Properties

Label 475.2.e.a.26.1
Level $475$
Weight $2$
Character 475.26
Analytic conductor $3.793$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(26,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 26.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 475.26
Dual form 475.2.e.a.201.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(-1.00000 + 1.73205i) q^{4} -4.00000 q^{7} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(-1.00000 - 1.73205i) q^{2} +(-1.00000 + 1.73205i) q^{4} -4.00000 q^{7} +(1.50000 - 2.59808i) q^{9} -1.00000 q^{11} +(1.00000 - 1.73205i) q^{13} +(4.00000 + 6.92820i) q^{14} +(2.00000 + 3.46410i) q^{16} +(1.00000 + 1.73205i) q^{17} -6.00000 q^{18} +(-3.50000 + 2.59808i) q^{19} +(1.00000 + 1.73205i) q^{22} +(-3.00000 + 5.19615i) q^{23} -4.00000 q^{26} +(4.00000 - 6.92820i) q^{28} +(-4.50000 + 7.79423i) q^{29} -7.00000 q^{31} +(4.00000 - 6.92820i) q^{32} +(2.00000 - 3.46410i) q^{34} +(3.00000 + 5.19615i) q^{36} +2.00000 q^{37} +(8.00000 + 3.46410i) q^{38} +(-1.00000 - 1.73205i) q^{41} +(-1.00000 - 1.73205i) q^{43} +(1.00000 - 1.73205i) q^{44} +12.0000 q^{46} +(-3.00000 + 5.19615i) q^{47} +9.00000 q^{49} +(2.00000 + 3.46410i) q^{52} +(-2.00000 + 3.46410i) q^{53} +18.0000 q^{58} +(-4.50000 - 7.79423i) q^{59} +(3.50000 - 6.06218i) q^{61} +(7.00000 + 12.1244i) q^{62} +(-6.00000 + 10.3923i) q^{63} -8.00000 q^{64} +(5.00000 - 8.66025i) q^{67} -4.00000 q^{68} +(-0.500000 - 0.866025i) q^{71} +(-5.00000 - 8.66025i) q^{73} +(-2.00000 - 3.46410i) q^{74} +(-1.00000 - 8.66025i) q^{76} +4.00000 q^{77} +(-0.500000 - 0.866025i) q^{79} +(-4.50000 - 7.79423i) q^{81} +(-2.00000 + 3.46410i) q^{82} -6.00000 q^{83} +(-2.00000 + 3.46410i) q^{86} +(5.50000 - 9.52628i) q^{89} +(-4.00000 + 6.92820i) q^{91} +(-6.00000 - 10.3923i) q^{92} +12.0000 q^{94} +(3.00000 + 5.19615i) q^{97} +(-9.00000 - 15.5885i) q^{98} +(-1.50000 + 2.59808i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{4} - 8 q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{4} - 8 q^{7} + 3 q^{9} - 2 q^{11} + 2 q^{13} + 8 q^{14} + 4 q^{16} + 2 q^{17} - 12 q^{18} - 7 q^{19} + 2 q^{22} - 6 q^{23} - 8 q^{26} + 8 q^{28} - 9 q^{29} - 14 q^{31} + 8 q^{32} + 4 q^{34} + 6 q^{36} + 4 q^{37} + 16 q^{38} - 2 q^{41} - 2 q^{43} + 2 q^{44} + 24 q^{46} - 6 q^{47} + 18 q^{49} + 4 q^{52} - 4 q^{53} + 36 q^{58} - 9 q^{59} + 7 q^{61} + 14 q^{62} - 12 q^{63} - 16 q^{64} + 10 q^{67} - 8 q^{68} - q^{71} - 10 q^{73} - 4 q^{74} - 2 q^{76} + 8 q^{77} - q^{79} - 9 q^{81} - 4 q^{82} - 12 q^{83} - 4 q^{86} + 11 q^{89} - 8 q^{91} - 12 q^{92} + 24 q^{94} + 6 q^{97} - 18 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0 0
\(6\) 0 0
\(7\) −4.00000 −1.51186 −0.755929 0.654654i \(-0.772814\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) −1.00000 −0.301511 −0.150756 0.988571i \(-0.548171\pi\)
−0.150756 + 0.988571i \(0.548171\pi\)
\(12\) 0 0
\(13\) 1.00000 1.73205i 0.277350 0.480384i −0.693375 0.720577i \(-0.743877\pi\)
0.970725 + 0.240192i \(0.0772105\pi\)
\(14\) 4.00000 + 6.92820i 1.06904 + 1.85164i
\(15\) 0 0
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) −6.00000 −1.41421
\(19\) −3.50000 + 2.59808i −0.802955 + 0.596040i
\(20\) 0 0
\(21\) 0 0
\(22\) 1.00000 + 1.73205i 0.213201 + 0.369274i
\(23\) −3.00000 + 5.19615i −0.625543 + 1.08347i 0.362892 + 0.931831i \(0.381789\pi\)
−0.988436 + 0.151642i \(0.951544\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −4.00000 −0.784465
\(27\) 0 0
\(28\) 4.00000 6.92820i 0.755929 1.30931i
\(29\) −4.50000 + 7.79423i −0.835629 + 1.44735i 0.0578882 + 0.998323i \(0.481563\pi\)
−0.893517 + 0.449029i \(0.851770\pi\)
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 4.00000 6.92820i 0.707107 1.22474i
\(33\) 0 0
\(34\) 2.00000 3.46410i 0.342997 0.594089i
\(35\) 0 0
\(36\) 3.00000 + 5.19615i 0.500000 + 0.866025i
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 8.00000 + 3.46410i 1.29777 + 0.561951i
\(39\) 0 0
\(40\) 0 0
\(41\) −1.00000 1.73205i −0.156174 0.270501i 0.777312 0.629115i \(-0.216583\pi\)
−0.933486 + 0.358614i \(0.883249\pi\)
\(42\) 0 0
