Properties

Label 475.2.e.d.201.1
Level $475$
Weight $2$
Character 475.201
Analytic conductor $3.793$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(26,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.3518667.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} - 8x^{3} + 43x^{2} - 42x + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 201.1
Root \(-1.25351 + 2.17114i\) of defining polynomial
Character \(\chi\) \(=\) 475.201
Dual form 475.2.e.d.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.25351 + 2.17114i) q^{2} +(0.610938 - 1.05818i) q^{3} +(-2.14257 - 3.71104i) q^{4} +(1.53163 + 2.65287i) q^{6} +0.221876 q^{7} +5.72889 q^{8} +(0.753509 + 1.30512i) q^{9} -0.778124 q^{11} -5.23591 q^{12} +(-2.50000 - 4.33013i) q^{13} +(-0.278124 + 0.481725i) q^{14} +(-2.89608 + 5.01616i) q^{16} +(3.53865 - 6.12912i) q^{17} -3.77812 q^{18} +(1.33281 - 4.15013i) q^{19} +(0.135553 - 0.234784i) q^{21} +(0.975385 - 1.68942i) q^{22} +(4.03865 + 6.99515i) q^{23} +(3.50000 - 6.06218i) q^{24} +12.5351 q^{26} +5.50702 q^{27} +(-0.475385 - 0.823392i) q^{28} +(-0.110938 - 0.192150i) q^{29} +2.50702 q^{31} +(-1.53163 - 2.65287i) q^{32} +(-0.475385 + 0.823392i) q^{33} +(8.87147 + 15.3658i) q^{34} +(3.22889 - 5.59261i) q^{36} +1.90466 q^{37} +(7.33983 + 8.09596i) q^{38} -6.10938 q^{39} +(3.61796 - 6.26648i) q^{41} +(0.339833 + 0.588608i) q^{42} +(3.64959 - 6.32128i) q^{43} +(1.66719 + 2.88765i) q^{44} -20.2500 q^{46} +(-1.39608 - 2.41808i) q^{47} +(3.53865 + 6.12912i) q^{48} -6.95077 q^{49} +(-4.32379 - 7.48903i) q^{51} +(-10.7129 + 18.5552i) q^{52} +(2.19024 + 3.79361i) q^{53} +(-6.90310 + 11.9565i) q^{54} +1.27111 q^{56} +(-3.57730 - 3.94583i) q^{57} +0.556248 q^{58} +(1.39608 - 2.41808i) q^{59} +(6.29216 + 10.8983i) q^{61} +(-3.14257 + 5.44309i) q^{62} +(0.167186 + 0.289574i) q^{63} -3.90466 q^{64} +(-1.19180 - 2.06426i) q^{66} +(-5.28514 - 9.15414i) q^{67} -30.3273 q^{68} +9.86946 q^{69} +(4.92070 - 8.52289i) q^{71} +(4.31678 + 7.47687i) q^{72} +(-7.03865 + 12.1913i) q^{73} +(-2.38750 + 4.13528i) q^{74} +(-18.2570 + 3.94583i) q^{76} -0.172647 q^{77} +(7.65817 - 13.2643i) q^{78} +(-0.792161 + 1.37206i) q^{79} +(1.10392 - 1.91204i) q^{81} +(9.07028 + 15.7102i) q^{82} +9.52106 q^{83} -1.16172 q^{84} +(9.14959 + 15.8476i) q^{86} -0.271105 q^{87} -4.45779 q^{88} +(-1.57028 - 2.71981i) q^{89} +(-0.554690 - 0.960752i) q^{91} +(17.3062 - 29.9752i) q^{92} +(1.53163 - 2.65287i) q^{93} +7.00000 q^{94} -3.74293 q^{96} +(-3.18122 + 5.51004i) q^{97} +(8.71286 - 15.0911i) q^{98} +(-0.586324 - 1.01554i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{2} + q^{3} - 7 q^{4} + 6 q^{6} - 4 q^{7} + 12 q^{8} - 4 q^{9} - 10 q^{11} + 8 q^{12} - 15 q^{13} - 7 q^{14} - 3 q^{16} + q^{17} - 28 q^{18} + 12 q^{21} - 8 q^{22} + 4 q^{23} + 21 q^{24} - 10 q^{26}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.25351 + 2.17114i −0.886365 + 1.53523i −0.0422238 + 0.999108i \(0.513444\pi\)
−0.844141 + 0.536121i \(0.819889\pi\)
\(3\) 0.610938 1.05818i 0.352725 0.610938i −0.634001 0.773333i \(-0.718588\pi\)
0.986726 + 0.162394i \(0.0519217\pi\)
\(4\) −2.14257 3.71104i −1.07129 1.85552i
\(5\) 0 0
\(6\) 1.53163 + 2.65287i 0.625287 + 1.08303i
\(7\) 0.221876 0.0838613 0.0419307 0.999121i \(-0.486649\pi\)
0.0419307 + 0.999121i \(0.486649\pi\)
\(8\) 5.72889 2.02547
\(9\) 0.753509 + 1.30512i 0.251170 + 0.435039i
\(10\) 0 0
\(11\) −0.778124 −0.234613 −0.117307 0.993096i \(-0.537426\pi\)
−0.117307 + 0.993096i \(0.537426\pi\)
\(12\) −5.23591 −1.51148
\(13\) −2.50000 4.33013i −0.693375 1.20096i −0.970725 0.240192i \(-0.922790\pi\)
0.277350 0.960769i \(-0.410544\pi\)
\(14\) −0.278124 + 0.481725i −0.0743317 + 0.128746i
\(15\) 0 0
\(16\) −2.89608 + 5.01616i −0.724020 + 1.25404i
\(17\) 3.53865 6.12912i 0.858249 1.48653i −0.0153485 0.999882i \(-0.504886\pi\)
0.873598 0.486649i \(-0.161781\pi\)
\(18\) −3.77812 −0.890512
\(19\) 1.33281 4.15013i 0.305769 0.952106i
\(20\) 0 0
\(21\) 0.135553 0.234784i 0.0295800 0.0512341i
\(22\) 0.975385 1.68942i 0.207953 0.360185i
\(23\) 4.03865 + 6.99515i 0.842117 + 1.45859i 0.888101 + 0.459647i \(0.152024\pi\)
−0.0459843 + 0.998942i \(0.514642\pi\)
\(24\) 3.50000 6.06218i 0.714435 1.23744i
\(25\) 0 0
\(26\) 12.5351 2.45833
\(27\) 5.50702 1.05983
\(28\) −0.475385 0.823392i −0.0898394 0.155606i
\(29\) −0.110938 0.192150i −0.0206007 0.0356814i 0.855541 0.517735i \(-0.173225\pi\)
−0.876142 + 0.482053i \(0.839891\pi\)
\(30\) 0 0
\(31\) 2.50702 0.450274 0.225137 0.974327i \(-0.427717\pi\)
0.225137 + 0.974327i \(0.427717\pi\)
\(32\) −1.53163 2.65287i −0.270757 0.468965i
\(33\) −0.475385 + 0.823392i −0.0827540 + 0.143334i
\(34\) 8.87147 + 15.3658i 1.52144 + 2.63522i
\(35\) 0 0
\(36\) 3.22889 5.59261i 0.538149 0.932102i
\(37\) 1.90466 0.313124 0.156562 0.987668i \(-0.449959\pi\)
0.156562 + 0.987668i \(0.449959\pi\)
\(38\) 7.33983 + 8.09596i 1.19068 + 1.31334i
\(39\) −6.10938 −0.978284
\(40\) 0 0
\(41\) 3.61796 6.26648i 0.565030 0.978661i −0.432017 0.901865i \(-0.642198\pi\)
0.997047 0.0767950i \(-0.0244687\pi\)
