(949\) 3.82043 0.124016
\(950\) 0 0
\(951\) −25.3132 −0.820837
\(952\) −12.2746 + 21.2602i −0.397821 + 0.689046i
\(953\) −11.0893 + 19.2073i −0.359219 + 0.622185i −0.987831 0.155534i \(-0.950290\pi\)
0.628612 + 0.777719i \(0.283624\pi\)
\(954\) −16.7811 29.0658i −0.543309 0.941040i
\(955\) 0 0
\(956\) −2.74659 4.75723i −0.0888310 0.153860i
\(957\) −0.837388 −0.0270689
\(958\) 48.2727 1.55962
\(959\) −11.9101 20.6289i −0.384598 0.666143i
\(960\) 0 0
\(961\) −29.5070 −0.951839
\(962\) 66.4057 2.14101
\(963\) 15.3378 + 26.5659i 0.494255 + 0.856074i
\(964\) −2.50302 + 4.33535i −0.0806167 + 0.139632i
\(965\) 0 0
\(966\) −9.39408 + 16.2710i −0.302250 + 0.523512i
\(967\) −20.4297 + 35.3853i −0.656975 + 1.13791i 0.324419 + 0.945913i \(0.394831\pi\)
−0.981395 + 0.192001i \(0.938502\pi\)
\(968\) −33.4469 −1.07502
\(969\) −18.9925 + 59.1392i −0.610128 + 1.89982i
\(970\) 0 0
\(971\) −12.3238 + 21.3454i −0.395489 + 0.685008i −0.993164 0.116731i \(-0.962758\pi\)
0.597674 + 0.801739i \(0.296092\pi\)
\(972\) 4.86299 8.42294i 0.155980 0.270166i
\(973\) 3.86445 + 6.69342i 0.123888 + 0.214581i
\(974\) 15.1379 26.2196i 0.485050 0.840131i
\(975\) 0 0
\(976\) −12.1648 −0.389387
\(977\) 13.7077 0.438549 0.219275 0.975663i \(-0.429631\pi\)
0.219275 + 0.975663i \(0.429631\pi\)
\(978\) 30.4628 + 52.7631i 0.974093 + 1.68718i
\(979\) 2.28514 + 3.95798i 0.0730335 + 0.126498i
\(980\) 0 0
\(981\) −20.4498 −0.652911
\(982\) −8.32313 14.4161i −0.265602 0.460035i
\(983\) 0.141014 0.244243i 0.00449765 0.00779015i −0.863768 0.503890i \(-0.831902\pi\)
0.868265 + 0.496100i \(0.165235\pi\)
\(984\) −2.94487 5.10066i −0.0938789 0.162603i
\(985\) 0 0
\(986\) 4.89608 8.48026i 0.155923 0.270067i
\(987\) 16.8242 0.535521
\(988\) 10.8008 2.33435i 0.343620 0.0742657i
\(989\) 25.9218 0.824266
\(990\) 0 0
\(991\) −12.2992 + 21.3028i −0.390696 + 0.676706i −0.992542 0.121907i \(-0.961099\pi\)
0.601845 + 0.798613i \(0.294432\pi\)
\(992\) −1.70584 2.95460i −0.0541604 0.0938086i
\(993\) 7.32580 12.6887i 0.232477 0.402662i
\(994\) −2.29473 3.97459i −0.0727845 0.126066i
\(995\) 0 0
\(996\) −1.92981 −0.0611485
\(997\) −11.5913 20.0768i −0.367101 0.635838i 0.622010 0.783010i \(-0.286316\pi\)
−0.989111 + 0.147171i \(0.952983\pi\)
\(998\) 5.00346 + 8.66625i 0.158382 + 0.274325i
\(999\) −19.3273 −0.611487
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.e.d.201.2 6
5.2 odd 4 475.2.j.b.49.4 12
5.3 odd 4 475.2.j.b.49.3 12
5.4 even 2 95.2.e.b.11.2 6
15.14 odd 2 855.2.k.g.676.2 6
19.7 even 3 inner 475.2.e.d.26.2 6
19.8 odd 6 9025.2.a.ba.1.2 3
19.11 even 3 9025.2.a.z.1.2 3
20.19 odd 2 1520.2.q.j.961.3 6
95.7 odd 12 475.2.j.b.349.3 12
95.49 even 6 1805.2.a.h.1.2 3
95.64 even 6 95.2.e.b.26.2 yes 6
95.83 odd 12 475.2.j.b.349.4 12
95.84 odd 6 1805.2.a.g.1.2 3
285.254 odd 6 855.2.k.g.406.2 6
380.159 odd 6 1520.2.q.j.881.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.e.b.11.2 6 5.4 even 2
95.2.e.b.26.2 yes 6 95.64 even 6
475.2.e.d.26.2 6 19.7 even 3 inner
475.2.e.d.201.2 6 1.1 even 1 trivial
475.2.j.b.49.3 12 5.3 odd 4
475.2.j.b.49.4 12 5.2 odd 4
475.2.j.b.349.3 12 95.7 odd 12
475.2.j.b.349.4 12 95.83 odd 12
855.2.k.g.406.2 6 285.254 odd 6
855.2.k.g.676.2 6 15.14 odd 2
1520.2.q.j.881.3 6 380.159 odd 6
1520.2.q.j.961.3 6 20.19 odd 2
1805.2.a.g.1.2 3 95.84 odd 6
1805.2.a.h.1.2 3 95.49 even 6
9025.2.a.z.1.2 3 19.11 even 3
9025.2.a.ba.1.2 3 19.8 odd 6