\(43\) −1.00000 1.73205i −0.152499 0.264135i 0.779647 0.626219i \(-0.215399\pi\)
−0.932145 + 0.362084i \(0.882065\pi\)
\(44\) 1.00000 1.73205i 0.150756 0.261116i
\(45\) 0 0
\(46\) 12.0000 1.76930
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) 9.00000 1.28571
\(50\) 0 0
\(51\) 0 0
\(52\) 2.00000 + 3.46410i 0.277350 + 0.480384i
\(53\) −2.00000 + 3.46410i −0.274721 + 0.475831i −0.970065 0.242846i \(-0.921919\pi\)
0.695344 + 0.718677i \(0.255252\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 18.0000 2.36352
\(59\) −4.50000 7.79423i −0.585850 1.01472i −0.994769 0.102151i \(-0.967427\pi\)
0.408919 0.912571i \(-0.365906\pi\)
\(60\) 0 0
\(61\) 3.50000 6.06218i 0.448129 0.776182i −0.550135 0.835076i \(-0.685424\pi\)
0.998264 + 0.0588933i \(0.0187572\pi\)
\(62\) 7.00000 + 12.1244i 0.889001 + 1.53979i
\(63\) −6.00000 + 10.3923i −0.755929 + 1.30931i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 5.00000 8.66025i 0.610847 1.05802i −0.380251 0.924883i \(-0.624162\pi\)
0.991098 0.133135i \(-0.0425044\pi\)
\(68\) −4.00000 −0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) −0.500000 0.866025i −0.0593391 0.102778i 0.834830 0.550508i \(-0.185566\pi\)
−0.894169 + 0.447730i \(0.852233\pi\)
\(72\) 0 0
\(73\) −5.00000 8.66025i −0.585206 1.01361i −0.994850 0.101361i \(-0.967680\pi\)
0.409644 0.912245i \(-0.365653\pi\)
\(74\) −2.00000 3.46410i −0.232495 0.402694i
\(75\) 0 0
\(76\) −1.00000 8.66025i −0.114708 0.993399i
\(77\) 4.00000 0.455842
\(78\) 0 0
\(79\) −0.500000 0.866025i −0.0562544 0.0974355i 0.836527 0.547926i \(-0.184582\pi\)
−0.892781 + 0.450490i \(0.851249\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −2.00000 + 3.46410i −0.220863 + 0.382546i
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −2.00000 + 3.46410i −0.215666 + 0.373544i
\(87\) 0 0
\(88\) 0 0
\(89\) 5.50000 9.52628i 0.582999 1.00978i −0.412123 0.911128i \(-0.635213\pi\)
0.995122 0.0986553i \(-0.0314541\pi\)
\(90\) 0 0
\(91\) −4.00000 + 6.92820i −0.419314 + 0.726273i
\(92\) −6.00000 10.3923i −0.625543 1.08347i
\(93\) 0 0
\(94\) 12.0000 1.23771
\(95\) 0 0
\(96\) 0 0
\(97\) 3.00000 + 5.19615i 0.304604 + 0.527589i 0.977173 0.212445i \(-0.0681426\pi\)
−0.672569 + 0.740034i \(0.734809\pi\)
\(98\) −9.00000 15.5885i −0.909137 1.57467i
\(99\) −1.50000 + 2.59808i −0.150756 + 0.261116i
\(100\) 0 0
\(101\) −7.50000 + 12.9904i −0.746278 + 1.29259i 0.203317 + 0.979113i \(0.434828\pi\)
−0.949595 + 0.313478i \(0.898506\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 8.00000 0.777029
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) −7.50000 12.9904i −0.718370 1.24425i −0.961645 0.274296i \(-0.911555\pi\)
0.243276 0.969957i \(-0.421778\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −8.00000 13.8564i −0.755929 1.30931i
\(113\) −12.0000 −1.12887 −0.564433 0.825479i \(-0.690905\pi\)
−0.564433 + 0.825479i \(0.690905\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −9.00000 15.5885i −0.835629 1.44735i
\(117\) −3.00000 5.19615i −0.277350 0.480384i
\(118\) −9.00000 + 15.5885i −0.828517 + 1.43503i
\(119\) −4.00000 6.92820i −0.366679 0.635107i
\(120\) 0 0
\(121\) −10.0000 −0.909091
\(122\) −14.0000 −1.26750
\(123\) 0 0
\(124\) 7.00000 12.1244i 0.628619 1.08880i
\(125\) 0 0
\(126\) 24.0000 2.13809
\(127\) 3.00000 5.19615i 0.266207 0.461084i −0.701672 0.712500i \(-0.747563\pi\)
0.967879 + 0.251416i \(0.0808962\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −6.00000 10.3923i −0.524222 0.907980i −0.999602 0.0281993i \(-0.991023\pi\)
0.475380 0.879781i \(-0.342311\pi\)
\(132\) 0 0
\(133\) 14.0000 10.3923i 1.21395 0.901127i
\(134\) −20.0000 −1.72774
\(135\) 0 0
\(136\) 0 0
\(137\) −6.00000 + 10.3923i −0.512615 + 0.887875i 0.487278 + 0.873247i \(0.337990\pi\)
−0.999893 + 0.0146279i \(0.995344\pi\)
\(138\) 0 0
\(139\) −10.0000 + 17.3205i −0.848189 + 1.46911i 0.0346338 + 0.999400i \(0.488974\pi\)
−0.882823 + 0.469706i \(0.844360\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −1.00000 + 1.73205i −0.0839181 + 0.145350i
\(143\) −1.00000 + 1.73205i −0.0836242 + 0.144841i
\(144\) 12.0000 1.00000
\(145\) 0 0
\(146\) −10.0000 + 17.3205i −0.827606 + 1.43346i