\(42\) 0.339833 + 0.588608i 0.0524374 + 0.0908242i
\(43\) 3.64959 6.32128i 0.556557 0.963985i −0.441223 0.897397i \(-0.645455\pi\)
0.997781 0.0665881i \(-0.0212113\pi\)
\(44\) 1.66719 + 2.88765i 0.251338 + 0.435330i
\(45\) 0 0
\(46\) −20.2500 −2.98569
\(47\) −1.39608 2.41808i −0.203639 0.352714i 0.746059 0.665880i \(-0.231944\pi\)
−0.949698 + 0.313166i \(0.898610\pi\)
\(48\) 3.53865 + 6.12912i 0.510760 + 0.884663i
\(49\) −6.95077 −0.992967
\(50\) 0 0
\(51\) −4.32379 7.48903i −0.605452 1.04867i
\(52\) −10.7129 + 18.5552i −1.48561 + 2.57314i
\(53\) 2.19024 + 3.79361i 0.300853 + 0.521093i 0.976329 0.216289i \(-0.0693953\pi\)
−0.675476 + 0.737382i \(0.736062\pi\)
\(54\) −6.90310 + 11.9565i −0.939393 + 1.62708i
\(55\) 0 0
\(56\) 1.27111 0.169859
\(57\) −3.57730 3.94583i −0.473825 0.522637i
\(58\) 0.556248 0.0730389
\(59\) 1.39608 2.41808i 0.181754 0.314808i −0.760724 0.649076i \(-0.775156\pi\)
0.942478 + 0.334268i \(0.108489\pi\)
\(60\) 0 0
\(61\) 6.29216 + 10.8983i 0.805629 + 1.39539i 0.915866 + 0.401484i \(0.131506\pi\)
−0.110237 + 0.993905i \(0.535161\pi\)
\(62\) −3.14257 + 5.44309i −0.399107 + 0.691274i
\(63\) 0.167186 + 0.289574i 0.0210634 + 0.0364829i
\(64\) −3.90466 −0.488082
\(65\) 0 0
\(66\) −1.19180 2.06426i −0.146700 0.254093i
\(67\) −5.28514 9.15414i −0.645683 1.11836i −0.984143 0.177375i \(-0.943239\pi\)
0.338460 0.940981i \(-0.390094\pi\)
\(68\) −30.3273 −3.67772
\(69\) 9.86946 1.18814
\(70\) 0 0
\(71\) 4.92070 8.52289i 0.583979 1.01148i −0.411023 0.911625i \(-0.634828\pi\)
0.995002 0.0998563i \(-0.0318383\pi\)
\(72\) 4.31678 + 7.47687i 0.508737 + 0.881158i
\(73\) −7.03865 + 12.1913i −0.823812 + 1.42688i 0.0790121 + 0.996874i \(0.474823\pi\)
−0.902824 + 0.430010i \(0.858510\pi\)
\(74\) −2.38750 + 4.13528i −0.277542 + 0.480716i
\(75\) 0 0
\(76\) −18.2570 + 3.94583i −2.09422 + 0.452617i
\(77\) −0.172647 −0.0196750
\(78\) 7.65817 13.2643i 0.867117 1.50189i
\(79\) −0.792161 + 1.37206i −0.0891251 + 0.154369i −0.907142 0.420826i \(-0.861740\pi\)
0.818016 + 0.575195i \(0.195074\pi\)
\(80\) 0 0
\(81\) 1.10392 1.91204i 0.122658 0.212449i
\(82\) 9.07028 + 15.7102i 1.00165 + 1.73490i
\(83\) 9.52106 1.04507 0.522536 0.852617i \(-0.324986\pi\)
0.522536 + 0.852617i \(0.324986\pi\)
\(84\) −1.16172 −0.126755
\(85\) 0 0
\(86\) 9.14959 + 15.8476i 0.986626 + 1.70889i
\(87\) −0.271105 −0.0290655
\(88\) −4.45779 −0.475202
\(89\) −1.57028 2.71981i −0.166450 0.288300i 0.770719 0.637175i \(-0.219897\pi\)
−0.937169 + 0.348875i \(0.886564\pi\)
\(90\) 0 0
\(91\) −0.554690 0.960752i −0.0581474 0.100714i
\(92\) 17.3062 29.9752i 1.80430 3.12513i
\(93\) 1.53163 2.65287i 0.158823 0.275089i
\(94\) 7.00000 0.721995
\(95\) 0 0
\(96\) −3.74293 −0.382011
\(97\) −3.18122 + 5.51004i −0.323004 + 0.559460i −0.981106 0.193469i \(-0.938026\pi\)
0.658102 + 0.752929i \(0.271359\pi\)
\(98\) 8.71286 15.0911i 0.880131 1.52443i
\(99\) −0.586324 1.01554i −0.0589277 0.102066i
\(100\) 0 0
\(101\) 3.69726 + 6.40385i 0.367891 + 0.637206i 0.989236 0.146331i \(-0.0467465\pi\)
−0.621344 + 0.783538i \(0.713413\pi\)
\(102\) 21.6797 2.14661
\(103\) −12.2038 −1.20248 −0.601240 0.799069i \(-0.705326\pi\)
−0.601240 + 0.799069i \(0.705326\pi\)
\(104\) −14.3222 24.8068i −1.40441 2.43251i
\(105\) 0 0
\(106\) −10.9820 −1.06666
\(107\) 1.63355 0.157921 0.0789607 0.996878i \(-0.474840\pi\)
0.0789607 + 0.996878i \(0.474840\pi\)
\(108\) −11.7992 20.4368i −1.13538 1.96653i
\(109\) 3.80820 6.59600i 0.364759 0.631782i −0.623978 0.781442i \(-0.714485\pi\)
0.988738 + 0.149660i \(0.0478179\pi\)
\(110\) 0 0
\(111\) 1.16363 2.01546i 0.110447 0.191299i
\(112\) −0.642571 + 1.11297i −0.0607173 + 0.105165i
\(113\) −12.4890 −1.17486 −0.587432 0.809273i \(-0.699861\pi\)
−0.587432 + 0.809273i \(0.699861\pi\)
\(114\) 13.0511 2.82070i 1.22235 0.264183i
\(115\) 0 0
\(116\) −0.475385 + 0.823392i −0.0441384 + 0.0764500i
\(117\) 3.76755 6.52558i 0.348310 0.603290i
\(118\) 3.50000 + 6.06218i 0.322201 + 0.558069i
\(119\) 0.785142 1.35991i 0.0719739 0.124662i
\(120\) 0 0
\(121\) −10.3945 −0.944957
\(122\) −31.5491 −2.85632
\(123\) −4.42070 7.65687i −0.398601 0.690397i
\(124\) −5.37147 9.30365i −0.482372 0.835493i
\(125\) 0 0
\(126\) −0.838276 −0.0746795
\(127\) −6.52106 11.2948i −0.578650 1.00225i −0.995635 0.0933378i \(-0.970246\pi\)
0.416984 0.908914i \(-0.363087\pi\)
\(128\) 7.95779 13.7833i 0.703376 1.21828i
\(129\) −4.45935 7.72382i −0.392624 0.680044i
\(130\) 0 0
\(131\) −3.55469 + 6.15690i −0.310575 + 0.537931i −0.978487 0.206309i \(-0.933855\pi\)
0.667912 + 0.744240i \(0.267188\pi\)
\(132\) 4.07419 0.354613
\(133\) 0.295720 0.920816i 0.0256422 0.0798448i
\(134\) 26.4999 2.28924
\(135\) 0 0
\(136\) 20.2726 35.1131i 1.73836 3.01092i
\(137\) 2.71286 + 4.69880i 0.231775 + 0.401446i 0.958331 0.285662i \(-0.0922134\pi\)
−0.726556 + 0.687108i \(0.758880\pi\)
\(138\) −12.3715 + 21.4280i −1.05313 + 1.82407i
\(139\) −1.78514 3.09196i −0.151414 0.262256i 0.780334 0.625363i \(-0.215049\pi\)
−0.931747 + 0.363107i \(0.881716\pi\)
\(140\) 0 0
\(141\) −3.41168 −0.287315