\(147\) 0 0
\(148\) −2.00000 + 3.46410i −0.164399 + 0.284747i
\(149\) 0.500000 + 0.866025i 0.0409616 + 0.0709476i 0.885779 0.464107i \(-0.153625\pi\)
−0.844818 + 0.535054i \(0.820291\pi\)
\(150\) 0 0
\(151\) 9.00000 0.732410 0.366205 0.930534i \(-0.380657\pi\)
0.366205 + 0.930534i \(0.380657\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) −4.00000 6.92820i −0.322329 0.558291i
\(155\) 0 0
\(156\) 0 0
\(157\) −2.00000 3.46410i −0.159617 0.276465i 0.775113 0.631822i \(-0.217693\pi\)
−0.934731 + 0.355357i \(0.884359\pi\)
\(158\) −1.00000 + 1.73205i −0.0795557 + 0.137795i
\(159\) 0 0
\(160\) 0 0
\(161\) 12.0000 20.7846i 0.945732 1.63806i
\(162\) −9.00000 + 15.5885i −0.707107 + 1.22474i
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 4.00000 0.312348
\(165\) 0 0
\(166\) 6.00000 + 10.3923i 0.465690 + 0.806599i
\(167\) 6.00000 10.3923i 0.464294 0.804181i −0.534875 0.844931i \(-0.679641\pi\)
0.999169 + 0.0407502i \(0.0129748\pi\)
\(168\) 0 0
\(169\) 4.50000 + 7.79423i 0.346154 + 0.599556i
\(170\) 0 0
\(171\) 1.50000 + 12.9904i 0.114708 + 0.993399i
\(172\) 4.00000 0.304997
\(173\) 12.0000 + 20.7846i 0.912343 + 1.58022i 0.810745 + 0.585399i \(0.199062\pi\)
0.101598 + 0.994826i \(0.467605\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −2.00000 3.46410i −0.150756 0.261116i
\(177\) 0 0
\(178\) −22.0000 −1.64897
\(179\) 15.0000 1.12115 0.560576 0.828103i \(-0.310580\pi\)
0.560576 + 0.828103i \(0.310580\pi\)
\(180\) 0 0
\(181\) 3.00000 5.19615i 0.222988 0.386227i −0.732726 0.680524i \(-0.761752\pi\)
0.955714 + 0.294297i \(0.0950855\pi\)
\(182\) 16.0000 1.18600
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.00000 1.73205i −0.0731272 0.126660i
\(188\) −6.00000 10.3923i −0.437595 0.757937i
\(189\) 0 0
\(190\) 0 0
\(191\) −3.00000 −0.217072 −0.108536 0.994092i \(-0.534616\pi\)
−0.108536 + 0.994092i \(0.534616\pi\)
\(192\) 0 0
\(193\) −8.00000 13.8564i −0.575853 0.997406i −0.995948 0.0899262i \(-0.971337\pi\)
0.420096 0.907480i \(-0.361996\pi\)
\(194\) 6.00000 10.3923i 0.430775 0.746124i
\(195\) 0 0
\(196\) −9.00000 + 15.5885i −0.642857 + 1.11346i
\(197\) −18.0000 −1.28245 −0.641223 0.767354i \(-0.721573\pi\)
−0.641223 + 0.767354i \(0.721573\pi\)
\(198\) 6.00000 0.426401
\(199\) −6.50000 + 11.2583i −0.460773 + 0.798082i −0.999000 0.0447181i \(-0.985761\pi\)
0.538227 + 0.842800i \(0.319094\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 30.0000 2.11079
\(203\) 18.0000 31.1769i 1.26335 2.18819i
\(204\) 0 0
\(205\) 0 0
\(206\) −16.0000 27.7128i −1.11477 1.93084i
\(207\) 9.00000 + 15.5885i 0.625543 + 1.08347i
\(208\) 8.00000 0.554700
\(209\) 3.50000 2.59808i 0.242100 0.179713i
\(210\) 0 0
\(211\) −2.50000 4.33013i −0.172107 0.298098i 0.767049 0.641588i \(-0.221724\pi\)
−0.939156 + 0.343490i \(0.888391\pi\)
\(212\) −4.00000 6.92820i −0.274721 0.475831i
\(213\) 0 0
\(214\) 10.0000 + 17.3205i 0.683586 + 1.18401i
\(215\) 0 0
\(216\) 0 0
\(217\) 28.0000 1.90076
\(218\) −15.0000 + 25.9808i −1.01593 + 1.75964i
\(219\) 0 0
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 0 0
\(223\) 1.00000 + 1.73205i 0.0669650 + 0.115987i 0.897564 0.440884i \(-0.145335\pi\)
−0.830599 + 0.556871i \(0.812002\pi\)
\(224\) −16.0000 + 27.7128i −1.06904 + 1.85164i
\(225\) 0 0
\(226\) 12.0000 + 20.7846i 0.798228 + 1.38257i
\(227\) 14.0000 0.929213 0.464606 0.885517i \(-0.346196\pi\)
0.464606 + 0.885517i \(0.346196\pi\)
\(228\) 0 0
\(229\) 17.0000 1.12339 0.561696 0.827344i \(-0.310149\pi\)
0.561696 + 0.827344i \(0.310149\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.00000 + 6.92820i 0.262049 + 0.453882i 0.966786 0.255586i \(-0.0822686\pi\)
−0.704737 + 0.709468i \(0.748935\pi\)
\(234\) −6.00000 + 10.3923i −0.392232 + 0.679366i
\(235\) 0 0
\(236\) 18.0000 1.17170
\(237\) 0 0
\(238\) −8.00000 + 13.8564i −0.518563 + 0.898177i
\(239\) −19.0000 −1.22901 −0.614504 0.788914i \(-0.710644\pi\)
−0.614504 + 0.788914i \(0.710644\pi\)
\(240\) 0 0
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) 10.0000 + 17.3205i 0.642824 + 1.11340i
\(243\) 0 0
\(244\) 7.00000 + 12.1244i 0.448129 + 0.776182i
\(245\) 0 0