\(142\) 12.3363 + 21.3671i 1.03524 + 1.79308i
\(143\) 1.94531 + 3.36938i 0.162675 + 0.281761i
\(144\) −8.72889 −0.727408
\(145\) 0 0
\(146\) −17.6460 30.5638i −1.46040 2.52948i
\(147\) −4.24649 + 7.35514i −0.350245 + 0.606642i
\(148\) −4.08086 7.06826i −0.335445 0.581007i
\(149\) 0.468367 0.811235i 0.0383701 0.0664590i −0.846203 0.532861i \(-0.821117\pi\)
0.884573 + 0.466402i \(0.154450\pi\)
\(150\) 0 0
\(151\) −0.971925 −0.0790942 −0.0395471 0.999218i \(-0.512592\pi\)
−0.0395471 + 0.999218i \(0.512592\pi\)
\(152\) 7.63555 23.7757i 0.619325 1.92846i
\(153\) 10.6656 0.862265
\(154\) 0.216415 0.374841i 0.0174392 0.0302056i
\(155\) 0 0
\(156\) 13.0898 + 22.6722i 1.04802 + 1.81523i
\(157\) 1.35743 2.35114i 0.108335 0.187641i −0.806761 0.590878i \(-0.798782\pi\)
0.915096 + 0.403237i \(0.132115\pi\)
\(158\) −1.98596 3.43979i −0.157995 0.273655i
\(159\) 5.35241 0.424474
\(160\) 0 0
\(161\) 0.896081 + 1.55206i 0.0706210 + 0.122319i
\(162\) 2.76755 + 4.79353i 0.217439 + 0.376615i
\(163\) 3.20384 0.250944 0.125472 0.992097i \(-0.459956\pi\)
0.125472 + 0.992097i \(0.459956\pi\)
\(164\) −31.0069 −2.42123
\(165\) 0 0
\(166\) −11.9347 + 20.6716i −0.926315 + 1.60442i
\(167\) 5.11094 + 8.85240i 0.395496 + 0.685020i 0.993164 0.116724i \(-0.0372393\pi\)
−0.597668 + 0.801744i \(0.703906\pi\)
\(168\) 0.776567 1.34505i 0.0599134 0.103773i
\(169\) −6.00000 + 10.3923i −0.461538 + 0.799408i
\(170\) 0 0
\(171\) 6.42070 1.38769i 0.491003 0.106119i
\(172\) −31.2780 −2.38493
\(173\) −1.33281 + 2.30850i −0.101332 + 0.175512i −0.912234 0.409670i \(-0.865644\pi\)
0.810902 + 0.585182i \(0.198977\pi\)
\(174\) 0.339833 0.588608i 0.0257627 0.0446222i
\(175\) 0 0
\(176\) 2.25351 3.90319i 0.169865 0.294214i
\(177\) −1.70584 2.95460i −0.128219 0.222081i
\(178\) 7.87347 0.590141
\(179\) −12.9367 −0.966937 −0.483468 0.875362i \(-0.660623\pi\)
−0.483468 + 0.875362i \(0.660623\pi\)
\(180\) 0 0
\(181\) 9.30620 + 16.1188i 0.691724 + 1.19810i 0.971273 + 0.237970i \(0.0764820\pi\)
−0.279548 + 0.960132i \(0.590185\pi\)
\(182\) 2.78124 0.206159
\(183\) 15.3765 1.13666
\(184\) 23.1370 + 40.0745i 1.70568 + 2.95433i
\(185\) 0 0
\(186\) 3.83983 + 6.65079i 0.281550 + 0.487659i
\(187\) −2.75351 + 4.76922i −0.201357 + 0.348760i
\(188\) −5.98240 + 10.3618i −0.436312 + 0.755714i
\(189\) 1.22188 0.0888784
\(190\) 0 0
\(191\) −23.0421 −1.66727 −0.833634 0.552317i \(-0.813744\pi\)
−0.833634 + 0.552317i \(0.813744\pi\)
\(192\) −2.38550 + 4.13181i −0.172159 + 0.298188i
\(193\) −8.53865 + 14.7894i −0.614626 + 1.06456i 0.375824 + 0.926691i \(0.377360\pi\)
−0.990450 + 0.137872i \(0.955974\pi\)
\(194\) −7.97539 13.8138i −0.572599 0.991771i
\(195\) 0 0
\(196\) 14.8925 + 25.7946i 1.06375 + 1.84247i
\(197\) 8.82024 0.628416 0.314208 0.949354i \(-0.398261\pi\)
0.314208 + 0.949354i \(0.398261\pi\)
\(198\) 2.93985 0.208926
\(199\) 1.42771 + 2.47287i 0.101208 + 0.175297i 0.912183 0.409784i \(-0.134396\pi\)
−0.810975 + 0.585081i \(0.801063\pi\)
\(200\) 0 0
\(201\) −12.9156 −0.910995
\(202\) −18.5382 −1.30434
\(203\) −0.0246145 0.0426336i −0.00172760 0.00299229i
\(204\) −18.5281 + 32.0916i −1.29722 + 2.24686i
\(205\) 0 0
\(206\) 15.2976 26.4963i 1.06584 1.84608i
\(207\) −6.08632 + 10.5418i −0.423029 + 0.732707i
\(208\) 28.9608 2.00807
\(209\) −1.03709 + 3.22932i −0.0717373 + 0.223377i
\(210\) 0 0
\(211\) 6.44375 11.1609i 0.443606 0.768348i −0.554348 0.832285i \(-0.687032\pi\)
0.997954 + 0.0639367i \(0.0203656\pi\)
\(212\) 9.38550 16.2562i 0.644599 1.11648i
\(213\) −6.01248 10.4139i −0.411968 0.713550i
\(214\) −2.04767 + 3.54667i −0.139976 + 0.242445i
\(215\) 0 0
\(216\) 31.5491 2.14665
\(217\) 0.556248 0.0377606
\(218\) 9.54723 + 16.5363i 0.646620 + 1.11998i
\(219\) 8.60036 + 14.8963i 0.581159 + 1.00660i
\(220\) 0 0
\(221\) −35.3865 −2.38035
\(222\) 2.91724 + 5.05280i 0.195792 + 0.339122i
\(223\) 10.3539 17.9334i 0.693346 1.20091i −0.277389 0.960758i \(-0.589469\pi\)
0.970735 0.240153i \(-0.0771978\pi\)
\(224\) −0.339833 0.588608i −0.0227060 0.0393280i
\(225\) 0 0
\(226\) 15.6551 27.1153i 1.04136 1.80369i
\(227\) −4.00000 −0.265489 −0.132745 0.991150i \(-0.542379\pi\)
−0.132745 + 0.991150i \(0.542379\pi\)
\(228\) −6.97850 + 21.7297i −0.462162 + 1.43909i
\(229\) 3.53910 0.233870 0.116935 0.993140i \(-0.462693\pi\)
0.116935 + 0.993140i \(0.462693\pi\)
\(230\) 0 0
\(231\) −0.105477 + 0.182691i −0.00693986 + 0.0120202i
\(232\) −0.635553 1.10081i −0.0417261 0.0722717i
\(233\) −9.89252 + 17.1344i −0.648081 + 1.12251i 0.335500 + 0.942040i \(0.391095\pi\)
−0.983581 + 0.180468i \(0.942239\pi\)
\(234\) 9.44531 + 16.3598i 0.617459 + 1.06947i
\(235\) 0 0
\(236\) −11.9648 −0.778843
\(237\) 0.967923 + 1.67649i 0.0628733 + 0.108900i
\(238\) 1.96837 + 3.40931i 0.127590 + 0.220993i
\(239\) 23.7741 1.53782 0.768910 0.639357i \(-0.220799\pi\)
0.768910 + 0.639357i \(0.220799\pi\)
\(240\) 0 0
\(241\) 2.27111 + 3.93367i 0.146295 + 0.253390i 0.929855 0.367926i \(-0.119932\pi\)
−0.783561 + 0.621315i \(0.786599\pi\)
\(242\) 13.0296 22.5680i 0.837576 1.45072i
\(243\) 6.91168 + 11.9714i 0.443384 + 0.767964i
\(244\) 26.9628 46.7010i 1.72612 2.98972i
\(245\) 0 0
\(246\) 22.1655 1.41322
\(247\) −21.3026 + 4.60408i −1.35545 + 0.292950i
\(248\) 14.3624 0.912016
\(249\) 5.81678 10.0750i 0.368623 0.638474i
\(250\) 0 0
\(251\) 9.75151 + 16.8901i 0.615510 + 1.06609i 0.990295 + 0.138982i \(0.0443832\pi\)
−0.374785 + 0.927112i \(0.622284\pi\)
\(252\) 0.716415 1.24087i 0.0451299 0.0781673i
\(253\) −3.14257 5.44309i −0.197572 0.342204i
\(254\) 32.6968 2.05158
\(255\) 0 0
\(256\) 16.0457 + 27.7919i 1.00285 + 1.73699i
\(257\) 0.882043 + 1.52774i 0.0550203 + 0.0952980i 0.892224 0.451594i \(-0.149144\pi\)
−0.837203 + 0.546892i \(0.815811\pi\)
\(258\) 22.3593 1.39203
\(259\) 0.422598 0.0262590
\(260\) 0 0
\(261\) 0.167186 0.289574i 0.0103485 0.0179242i
\(262\) −8.91168 15.4355i −0.550565 0.953607i
\(263\) −3.23591 + 5.60477i −0.199535 + 0.345605i −0.948378 0.317143i \(-0.897276\pi\)
0.748843 + 0.662748i \(0.230610\pi\)
\(264\) −2.72343 + 4.71713i −0.167616 + 0.290319i
\(265\) 0 0
\(266\) 1.62853 + 1.79630i 0.0998518 + 0.110138i
\(267\) −3.83739 −0.234844
\(268\) −22.6476 + 39.2268i −1.38342 + 2.39616i
\(269\) −14.2429 + 24.6695i −0.868407 + 1.50412i −0.00478280 + 0.999989i \(0.501522\pi\)
−0.863624 + 0.504136i \(0.831811\pi\)
\(270\) 0 0
\(271\) 0.246491 0.426934i 0.0149732 0.0259344i −0.858442 0.512911i \(-0.828567\pi\)
0.873415 + 0.486977i \(0.161900\pi\)
\(272\) 20.4964 + 35.5009i 1.24278 + 2.15256i
\(273\) −1.35553 −0.0820402
\(274\) −13.6024 −0.821749
\(275\) 0 0
\(276\) −21.1460 36.6260i −1.27284 2.20463i
\(277\) 8.78905 0.528083 0.264041 0.964511i \(-0.414944\pi\)
0.264041 + 0.964511i \(0.414944\pi\)
\(278\) 8.95077 0.536832
\(279\) 1.88906 + 3.27195i 0.113095 + 0.195887i
\(280\) 0 0
\(281\) 2.37147 + 4.10750i 0.141470 + 0.245033i 0.928050 0.372455i \(-0.121484\pi\)
−0.786581 + 0.617488i \(0.788151\pi\)
\(282\) 4.27657 7.40723i 0.254666 0.441094i
\(283\) 8.43473 14.6094i 0.501393 0.868438i −0.498606 0.866829i \(-0.666155\pi\)
0.999999 0.00160901i \(-0.000512164\pi\)
\(284\) −42.1718 −2.50243
\(285\) 0 0
\(286\) −9.75385 −0.576758
\(287\) 0.802738 1.39038i 0.0473841 0.0820717i
\(288\) 2.30820 3.99792i 0.136012 0.235580i
\(289\) −16.5441 28.6552i −0.973183 1.68560i
\(290\) 0 0
\(291\) 3.88706 + 6.73259i 0.227864 + 0.394671i
\(292\) 60.3233 3.53015
\(293\) −11.6336 −0.679639 −0.339820 0.940491i \(-0.610366\pi\)
−0.339820 + 0.940491i \(0.610366\pi\)
\(294\) −10.6460 18.4395i −0.620889 1.07541i
\(295\) 0 0
\(296\) 10.9116 0.634223
\(297\) −4.28514 −0.248649
\(298\) 1.17420 + 2.03378i 0.0680198 + 0.117814i
\(299\) 20.1933 34.9758i 1.16781 2.02270i
\(300\) 0 0
\(301\) 0.809757 1.40254i 0.0466736 0.0808411i
\(302\) 1.21832 2.11019i 0.0701063 0.121428i
\(303\) 9.03519 0.519058
\(304\) 16.9578 + 18.7047i 0.972596 + 1.07279i
\(305\) 0 0
\(306\) −13.3695 + 23.1566i −0.764281 + 1.32377i
\(307\) 2.94531 5.10143i 0.168098 0.291154i −0.769653 0.638462i \(-0.779571\pi\)
0.937751 + 0.347308i \(0.112904\pi\)
\(308\) 0.369909 + 0.640701i 0.0210775 + 0.0365073i
\(309\) −7.45579 + 12.9138i −0.424145 + 0.734641i
\(310\) 0 0
\(311\) 14.8202 0.840378 0.420189 0.907437i \(-0.361964\pi\)
0.420189 + 0.907437i \(0.361964\pi\)
\(312\) −35.0000 −1.98148
\(313\) −2.94731 5.10489i −0.166592 0.288546i 0.770628 0.637286i \(-0.219943\pi\)
−0.937219 + 0.348740i \(0.886610\pi\)
\(314\) 3.40310 + 5.89434i 0.192048 + 0.332637i
\(315\) 0 0
\(316\) 6.78905 0.381914
\(317\) −2.07930 3.60146i −0.116785 0.202278i 0.801707 0.597718i \(-0.203926\pi\)
−0.918492 + 0.395439i \(0.870592\pi\)
\(318\) −6.70930 + 11.6208i −0.376239 + 0.651665i
\(319\) 0.0863236 + 0.149517i 0.00483319 + 0.00837133i
\(320\) 0 0
\(321\) 0.997999 1.72858i 0.0557029 0.0964802i
\(322\) −4.49298 −0.250384
\(323\) −20.7203 22.8549i −1.15291 1.27168i
\(324\) −9.46090 −0.525606
\(325\) 0 0
\(326\) −4.01604 + 6.95598i −0.222428 + 0.385256i
\(327\) −4.65315 8.05949i −0.257320 0.445691i
\(328\) 20.7269 35.9000i 1.14445 1.98225i
\(329\) −0.309757 0.536515i −0.0170775 0.0295790i
\(330\) 0 0
\(331\) 10.6797 0.587008 0.293504 0.955958i \(-0.405179\pi\)
0.293504 + 0.955958i \(0.405179\pi\)
\(332\) −20.3995 35.3330i −1.11957 1.93915i
\(333\) 1.43518 + 2.48580i 0.0786472 + 0.136221i
\(334\) −25.6264 −1.40222
\(335\) 0 0
\(336\) 0.785142 + 1.35991i 0.0428330 + 0.0741890i
\(337\) −13.1726 + 22.8157i −0.717560 + 1.24285i 0.244404 + 0.969673i \(0.421408\pi\)
−0.961964 + 0.273177i \(0.911926\pi\)
\(338\) −15.0421 26.0537i −0.818183 1.41713i
\(339\) −7.62999 + 13.2155i −0.414404 + 0.717769i
\(340\) 0 0
\(341\) −1.95077 −0.105640
\(342\) −5.03554 + 15.6797i −0.272291 + 0.847862i
\(343\) −3.09534 −0.167133
\(344\) 20.9081 36.2139i 1.12729 1.95252i
\(345\) 0 0
\(346\) −3.34139 5.78746i −0.179634 0.311136i
\(347\) −8.44175 + 14.6215i −0.453177 + 0.784925i −0.998581 0.0532476i \(-0.983043\pi\)
0.545404 + 0.838173i \(0.316376\pi\)
\(348\) 0.580862 + 1.00608i 0.0311375 + 0.0539317i
\(349\) 4.61640 0.247110 0.123555 0.992338i \(-0.460570\pi\)
0.123555 + 0.992338i \(0.460570\pi\)
\(350\) 0 0