\(246\) 0 0
\(247\) 1.00000 + 8.66025i 0.0636285 + 0.551039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −6.50000 + 11.2583i −0.410276 + 0.710620i −0.994920 0.100671i \(-0.967901\pi\)
0.584643 + 0.811290i \(0.301234\pi\)
\(252\) −12.0000 20.7846i −0.755929 1.30931i
\(253\) 3.00000 5.19615i 0.188608 0.326679i
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 3.00000 5.19615i 0.187135 0.324127i −0.757159 0.653231i \(-0.773413\pi\)
0.944294 + 0.329104i \(0.106747\pi\)
\(258\) 0 0
\(259\) −8.00000 −0.497096
\(260\) 0 0
\(261\) 13.5000 + 23.3827i 0.835629 + 1.44735i
\(262\) −12.0000 + 20.7846i −0.741362 + 1.28408i
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −32.0000 13.8564i −1.96205 0.849591i
\(267\) 0 0
\(268\) 10.0000 + 17.3205i 0.610847 + 1.05802i
\(269\) −1.50000 2.59808i −0.0914566 0.158408i 0.816668 0.577108i \(-0.195819\pi\)
−0.908124 + 0.418701i \(0.862486\pi\)
\(270\) 0 0
\(271\) −1.50000 2.59808i −0.0911185 0.157822i 0.816864 0.576831i \(-0.195711\pi\)
−0.907982 + 0.419009i \(0.862378\pi\)
\(272\) −4.00000 + 6.92820i −0.242536 + 0.420084i
\(273\) 0 0
\(274\) 24.0000 1.44989
\(275\) 0 0
\(276\) 0 0
\(277\) −28.0000 −1.68236 −0.841178 0.540758i \(-0.818138\pi\)
−0.841178 + 0.540758i \(0.818138\pi\)
\(278\) 40.0000 2.39904
\(279\) −10.5000 + 18.1865i −0.628619 + 1.08880i
\(280\) 0 0
\(281\) −5.00000 + 8.66025i −0.298275 + 0.516627i −0.975741 0.218926i \(-0.929745\pi\)
0.677466 + 0.735554i \(0.263078\pi\)
\(282\) 0 0
\(283\) −7.00000 12.1244i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942988i \(0.969939\pi\)
\(284\) 2.00000 0.118678
\(285\) 0 0
\(286\) 4.00000 0.236525
\(287\) 4.00000 + 6.92820i 0.236113 + 0.408959i
\(288\) −12.0000 20.7846i −0.707107 1.22474i
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) 0 0
\(291\) 0 0
\(292\) 20.0000 1.17041
\(293\) 4.00000 0.233682 0.116841 0.993151i \(-0.462723\pi\)
0.116841 + 0.993151i \(0.462723\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 1.00000 1.73205i 0.0579284 0.100335i
\(299\) 6.00000 + 10.3923i 0.346989 + 0.601003i
\(300\) 0 0
\(301\) 4.00000 + 6.92820i 0.230556 + 0.399335i
\(302\) −9.00000 15.5885i −0.517892 0.897015i
\(303\) 0 0
\(304\) −16.0000 6.92820i −0.917663 0.397360i
\(305\) 0 0
\(306\) −6.00000 10.3923i −0.342997 0.594089i
\(307\) −8.00000 13.8564i −0.456584 0.790827i 0.542194 0.840254i \(-0.317594\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) −4.00000 + 6.92820i −0.227921 + 0.394771i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −15.0000 + 25.9808i −0.847850 + 1.46852i 0.0352727 + 0.999378i \(0.488770\pi\)
−0.883123 + 0.469142i \(0.844563\pi\)
\(314\) −4.00000 + 6.92820i −0.225733 + 0.390981i
\(315\) 0 0
\(316\) 2.00000 0.112509
\(317\) 1.00000 1.73205i 0.0561656 0.0972817i −0.836576 0.547852i \(-0.815446\pi\)
0.892741 + 0.450570i \(0.148779\pi\)
\(318\) 0 0
\(319\) 4.50000 7.79423i 0.251952 0.436393i
\(320\) 0 0
\(321\) 0 0
\(322\) −48.0000 −2.67494
\(323\) −8.00000 3.46410i −0.445132 0.192748i
\(324\) 18.0000 1.00000
\(325\) 0 0
\(326\) −4.00000 6.92820i −0.221540 0.383718i
\(327\) 0 0
\(328\) 0 0
\(329\) 12.0000 20.7846i 0.661581 1.14589i
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 6.00000 10.3923i 0.329293 0.570352i
\(333\) 3.00000 5.19615i 0.164399 0.284747i
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 0 0
\(337\) −17.0000 29.4449i −0.926049 1.60396i −0.789865 0.613280i \(-0.789850\pi\)
−0.136184 0.990684i \(-0.543484\pi\)
\(338\) 9.00000 15.5885i 0.489535 0.847900i
\(339\) 0 0
\(340\) 0 0
\(341\) 7.00000 0.379071
\(342\) 21.0000 15.5885i 1.13555 0.842927i
\(343\) −8.00000 −0.431959
\(344\) 0 0
\(345\) 0 0
\(346\) 24.0000 41.5692i 1.29025 2.23478i
\(347\) 6.00000 + 10.3923i 0.322097 + 0.557888i 0.980921 0.194409i \(-0.0622790\pi\)
−0.658824 + 0.752297i \(0.728946\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.00000 + 6.92820i −0.213201 + 0.369274i
\(353\) −8.00000 −0.425797 −0.212899 0.977074i \(-0.568290\pi\)
−0.212899 + 0.977074i \(0.568290\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 11.0000 + 19.0526i 0.582999 + 1.00978i
\(357\) 0 0