\(351\) −13.7675 23.8461i −0.734857 1.27281i
\(352\) 1.19180 + 2.06426i 0.0635232 + 0.110025i
\(353\) 24.9508 1.32800 0.663998 0.747735i \(-0.268858\pi\)
0.663998 + 0.747735i \(0.268858\pi\)
\(354\) 8.55313 0.454594
\(355\) 0 0
\(356\) −6.72889 + 11.6548i −0.356631 + 0.617703i
\(357\) −0.959347 1.66164i −0.0507740 0.0879432i
\(358\) 16.2163 28.0875i 0.857059 1.48447i
\(359\) −5.90110 + 10.2210i −0.311448 + 0.539444i −0.978676 0.205410i \(-0.934147\pi\)
0.667228 + 0.744854i \(0.267481\pi\)
\(360\) 0 0
\(361\) −15.4472 11.0627i −0.813011 0.582248i
\(362\) −46.6616 −2.45248
\(363\) −6.35041 + 10.9992i −0.333310 + 0.577310i
\(364\) −2.37693 + 4.11696i −0.124585 + 0.215787i
\(365\) 0 0
\(366\) −19.2746 + 33.3845i −1.00750 + 1.74504i
\(367\) 13.1164 + 22.7183i 0.684670 + 1.18588i 0.973540 + 0.228516i \(0.0733872\pi\)
−0.288870 + 0.957368i \(0.593279\pi\)
\(368\) −46.7850 −2.43884
\(369\) 10.9047 0.567674
\(370\) 0 0
\(371\) 0.485963 + 0.841712i 0.0252299 + 0.0436995i
\(372\) −13.1265 −0.680579
\(373\) −11.9960 −0.621129 −0.310565 0.950552i \(-0.600518\pi\)
−0.310565 + 0.950552i \(0.600518\pi\)
\(374\) −6.90310 11.9565i −0.356951 0.618257i
\(375\) 0 0
\(376\) −7.99800 13.8529i −0.412465 0.714411i
\(377\) −0.554690 + 0.960752i −0.0285680 + 0.0494812i
\(378\) −1.53163 + 2.65287i −0.0787787 + 0.136449i
\(379\) 0.313217 0.0160889 0.00804444 0.999968i \(-0.497439\pi\)
0.00804444 + 0.999968i \(0.497439\pi\)
\(380\) 0 0
\(381\) −15.9358 −0.816418
\(382\) 28.8835 50.0277i 1.47781 2.55964i
\(383\) 15.0441 26.0572i 0.768718 1.33146i −0.169540 0.985523i \(-0.554228\pi\)
0.938258 0.345936i \(-0.112439\pi\)
\(384\) −9.72343 16.8415i −0.496197 0.859438i
\(385\) 0 0
\(386\) −21.4066 37.0772i −1.08957 1.88718i
\(387\) 11.0000 0.559161
\(388\) 27.2640 1.38412
\(389\) 17.8609 + 30.9360i 0.905583 + 1.56852i 0.820133 + 0.572173i \(0.193900\pi\)
0.0854503 + 0.996342i \(0.472767\pi\)
\(390\) 0 0
\(391\) 57.1655 2.89099
\(392\) −39.8202 −2.01123
\(393\) 4.34339 + 7.52297i 0.219095 + 0.379484i
\(394\) −11.0562 + 19.1500i −0.557006 + 0.964762i
\(395\) 0 0
\(396\) −2.51248 + 4.35174i −0.126257 + 0.218683i
\(397\) 4.77657 8.27326i 0.239729 0.415223i −0.720907 0.693031i \(-0.756275\pi\)
0.960636 + 0.277809i \(0.0896081\pi\)
\(398\) −7.15861 −0.358829
\(399\) −0.793718 0.875485i −0.0397356 0.0438291i
\(400\) 0 0
\(401\) −15.4418 + 26.7459i −0.771124 + 1.33563i 0.165823 + 0.986156i \(0.446972\pi\)
−0.936947 + 0.349471i \(0.886361\pi\)
\(402\) 16.1898 28.0416i 0.807474 1.39859i
\(403\) −6.26755 10.8557i −0.312209 0.540761i
\(404\) 15.8433 27.4414i 0.788233 1.36526i
\(405\) 0 0
\(406\) 0.123418 0.00612514
\(407\) −1.48206 −0.0734629
\(408\) −24.7706 42.9039i −1.22633 2.12406i
\(409\) −15.7816 27.3345i −0.780349 1.35160i −0.931738 0.363130i \(-0.881708\pi\)
0.151389 0.988474i \(-0.451625\pi\)
\(410\) 0 0
\(411\) 6.62955 0.327012
\(412\) 26.1476 + 45.2890i 1.28820 + 2.23123i
\(413\) 0.309757 0.536515i 0.0152421 0.0264002i
\(414\) −15.2585 26.4285i −0.749916 1.29889i
\(415\) 0 0
\(416\) −7.65817 + 13.2643i −0.375472 + 0.650337i
\(417\) −4.36245 −0.213630
\(418\) −5.71130 6.29966i −0.279349 0.308126i
\(419\) −26.5070 −1.29495 −0.647476 0.762086i \(-0.724176\pi\)
−0.647476 + 0.762086i \(0.724176\pi\)
\(420\) 0 0
\(421\) 10.1180 17.5248i 0.493119 0.854107i −0.506850 0.862035i \(-0.669190\pi\)
0.999969 + 0.00792731i \(0.00252337\pi\)
\(422\) 16.1546 + 27.9806i 0.786394 + 1.36207i
\(423\) 2.10392 3.64410i 0.102296 0.177182i
\(424\) 12.5477 + 21.7332i 0.609369 + 1.05546i
\(425\) 0 0
\(426\) 30.1468 1.46062
\(427\) 1.39608 + 2.41808i 0.0675611 + 0.117019i
\(428\) −3.50000 6.06218i −0.169179 0.293026i
\(429\) 4.75385 0.229518
\(430\) 0 0
\(431\) 5.73045 + 9.92543i 0.276026 + 0.478091i 0.970394 0.241529i \(-0.0776490\pi\)
−0.694367 + 0.719621i \(0.744316\pi\)
\(432\) −15.9488 + 27.6241i −0.767336 + 1.32906i
\(433\) 12.9734 + 22.4706i 0.623461 + 1.07987i 0.988836 + 0.149006i \(0.0476073\pi\)
−0.365375 + 0.930860i \(0.619059\pi\)
\(434\) −0.697262 + 1.20769i −0.0334696 + 0.0579711i
\(435\) 0 0
\(436\) −32.6374 −1.56305
\(437\) 34.4136 7.43771i 1.64622 0.355794i
\(438\) −43.1225 −2.06047
\(439\) −12.6562 + 21.9211i −0.604046 + 1.04624i 0.388156 + 0.921594i \(0.373112\pi\)
−0.992202 + 0.124644i \(0.960221\pi\)
\(440\) 0 0
\(441\) −5.23747 9.07157i −0.249403 0.431979i
\(442\) 44.3573 76.8291i 2.10986 3.65439i
\(443\) 10.0125 + 17.3421i 0.475707 + 0.823949i 0.999613 0.0278272i \(-0.00885883\pi\)
−0.523905 + 0.851776i \(0.675525\pi\)
\(444\) −9.97262 −0.473279
\(445\) 0 0
\(446\) 25.9573 + 44.9594i 1.22912 + 2.12889i
\(447\) −0.572286 0.991229i −0.0270682 0.0468835i
\(448\) −0.866350 −0.0409312
\(449\) 19.7601 0.932536 0.466268 0.884644i \(-0.345598\pi\)
0.466268 + 0.884644i \(0.345598\pi\)
\(450\) 0 0
\(451\) −2.81522 + 4.87610i −0.132563 + 0.229607i
\(452\) 26.7585 + 46.3471i 1.25862 + 2.17999i
\(453\) −0.593786 + 1.02847i −0.0278985 + 0.0483216i
\(454\) 5.01404 8.68457i 0.235320 0.407587i
\(455\) 0 0
\(456\) −20.4940 22.6052i −0.959719 1.05859i
\(457\) 34.4647 1.61219 0.806096 0.591785i \(-0.201577\pi\)
0.806096 + 0.591785i \(0.201577\pi\)
\(458\) −4.43629 + 7.68388i −0.207294 + 0.359044i
\(459\) 19.4874 33.7532i 0.909595 1.57546i
\(460\) 0 0
\(461\) 3.96637 6.86995i 0.184732 0.319965i −0.758754 0.651377i \(-0.774192\pi\)
0.943486 + 0.331412i \(0.107525\pi\)
\(462\) −0.264432 0.458010i −0.0123025 0.0213085i
\(463\) −9.25395 −0.430068 −0.215034 0.976607i \(-0.568986\pi\)
−0.215034 + 0.976607i \(0.568986\pi\)
\(464\) 1.28514 0.0596612
\(465\) 0 0
\(466\) −24.8007 42.9561i −1.14887 1.98990i
\(467\) −9.47183 −0.438304 −0.219152 0.975691i \(-0.570329\pi\)
−0.219152 + 0.975691i \(0.570329\pi\)
\(468\) −32.2889 −1.49256
\(469\) −1.17265 2.03108i −0.0541478 0.0937868i
\(470\) 0 0
\(471\) −1.65861 2.87280i −0.0764247 0.132371i
\(472\) 7.99800 13.8529i 0.368138 0.637633i
\(473\) −2.83983 + 4.91873i −0.130576 + 0.226164i
\(474\) −4.85320 −0.222915
\(475\) 0 0
\(476\) −6.72889 −0.308418
\(477\) −3.30074 + 5.71704i −0.151130 + 0.261765i
\(478\) −29.8011 + 51.6170i −1.36307 + 2.36091i
\(479\) 17.3574 + 30.0639i 0.793081 + 1.37366i 0.924050 + 0.382270i \(0.124858\pi\)
−0.130969 + 0.991386i \(0.541809\pi\)
\(480\) 0 0
\(481\) −4.76164 8.24740i −0.217112 0.376049i
\(482\) −11.3874 −0.518682
\(483\) 2.18980 0.0996393
\(484\) 22.2710 + 38.5745i 1.01232 + 1.75339i
\(485\) 0 0
\(486\) −34.6554 −1.57200
\(487\) 28.5070 1.29178 0.645888 0.763432i \(-0.276487\pi\)
0.645888 + 0.763432i \(0.276487\pi\)
\(488\) 36.0471 + 62.4355i 1.63178 + 2.82632i
\(489\) 1.95735 3.39022i 0.0885142 0.153311i
\(490\) 0 0
\(491\) 15.5949 27.0112i 0.703788 1.21900i −0.263339 0.964703i \(-0.584824\pi\)
0.967127 0.254293i \(-0.0818428\pi\)
\(492\) −18.9433 + 32.8108i −0.854030 + 1.47922i
\(493\) −1.57028 −0.0707221
\(494\) 16.7070 52.0223i 0.751681 2.34059i
\(495\) 0 0
\(496\) −7.26053 + 12.5756i −0.326007 + 0.564661i
\(497\) 1.09178 1.89103i 0.0489732 0.0848242i
\(498\) 14.5828 + 25.2581i 0.653469 + 1.13184i
\(499\) −8.09334 + 14.0181i −0.362308 + 0.627535i −0.988340 0.152262i \(-0.951344\pi\)
0.626032 + 0.779797i \(0.284678\pi\)
\(500\) 0 0
\(501\) 12.4899 0.558006
\(502\) −48.8944 −2.18226
\(503\) 8.61094 + 14.9146i 0.383943 + 0.665008i 0.991622 0.129174i \(-0.0412327\pi\)
−0.607679 + 0.794183i \(0.707899\pi\)
\(504\) 0.957790 + 1.65894i 0.0426633 + 0.0738951i
\(505\) 0 0
\(506\) 15.7570 0.700483
\(507\) 7.33126 + 12.6981i 0.325593 + 0.563943i
\(508\) −27.9437 + 48.3998i −1.23980 + 2.14740i
\(509\) 18.2956 + 31.6889i 0.810939 + 1.40459i 0.912207 + 0.409729i \(0.134377\pi\)
−0.101268 + 0.994859i \(0.532290\pi\)
\(510\) 0 0
\(511\) −1.56171 + 2.70496i −0.0690859 + 0.119660i
\(512\) −48.6224 −2.14883
\(513\) 7.33983 22.8549i 0.324062 1.00907i
\(514\) −4.42260 −0.195072
\(515\) 0 0
\(516\) −19.1089 + 33.0976i −0.841224 + 1.45704i
\(517\) 1.08632 + 1.88157i 0.0477765 + 0.0827512i
\(518\) −0.529730 + 0.917520i −0.0232750 + 0.0403135i
\(519\) 1.62853 + 2.82070i 0.0714847 + 0.123815i
\(520\) 0 0
\(521\) −3.63667 −0.159325 −0.0796626 0.996822i \(-0.525384\pi\)
−0.0796626 + 0.996822i \(0.525384\pi\)
\(522\) 0.419138 + 0.725968i 0.0183452 + 0.0317748i
\(523\) −17.8117 30.8507i −0.778850 1.34901i −0.932605 0.360898i \(-0.882470\pi\)
0.153756 0.988109i \(-0.450863\pi\)
\(524\) 30.4647 1.33086
\(525\) 0 0
\(526\) −8.11250 14.0513i −0.353722 0.612664i
\(527\) 8.87147 15.3658i 0.386447 0.669346i
\(528\) −2.75351 4.76922i −0.119831 0.207554i
\(529\) −21.1214 + 36.5834i −0.918322 + 1.59058i
\(530\) 0 0
\(531\) 4.20784 0.182605
\(532\) −4.05079 + 0.875485i −0.175624 + 0.0379571i
\(533\) −36.1796 −1.56711
\(534\) 4.81020 8.33151i 0.208158 0.360540i
\(535\) 0 0
\(536\) −30.2780 52.4431i −1.30781 2.26520i
\(537\) −7.90354 + 13.6893i −0.341063 + 0.590739i
\(538\) −35.7073 61.8469i −1.53945 2.66641i
\(539\) 5.40856 0.232963
\(540\) 0 0
\(541\) −1.58632 2.74759i −0.0682014 0.118128i 0.829908 0.557900i \(-0.188393\pi\)
−0.898110 + 0.439772i \(0.855059\pi\)
\(542\) 0.617957 + 1.07033i 0.0265435 + 0.0459747i
\(543\) 22.7420 0.975955
\(544\) −21.6797 −0.929508
\(545\) 0 0
\(546\) 1.69916 2.94304i 0.0727175 0.125950i
\(547\) −14.1902 24.5782i −0.606731 1.05089i −0.991775 0.127991i \(-0.959147\pi\)
0.385044 0.922898i \(-0.374186\pi\)
\(548\) 11.6250 20.1350i 0.496594 0.860127i
\(549\) −9.48240 + 16.4240i −0.404699 + 0.700959i
\(550\) 0 0
\(551\) −0.945310 + 0.204307i −0.0402715 + 0.00870377i
\(552\) 56.5411 2.40655
\(553\) −0.175762 + 0.304428i −0.00747415 + 0.0129456i
\(554\) −11.0172 + 19.0823i −0.468074 + 0.810728i
\(555\) 0 0
\(556\) −7.64959 + 13.2495i −0.324415 + 0.561903i
\(557\) 1.06527 + 1.84510i 0.0451368 + 0.0781793i 0.887711 0.460401i \(-0.152294\pi\)
−0.842574 + 0.538580i \(0.818961\pi\)
\(558\) −9.47183 −0.400974
\(559\) −36.4959 −1.54361
\(560\) 0 0
\(561\) 3.36445 + 5.82739i 0.142047 + 0.246033i
\(562\) −11.8906 −0.501575
\(563\) 20.2609 0.853894 0.426947 0.904277i \(-0.359589\pi\)
0.426947 + 0.904277i \(0.359589\pi\)
\(564\) 7.30976 + 12.6609i 0.307796 + 0.533119i
\(565\) 0 0