\(358\) −15.0000 25.9808i −0.792775 1.37313i
\(359\) 10.0000 + 17.3205i 0.527780 + 0.914141i 0.999476 + 0.0323801i \(0.0103087\pi\)
−0.471696 + 0.881761i \(0.656358\pi\)
\(360\) 0 0
\(361\) 5.50000 18.1865i 0.289474 0.957186i
\(362\) −12.0000 −0.630706
\(363\) 0 0
\(364\) −8.00000 13.8564i −0.419314 0.726273i
\(365\) 0 0
\(366\) 0 0
\(367\) 8.00000 13.8564i 0.417597 0.723299i −0.578101 0.815966i \(-0.696206\pi\)
0.995697 + 0.0926670i \(0.0295392\pi\)
\(368\) −24.0000 −1.25109
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 8.00000 13.8564i 0.415339 0.719389i
\(372\) 0 0
\(373\) −12.0000 −0.621336 −0.310668 0.950518i \(-0.600553\pi\)
−0.310668 + 0.950518i \(0.600553\pi\)
\(374\) −2.00000 + 3.46410i −0.103418 + 0.179124i
\(375\) 0 0
\(376\) 0 0
\(377\) 9.00000 + 15.5885i 0.463524 + 0.802846i
\(378\) 0 0
\(379\) −29.0000 −1.48963 −0.744815 0.667271i \(-0.767462\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.00000 + 5.19615i 0.153493 + 0.265858i
\(383\) −3.00000 5.19615i −0.153293 0.265511i 0.779143 0.626846i \(-0.215654\pi\)
−0.932436 + 0.361335i \(0.882321\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −16.0000 + 27.7128i −0.814379 + 1.41055i
\(387\) −6.00000 −0.304997
\(388\) −12.0000 −0.609208
\(389\) 16.5000 28.5788i 0.836583 1.44900i −0.0561516 0.998422i \(-0.517883\pi\)
0.892735 0.450582i \(-0.148784\pi\)
\(390\) 0 0
\(391\) −12.0000 −0.606866
\(392\) 0 0
\(393\) 0 0
\(394\) 18.0000 + 31.1769i 0.906827 + 1.57067i
\(395\) 0 0
\(396\) −3.00000 5.19615i −0.150756 0.261116i
\(397\) 4.00000 + 6.92820i 0.200754 + 0.347717i 0.948772 0.315963i \(-0.102327\pi\)
−0.748017 + 0.663679i \(0.768994\pi\)
\(398\) 26.0000 1.30326
\(399\) 0 0
\(400\) 0 0
\(401\) −1.50000 2.59808i −0.0749064 0.129742i 0.826139 0.563466i \(-0.190532\pi\)
−0.901046 + 0.433724i \(0.857199\pi\)
\(402\) 0 0
\(403\) −7.00000 + 12.1244i −0.348695 + 0.603957i
\(404\) −15.0000 25.9808i −0.746278 1.29259i
\(405\) 0 0
\(406\) −72.0000 −3.57330
\(407\) −2.00000 −0.0991363
\(408\) 0 0
\(409\) 2.50000 4.33013i 0.123617 0.214111i −0.797574 0.603220i \(-0.793884\pi\)
0.921192 + 0.389109i \(0.127217\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.0000 + 27.7128i −0.788263 + 1.36531i
\(413\) 18.0000 + 31.1769i 0.885722 + 1.53412i
\(414\) 18.0000 31.1769i 0.884652 1.53226i
\(415\) 0 0
\(416\) −8.00000 13.8564i −0.392232 0.679366i
\(417\) 0 0
\(418\) −8.00000 3.46410i −0.391293 0.169435i
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 7.50000 + 12.9904i 0.365528 + 0.633112i 0.988861 0.148844i \(-0.0475552\pi\)
−0.623333 + 0.781956i \(0.714222\pi\)
\(422\) −5.00000 + 8.66025i −0.243396 + 0.421575i
\(423\) 9.00000 + 15.5885i 0.437595 + 0.757937i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −14.0000 + 24.2487i −0.677507 + 1.17348i
\(428\) 10.0000 17.3205i 0.483368 0.837218i
\(429\) 0 0
\(430\) 0 0
\(431\) −10.5000 + 18.1865i −0.505767 + 0.876014i 0.494211 + 0.869342i \(0.335457\pi\)
−0.999978 + 0.00667224i \(0.997876\pi\)
\(432\) 0 0
\(433\) 2.00000 3.46410i 0.0961139 0.166474i −0.813959 0.580922i \(-0.802692\pi\)
0.910073 + 0.414448i \(0.136025\pi\)
\(434\) −28.0000 48.4974i −1.34404 2.32795i
\(435\) 0 0
\(436\) 30.0000 1.43674
\(437\) −3.00000 25.9808i −0.143509 1.24283i
\(438\) 0 0
\(439\) 6.50000 + 11.2583i 0.310228 + 0.537331i 0.978412 0.206666i \(-0.0662612\pi\)
−0.668184 + 0.743996i \(0.732928\pi\)
\(440\) 0 0
\(441\) 13.5000 23.3827i 0.642857 1.11346i
\(442\) −4.00000 6.92820i −0.190261 0.329541i
\(443\) −2.00000 + 3.46410i −0.0950229 + 0.164584i −0.909618 0.415445i \(-0.863626\pi\)
0.814595 + 0.580030i \(0.196959\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 2.00000 3.46410i 0.0947027 0.164030i
\(447\) 0 0
\(448\) 32.0000 1.51186
\(449\) 31.0000 1.46298 0.731490 0.681852i \(-0.238825\pi\)
0.731490 + 0.681852i \(0.238825\pi\)
\(450\) 0 0
\(451\) 1.00000 + 1.73205i 0.0470882 + 0.0815591i
\(452\) 12.0000 20.7846i 0.564433 0.977626i
\(453\) 0 0
\(454\) −14.0000 24.2487i −0.657053 1.13805i
\(455\) 0 0
\(456\) 0 0
\(457\) 34.0000 1.59045 0.795226 0.606313i \(-0.207352\pi\)
0.795226 + 0.606313i \(0.207352\pi\)