\(566\) 21.1460 + 36.6260i 0.888834 + 1.53951i
\(567\) 0.244933 0.424237i 0.0102862 0.0178163i
\(568\) 28.1901 48.8268i 1.18283 2.04873i
\(569\) −34.7530 −1.45692 −0.728460 0.685088i \(-0.759764\pi\)
−0.728460 + 0.685088i \(0.759764\pi\)
\(570\) 0 0
\(571\) 32.0702 1.34210 0.671048 0.741414i \(-0.265845\pi\)
0.671048 + 0.741414i \(0.265845\pi\)
\(572\) 8.33593 14.4383i 0.348543 0.603694i
\(573\) −14.0773 + 24.3826i −0.588088 + 1.01860i
\(574\) 2.01248 + 3.48572i 0.0839993 + 0.145491i
\(575\) 0 0
\(576\) −2.94220 5.09603i −0.122591 0.212335i
\(577\) −30.2740 −1.26032 −0.630162 0.776464i \(-0.717012\pi\)
−0.630162 + 0.776464i \(0.717012\pi\)
\(578\) 82.9528 3.45038
\(579\) 10.4332 + 18.0708i 0.433588 + 0.750996i
\(580\) 0 0
\(581\) 2.11250 0.0876411
\(582\) −19.4899 −0.807881
\(583\) −1.70428 2.95190i −0.0705841 0.122255i
\(584\) −40.3237 + 69.8427i −1.66861 + 2.89011i
\(585\) 0 0
\(586\) 14.5828 25.2581i 0.602408 1.04340i
\(587\) 1.24805 2.16168i 0.0515125 0.0892222i −0.839119 0.543947i \(-0.816929\pi\)
0.890632 + 0.454725i \(0.150262\pi\)
\(588\) 36.3936 1.50085
\(589\) 3.34139 10.4045i 0.137680 0.428708i
\(590\) 0 0
\(591\) 5.38862 9.33336i 0.221658 0.383923i
\(592\) −5.51604 + 9.55406i −0.226708 + 0.392669i
\(593\) −4.98196 8.62901i −0.204585 0.354351i 0.745416 0.666600i \(-0.232251\pi\)
−0.950000 + 0.312249i \(0.898918\pi\)
\(594\) 5.37147 9.30365i 0.220394 0.381733i
\(595\) 0 0
\(596\) −4.01404 −0.164421
\(597\) 3.48898 0.142794
\(598\) 50.6249 + 87.6849i 2.07021 + 3.58570i
\(599\) −16.0351 27.7736i −0.655176 1.13480i −0.981850 0.189661i \(-0.939261\pi\)
0.326673 0.945137i \(-0.394072\pi\)
\(600\) 0 0
\(601\) 3.68278 0.150224 0.0751119 0.997175i \(-0.476069\pi\)
0.0751119 + 0.997175i \(0.476069\pi\)
\(602\) 2.03008 + 3.51619i 0.0827397 + 0.143309i
\(603\) 7.96481 13.7955i 0.324352 0.561794i
\(604\) 2.08242 + 3.60686i 0.0847324 + 0.146761i
\(605\) 0 0
\(606\) −11.3257 + 19.6167i −0.460075 + 0.796873i
\(607\) 20.4850 0.831460 0.415730 0.909488i \(-0.363526\pi\)
0.415730 + 0.909488i \(0.363526\pi\)
\(608\) −13.0511 + 2.82070i −0.529293 + 0.114395i
\(609\) −0.0601518 −0.00243747
\(610\) 0 0
\(611\) −6.98040 + 12.0904i −0.282397 + 0.489126i
\(612\) −22.8519 39.5806i −0.923732 1.59995i
\(613\) 5.35587 9.27664i 0.216322 0.374680i −0.737359 0.675501i \(-0.763927\pi\)
0.953681 + 0.300821i \(0.0972607\pi\)
\(614\) 7.38395 + 12.7894i 0.297992 + 0.516137i
\(615\) 0 0
\(616\) −0.989077 −0.0398511
\(617\) −8.86600 15.3564i −0.356932 0.618224i 0.630515 0.776177i \(-0.282844\pi\)
−0.987447 + 0.157953i \(0.949511\pi\)
\(618\) −18.6918 32.3751i −0.751894 1.30232i
\(619\) −13.2780 −0.533689 −0.266844 0.963740i \(-0.585981\pi\)
−0.266844 + 0.963740i \(0.585981\pi\)
\(620\) 0 0
\(621\) 22.2409 + 38.5224i 0.892498 + 1.54585i
\(622\) −18.5773 + 32.1768i −0.744882 + 1.29017i
\(623\) −0.348409 0.603462i −0.0139587 0.0241772i
\(624\) 17.6933 30.6456i 0.708297 1.22681i
\(625\) 0 0
\(626\) 14.7779 0.590645
\(627\) 2.78359 + 3.07034i 0.111166 + 0.122618i
\(628\) −11.6336 −0.464229
\(629\) 6.73992 11.6739i 0.268738 0.465468i
\(630\) 0 0
\(631\) −2.03208 3.51966i −0.0808957 0.140115i 0.822739 0.568419i \(-0.192445\pi\)
−0.903635 + 0.428304i \(0.859111\pi\)
\(632\) −4.53821 + 7.86041i −0.180520 + 0.312670i
\(633\) −7.87347 13.6372i −0.312942 0.542032i
\(634\) 10.4257 0.414058
\(635\) 0 0
\(636\) −11.4679 19.8630i −0.454733 0.787620i
\(637\) 17.3769 + 30.0977i 0.688499 + 1.19252i
\(638\) −0.432830 −0.0171359
\(639\) 14.8312 0.586712
\(640\) 0 0
\(641\) −2.49254 + 4.31720i −0.0984493 + 0.170519i −0.911043 0.412311i \(-0.864722\pi\)
0.812594 + 0.582831i \(0.198055\pi\)
\(642\) 2.50200 + 4.33359i 0.0987461 + 0.171033i
\(643\) −2.93829 + 5.08927i −0.115875 + 0.200701i −0.918129 0.396281i \(-0.870300\pi\)
0.802254 + 0.596983i \(0.203634\pi\)
\(644\) 3.83983 6.65079i 0.151311 0.262078i
\(645\) 0 0
\(646\) 75.5943 16.3380i 2.97422 0.642809i
\(647\) −16.9757 −0.667385 −0.333692 0.942682i \(-0.608295\pi\)
−0.333692 + 0.942682i \(0.608295\pi\)
\(648\) 6.32424 10.9539i 0.248440 0.430310i
\(649\) −1.08632 + 1.88157i −0.0426419 + 0.0738580i
\(650\) 0 0
\(651\) 0.339833 0.588608i 0.0133191 0.0230694i
\(652\) −6.86445 11.8896i −0.268833 0.465632i
\(653\) −24.6797 −0.965790 −0.482895 0.875678i \(-0.660415\pi\)
−0.482895 + 0.875678i \(0.660415\pi\)
\(654\) 23.3311 0.912317
\(655\) 0 0
\(656\) 20.9558 + 36.2965i 0.818186 + 1.41714i
\(657\) −21.2148 −0.827667
\(658\) 1.55313 0.0605474
\(659\) −0.943308 1.63386i −0.0367461 0.0636461i 0.847067 0.531485i \(-0.178366\pi\)
−0.883814 + 0.467839i \(0.845033\pi\)
\(660\) 0 0
\(661\) −22.3749 38.7545i −0.870284 1.50738i −0.861703 0.507413i \(-0.830602\pi\)
−0.00858048 0.999963i \(-0.502731\pi\)
\(662\) −13.3871 + 23.1871i −0.520303 + 0.901191i
\(663\) −21.6190 + 37.4452i −0.839611 + 1.45425i
\(664\) 54.5451 2.11676
\(665\) 0 0
\(666\) −7.19603 −0.278840
\(667\) 0.896081 1.55206i 0.0346964 0.0600959i
\(668\) 21.9011 37.9338i 0.847379 1.46770i
\(669\) −12.6511 21.9124i −0.489122 0.847183i