\(458\) −17.0000 29.4449i −0.794358 1.37587i
\(459\) 0 0
\(460\) 0 0
\(461\) 12.5000 + 21.6506i 0.582183 + 1.00837i 0.995220 + 0.0976564i \(0.0311346\pi\)
−0.413037 + 0.910714i \(0.635532\pi\)
\(462\) 0 0
\(463\) −4.00000 −0.185896 −0.0929479 0.995671i \(-0.529629\pi\)
−0.0929479 + 0.995671i \(0.529629\pi\)
\(464\) −36.0000 −1.67126
\(465\) 0 0
\(466\) 8.00000 13.8564i 0.370593 0.641886i
\(467\) 10.0000 0.462745 0.231372 0.972865i \(-0.425678\pi\)
0.231372 + 0.972865i \(0.425678\pi\)
\(468\) 12.0000 0.554700
\(469\) −20.0000 + 34.6410i −0.923514 + 1.59957i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.00000 + 1.73205i 0.0459800 + 0.0796398i
\(474\) 0 0
\(475\) 0 0
\(476\) 16.0000 0.733359
\(477\) 6.00000 + 10.3923i 0.274721 + 0.475831i
\(478\) 19.0000 + 32.9090i 0.869040 + 1.50522i
\(479\) −7.50000 + 12.9904i −0.342684 + 0.593546i −0.984930 0.172953i \(-0.944669\pi\)
0.642246 + 0.766498i \(0.278003\pi\)
\(480\) 0 0
\(481\) 2.00000 3.46410i 0.0911922 0.157949i
\(482\) 2.00000 0.0910975
\(483\) 0 0
\(484\) 10.0000 17.3205i 0.454545 0.787296i
\(485\) 0 0
\(486\) 0 0
\(487\) −38.0000 −1.72194 −0.860972 0.508652i \(-0.830144\pi\)
−0.860972 + 0.508652i \(0.830144\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −6.50000 11.2583i −0.293341 0.508081i 0.681257 0.732045i \(-0.261434\pi\)
−0.974598 + 0.223963i \(0.928100\pi\)
\(492\) 0 0
\(493\) −18.0000 −0.810679
\(494\) 14.0000 10.3923i 0.629890 0.467572i
\(495\) 0 0
\(496\) −14.0000 24.2487i −0.628619 1.08880i
\(497\) 2.00000 + 3.46410i 0.0897123 + 0.155386i
\(498\) 0 0
\(499\) −14.0000 24.2487i −0.626726 1.08552i −0.988204 0.153141i \(-0.951061\pi\)
0.361478 0.932381i \(-0.382272\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 26.0000 1.16044
\(503\) 13.0000 22.5167i 0.579641 1.00397i −0.415879 0.909420i \(-0.636526\pi\)
0.995520 0.0945483i \(-0.0301407\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −12.0000 −0.533465
\(507\) 0 0
\(508\) 6.00000 + 10.3923i 0.266207 + 0.461084i
\(509\) −9.00000 + 15.5885i −0.398918 + 0.690946i −0.993593 0.113020i \(-0.963948\pi\)
0.594675 + 0.803966i \(0.297281\pi\)
\(510\) 0 0
\(511\) 20.0000 + 34.6410i 0.884748 + 1.53243i
\(512\) 32.0000 1.41421
\(513\) 0 0
\(514\) −12.0000 −0.529297
\(515\) 0 0
\(516\) 0 0
\(517\) 3.00000 5.19615i 0.131940 0.228527i
\(518\) 8.00000 + 13.8564i 0.351500 + 0.608816i
\(519\) 0 0
\(520\) 0 0
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 27.0000 46.7654i 1.18176 2.04686i
\(523\) −8.00000 + 13.8564i −0.349816 + 0.605898i −0.986216 0.165460i \(-0.947089\pi\)
0.636401 + 0.771358i \(0.280422\pi\)
\(524\) 24.0000 1.04844
\(525\) 0 0
\(526\) 0 0
\(527\) −7.00000 12.1244i −0.304925 0.528145i
\(528\) 0 0
\(529\) −6.50000 11.2583i −0.282609 0.489493i
\(530\) 0 0
\(531\) −27.0000 −1.17170
\(532\) 4.00000 + 34.6410i 0.173422 + 1.50188i
\(533\) −4.00000 −0.173259
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −3.00000 + 5.19615i −0.129339 + 0.224022i
\(539\) −9.00000 −0.387657
\(540\) 0 0
\(541\) −11.5000 + 19.9186i −0.494424 + 0.856367i −0.999979 0.00642713i \(-0.997954\pi\)
0.505556 + 0.862794i \(0.331288\pi\)
\(542\) −3.00000 + 5.19615i −0.128861 + 0.223194i
\(543\) 0 0
\(544\) 16.0000 0.685994
\(545\) 0 0
\(546\) 0 0
\(547\) −11.0000 + 19.0526i −0.470326 + 0.814629i −0.999424 0.0339321i \(-0.989197\pi\)
0.529098 + 0.848561i \(0.322530\pi\)
\(548\) −12.0000 20.7846i −0.512615 0.887875i
\(549\) −10.5000 18.1865i −0.448129 0.776182i
\(550\) 0 0
\(551\) −4.50000 38.9711i −0.191706 1.66023i
\(552\) 0 0
\(553\) 2.00000 + 3.46410i 0.0850487 + 0.147309i
\(554\) 28.0000 + 48.4974i 1.18961 + 2.06046i
\(555\) 0 0
\(556\) −20.0000 34.6410i −0.848189 1.46911i
\(557\) −7.00000 + 12.1244i −0.296600 + 0.513725i −0.975356 0.220638i \(-0.929186\pi\)
0.678756 + 0.734364i \(0.262519\pi\)
\(558\) 42.0000 1.77800
\(559\) −4.00000 −0.169182
\(560\) 0 0
\(561\) 0 0
\(562\) 20.0000 0.843649
\(563\) −24.0000 −1.01148 −0.505740 0.862686i \(-0.668780\pi\)
−0.505740 + 0.862686i \(0.668780\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −14.0000 + 24.2487i −0.588464 + 1.01925i
\(567\) 18.0000 + 31.1769i 0.755929 + 1.30931i
\(568\) 0 0
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) 13.0000 0.544033 0.272017 0.962293i \(-0.412309\pi\)
0.272017 + 0.962293i \(0.412309\pi\)
\(572\) −2.00000 3.46410i −0.0836242 0.144841i
\(573\) 0 0
\(574\) 8.00000 13.8564i 0.333914 0.578355i
\(575\) 0 0
\(576\) −12.0000 + 20.7846i −0.500000 + 0.866025i
\(577\) 6.00000 0.249783 0.124892 0.992170i \(-0.460142\pi\)
0.124892 + 0.992170i \(0.460142\pi\)
\(578\) −26.0000 −1.08146
\(579\) 0 0
\(580\) 0 0
\(581\) 24.0000 0.995688
\(582\) 0 0
\(583\) 2.00000 3.46410i 0.0828315 0.143468i
\(584\) 0 0
\(585\) 0 0
\(586\) −4.00000 6.92820i −0.165238 0.286201i
\(587\) 12.0000 + 20.7846i 0.495293 + 0.857873i 0.999985 0.00542667i \(-0.00172737\pi\)
−0.504692 + 0.863299i \(0.668394\pi\)
\(588\) 0 0
\(589\) 24.5000 18.1865i 1.00950 0.749363i
\(590\) 0 0
\(591\) 0 0
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) 16.0000 27.7128i 0.657041 1.13803i −0.324337 0.945942i \(-0.605141\pi\)
0.981378 0.192087i \(-0.0615256\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −2.00000 −0.0819232
\(597\) 0 0
\(598\) 12.0000 20.7846i 0.490716 0.849946i
\(599\) 6.00000 10.3923i 0.245153 0.424618i −0.717021 0.697051i \(-0.754495\pi\)
0.962175 + 0.272433i \(0.0878284\pi\)
\(600\) 0 0
\(601\) 17.0000 0.693444 0.346722 0.937968i \(-0.387295\pi\)
0.346722 + 0.937968i \(0.387295\pi\)
\(602\) 8.00000 13.8564i 0.326056 0.564745i
\(603\) −15.0000 25.9808i −0.610847 1.05802i
\(604\) −9.00000 + 15.5885i −0.366205 + 0.634285i
\(605\) 0 0
\(606\) 0 0
\(607\) −14.0000 −0.568242 −0.284121 0.958788i \(-0.591702\pi\)
−0.284121 + 0.958788i \(0.591702\pi\)
\(608\) 4.00000 + 34.6410i 0.162221 + 1.40488i
\(609\) 0 0
\(610\) 0 0
\(611\) 6.00000 + 10.3923i 0.242734 + 0.420428i
\(612\) −6.00000 + 10.3923i −0.242536 + 0.420084i
\(613\) −12.0000 20.7846i −0.484675 0.839482i 0.515170 0.857088i \(-0.327729\pi\)
−0.999845 + 0.0176058i \(0.994396\pi\)
\(614\) −16.0000 + 27.7128i −0.645707 + 1.11840i
\(615\) 0 0
\(616\) 0 0
\(617\) −9.00000 + 15.5885i −0.362326 + 0.627568i −0.988343 0.152242i \(-0.951351\pi\)
0.626017 + 0.779809i \(0.284684\pi\)
\(618\) 0 0
\(619\) 4.00000 0.160774 0.0803868 0.996764i \(-0.474384\pi\)
0.0803868 + 0.996764i \(0.474384\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22.0000 + 38.1051i −0.881411 + 1.52665i
\(624\) 0 0
\(625\) 0 0
\(626\) 60.0000 2.39808
\(627\) 0 0
\(628\) 8.00000 0.319235
\(629\) 2.00000 + 3.46410i 0.0797452 + 0.138123i
\(630\) 0 0
\(631\) −0.500000 + 0.866025i −0.0199047 + 0.0344759i −0.875806 0.482663i \(-0.839670\pi\)
0.855901 + 0.517139i \(0.173003\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −4.00000 −0.158860
\(635\) 0 0
\(636\) 0 0
\(637\) 9.00000 15.5885i 0.356593 0.617637i
\(638\) −18.0000 −0.712627
\(639\) −3.00000 −0.118678
\(640\) 0 0
\(641\) −10.5000 18.1865i −0.414725 0.718325i 0.580674 0.814136i \(-0.302789\pi\)
−0.995400 + 0.0958109i \(0.969456\pi\)
\(642\) 0 0
\(643\) 23.0000 + 39.8372i 0.907031 + 1.57102i 0.818167 + 0.574981i \(0.194991\pi\)
0.0888646 + 0.996044i \(0.471676\pi\)
\(644\) 24.0000 + 41.5692i 0.945732 + 1.63806i
\(645\) 0 0
\(646\) 2.00000 + 17.3205i 0.0786889 + 0.681466i
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) 4.50000 + 7.79423i 0.176640 + 0.305950i
\(650\) 0 0
\(651\) 0 0
\(652\) −4.00000 + 6.92820i −0.156652 + 0.271329i
\(653\) 10.0000 0.391330 0.195665 0.980671i \(-0.437313\pi\)
0.195665 + 0.980671i \(0.437313\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 4.00000 6.92820i 0.156174 0.270501i
\(657\) −30.0000 −1.17041
\(658\) −48.0000 −1.87123
\(659\) −10.0000 + 17.3205i −0.389545 + 0.674711i −0.992388 0.123148i \(-0.960701\pi\)
0.602844 + 0.797859i \(0.294034\pi\)
\(660\) 0 0
\(661\) 7.50000 12.9904i 0.291716 0.505267i −0.682499 0.730886i \(-0.739107\pi\)
0.974216 + 0.225619i \(0.0724404\pi\)
\(662\) −20.0000 34.6410i −0.777322 1.34636i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −12.0000 −0.464991
\(667\) −27.0000 46.7654i −1.04544 1.81076i
\(668\) 12.0000 + 20.7846i 0.464294 + 0.804181i
\(669\) 0 0