\(670\) 0 0
\(671\) −4.89608 8.48026i −0.189011 0.327377i
\(672\) −0.830467 −0.0320360
\(673\) −25.4046 −0.979274 −0.489637 0.871926i \(-0.662871\pi\)
−0.489637 + 0.871926i \(0.662871\pi\)
\(674\) −33.0241 57.1994i −1.27204 2.20324i
\(675\) 0 0
\(676\) 51.4217 1.97776
\(677\) 3.86946 0.148716 0.0743578 0.997232i \(-0.476309\pi\)
0.0743578 + 0.997232i \(0.476309\pi\)
\(678\) −19.1285 33.1316i −0.734627 1.27241i
\(679\) −0.705838 + 1.22255i −0.0270876 + 0.0469170i
\(680\) 0 0
\(681\) −2.44375 + 4.23270i −0.0936448 + 0.162198i
\(682\) 2.44531 4.23540i 0.0936357 0.162182i
\(683\) 48.5171 1.85645 0.928227 0.372015i \(-0.121333\pi\)
0.928227 + 0.372015i \(0.121333\pi\)
\(684\) −18.9066 20.8543i −0.722910 0.797382i
\(685\) 0 0
\(686\) 3.88004 6.72043i 0.148141 0.256587i
\(687\) 2.16217 3.74499i 0.0824919 0.142880i
\(688\) 21.1390 + 36.6138i 0.805917 + 1.39589i
\(689\) 10.9512 18.9681i 0.417208 0.722626i
\(690\) 0 0
\(691\) −47.6374 −1.81221 −0.906105 0.423052i \(-0.860959\pi\)
−0.906105 + 0.423052i \(0.860959\pi\)
\(692\) 11.4226 0.434222
\(693\) −0.130091 0.225325i −0.00494176 0.00855937i
\(694\) −21.1636 36.6565i −0.803360 1.39146i
\(695\) 0 0
\(696\) −1.55313 −0.0588714
\(697\) −25.6054 44.3498i −0.969873 1.67987i
\(698\) −5.78670 + 10.0229i −0.219030 + 0.379371i
\(699\) 12.0874 + 20.9361i 0.457189 + 0.791874i
\(700\) 0 0
\(701\) −14.2766 + 24.7277i −0.539218 + 0.933954i 0.459728 + 0.888060i \(0.347947\pi\)
−0.998946 + 0.0458939i \(0.985386\pi\)
\(702\) 69.0310 2.60541
\(703\) 2.53855 7.90458i 0.0957434 0.298127i
\(704\) 3.03831 0.114510
\(705\) 0 0
\(706\) −31.2760 + 54.1717i −1.17709 + 2.03878i
\(707\) 0.820334 + 1.42086i 0.0308518 + 0.0534370i
\(708\) −7.30976 + 12.6609i −0.274717 + 0.475825i
\(709\) −9.74137 16.8726i −0.365845 0.633662i 0.623066 0.782169i \(-0.285887\pi\)
−0.988911 + 0.148507i \(0.952553\pi\)
\(710\) 0 0
\(711\) −2.38760 −0.0895421
\(712\) −8.99600 15.5815i −0.337139 0.583942i
\(713\) 10.1250 + 17.5370i 0.379183 + 0.656765i
\(714\) 4.81020 0.180017
\(715\) 0 0
\(716\) 27.7179 + 48.0088i 1.03587 + 1.79417i
\(717\) 14.5245 25.1572i 0.542428 0.939513i
\(718\) −14.7942 25.6242i −0.552113 0.956288i
\(719\) −2.05313 + 3.55613i −0.0765689 + 0.132621i −0.901767 0.432221i \(-0.857730\pi\)
0.825199 + 0.564843i \(0.191063\pi\)
\(720\) 0 0
\(721\) −2.70774 −0.100842
\(722\) 43.3819 19.6709i 1.61451 0.732074i
\(723\) 5.55002 0.206407
\(724\) 39.8784 69.0714i 1.48207 2.56702i
\(725\) 0 0
\(726\) −15.9206 27.5753i −0.590869 1.02341i
\(727\) −6.20584 + 10.7488i −0.230162 + 0.398652i −0.957856 0.287250i \(-0.907259\pi\)
0.727694 + 0.685902i \(0.240592\pi\)
\(728\) −3.17776 5.50405i −0.117776 0.203994i
\(729\) 23.5139 0.870887
\(730\) 0 0
\(731\) −25.8293 44.7376i −0.955330 1.65468i
\(732\) −32.9452 57.0628i −1.21769 2.10910i
\(733\) 16.3985 0.605693 0.302847 0.953039i \(-0.402063\pi\)
0.302847 + 0.953039i \(0.402063\pi\)
\(734\) −65.7661 −2.42747
\(735\) 0 0
\(736\) 12.3715 21.4280i 0.456018 0.789847i
\(737\) 4.11250 + 7.12305i 0.151486 + 0.262381i
\(738\) −13.6691 + 23.6756i −0.503166 + 0.871509i
\(739\) 23.1018 40.0135i 0.849814 1.47192i −0.0315597 0.999502i \(-0.510047\pi\)
0.881374 0.472419i \(-0.156619\pi\)
\(740\) 0 0
\(741\) −8.14267 + 25.3547i −0.299128 + 0.931430i
\(742\) −2.43664 −0.0894517
\(743\) −12.4066 + 21.4888i −0.455153 + 0.788347i −0.998697 0.0510331i \(-0.983749\pi\)
0.543544 + 0.839380i \(0.317082\pi\)
\(744\) 8.77457 15.1980i 0.321691 0.557185i
\(745\) 0 0
\(746\) 15.0371 26.0450i 0.550547 0.953576i
\(747\) 7.17420 + 12.4261i 0.262490 + 0.454647i
\(748\) 23.5984 0.862841
\(749\) 0.362446 0.0132435
\(750\) 0 0
\(751\) 5.26955 + 9.12712i 0.192289 + 0.333054i 0.946008 0.324142i \(-0.105076\pi\)
−0.753720 + 0.657196i \(0.771742\pi\)
\(752\) 16.1726 0.589756
\(753\) 23.8303 0.868423
\(754\) −1.39062 2.40862i −0.0506434 0.0877169i
\(755\) 0 0
\(756\) −2.61796 4.53443i −0.0952142 0.164916i
\(757\) −3.09836 + 5.36652i −0.112612 + 0.195049i −0.916823 0.399295i \(-0.869255\pi\)
0.804211 + 0.594344i \(0.202588\pi\)
\(758\) −0.392621 + 0.680039i −0.0142606 + 0.0247001i
\(759\) −7.67967 −0.278754
\(760\) 0 0
\(761\) 35.6084 1.29080 0.645402 0.763843i \(-0.276690\pi\)
0.645402 + 0.763843i \(0.276690\pi\)
\(762\) 19.9757 34.5990i 0.723644 1.25339i
\(763\) 0.844949 1.46349i 0.0305892 0.0529820i
\(764\) 49.3694 + 85.5103i 1.78612 + 3.09365i
\(765\) 0 0
\(766\) 37.7159 + 65.3258i 1.36273 + 2.36032i
\(767\) −13.9608 −0.504095
\(768\) 39.2116 1.41493
\(769\) 0.0777477 + 0.134663i 0.00280365 + 0.00485607i 0.867424 0.497570i \(-0.165774\pi\)
−0.864620 + 0.502426i \(0.832441\pi\)
\(770\) 0 0
\(771\) 2.15550 0.0776283
\(772\) 73.1787 2.63376
\(773\) −2.54411 4.40653i −0.0915054 0.158492i 0.816639 0.577148i \(-0.195835\pi\)
−0.908145 + 0.418656i \(0.862501\pi\)
\(774\) −13.7886 + 23.8826i −0.495621 + 0.858441i
\(775\) 0 0
\(776\) −18.2249 + 31.5664i −0.654236 + 1.13317i
\(777\) 0.258181 0.447183i 0.00926220 0.0160426i
\(778\) −89.5552 −3.21071
\(779\) −21.1847 23.3671i −0.759020 0.837212i