\(670\) 0 0
\(671\) −3.50000 + 6.06218i −0.135116 + 0.234028i
\(672\) 0 0
\(673\) −20.0000 −0.770943 −0.385472 0.922720i \(-0.625961\pi\)
−0.385472 + 0.922720i \(0.625961\pi\)
\(674\) −34.0000 + 58.8897i −1.30963 + 2.26835i
\(675\) 0 0
\(676\) −18.0000 −0.692308
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −12.0000 20.7846i −0.460518 0.797640i
\(680\) 0 0
\(681\) 0 0
\(682\) −7.00000 12.1244i −0.268044 0.464266i
\(683\) 30.0000 1.14792 0.573959 0.818884i \(-0.305407\pi\)
0.573959 + 0.818884i \(0.305407\pi\)
\(684\) −24.0000 10.3923i −0.917663 0.397360i
\(685\) 0 0
\(686\) 8.00000 + 13.8564i 0.305441 + 0.529040i
\(687\) 0 0
\(688\) 4.00000 6.92820i 0.152499 0.264135i
\(689\) 4.00000 + 6.92820i 0.152388 + 0.263944i
\(690\) 0 0
\(691\) 3.00000 0.114125 0.0570627 0.998371i \(-0.481827\pi\)
0.0570627 + 0.998371i \(0.481827\pi\)
\(692\) −48.0000 −1.82469
\(693\) 6.00000 10.3923i 0.227921 0.394771i
\(694\) 12.0000 20.7846i 0.455514 0.788973i
\(695\) 0 0
\(696\) 0 0
\(697\) 2.00000 3.46410i 0.0757554 0.131212i
\(698\) −14.0000 24.2487i −0.529908 0.917827i
\(699\) 0 0
\(700\) 0 0
\(701\) −3.00000 5.19615i −0.113308 0.196256i 0.803794 0.594908i \(-0.202811\pi\)
−0.917102 + 0.398652i \(0.869478\pi\)
\(702\) 0 0
\(703\) −7.00000 + 5.19615i −0.264010 + 0.195977i
\(704\) 8.00000 0.301511
\(705\) 0 0
\(706\) 8.00000 + 13.8564i 0.301084 + 0.521493i
\(707\) 30.0000 51.9615i 1.12827 1.95421i
\(708\) 0 0
\(709\) −12.5000 + 21.6506i −0.469447 + 0.813107i −0.999390 0.0349269i \(-0.988880\pi\)
0.529943 + 0.848034i \(0.322213\pi\)
\(710\) 0 0
\(711\) −3.00000 −0.112509
\(712\) 0 0
\(713\) 21.0000 36.3731i 0.786456 1.36218i
\(714\) 0 0
\(715\) 0 0
\(716\) −15.0000 + 25.9808i −0.560576 + 0.970947i
\(717\) 0 0
\(718\) 20.0000 34.6410i 0.746393 1.29279i
\(719\) 10.5000 + 18.1865i 0.391584 + 0.678243i 0.992659 0.120950i \(-0.0385939\pi\)
−0.601075 + 0.799193i \(0.705261\pi\)
\(720\) 0 0
\(721\) −64.0000 −2.38348
\(722\) −37.0000 + 8.66025i −1.37700 + 0.322301i
\(723\) 0 0
\(724\) 6.00000 + 10.3923i 0.222988 + 0.386227i
\(725\) 0 0
\(726\) 0 0
\(727\) −4.00000 6.92820i −0.148352 0.256953i 0.782267 0.622944i \(-0.214063\pi\)
−0.930618 + 0.365991i \(0.880730\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 2.00000 3.46410i 0.0739727 0.128124i
\(732\) 0 0
\(733\) −6.00000 −0.221615 −0.110808 0.993842i \(-0.535344\pi\)
−0.110808 + 0.993842i \(0.535344\pi\)
\(734\) −32.0000 −1.18114
\(735\) 0 0
\(736\) 24.0000 + 41.5692i 0.884652 + 1.53226i
\(737\) −5.00000 + 8.66025i −0.184177 + 0.319005i
\(738\) 6.00000 + 10.3923i 0.220863 + 0.382546i
\(739\) 14.5000 + 25.1147i 0.533391 + 0.923861i 0.999239 + 0.0389959i \(0.0124159\pi\)
−0.465848 + 0.884865i \(0.654251\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −32.0000 −1.17476
\(743\) −25.0000 43.3013i −0.917161 1.58857i −0.803706 0.595026i \(-0.797142\pi\)
−0.113455 0.993543i \(-0.536192\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 12.0000 + 20.7846i 0.439351 + 0.760979i
\(747\) −9.00000 + 15.5885i −0.329293 + 0.570352i
\(748\) 4.00000 0.146254
\(749\) 40.0000 1.46157
\(750\) 0 0
\(751\) −20.5000 + 35.5070i −0.748056 + 1.29567i 0.200698 + 0.979653i \(0.435679\pi\)
−0.948753 + 0.316017i \(0.897654\pi\)
\(752\) −24.0000 −0.875190
\(753\) 0 0
\(754\) 18.0000 31.1769i 0.655521 1.13540i
\(755\) 0 0
\(756\) 0 0
\(757\) −13.0000 22.5167i −0.472493 0.818382i 0.527011 0.849858i \(-0.323312\pi\)
−0.999505 + 0.0314762i \(0.989979\pi\)
\(758\) 29.0000 + 50.2295i 1.05333 + 1.82442i
\(759\) 0 0
\(760\) 0 0
\(761\) −18.0000 −0.652499 −0.326250 0.945284i \(-0.605785\pi\)
−0.326250 + 0.945284i \(0.605785\pi\)
\(762\) 0 0
\(763\) 30.0000 + 51.9615i 1.08607 + 1.88113i
\(764\) 3.00000 5.19615i 0.108536 0.187990i
\(765\) 0 0
\(766\) −6.00000 + 10.3923i −0.216789 + 0.375489i
\(767\) −18.0000 −0.649942
\(768\) 0 0
\(769\) −2.50000 + 4.33013i −0.0901523 + 0.156148i −0.907575 0.419890i \(-0.862069\pi\)
0.817423 + 0.576038i \(0.195402\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 32.0000 1.15171
\(773\) −17.0000 + 29.4449i −0.611448 + 1.05906i 0.379549 + 0.925172i \(0.376079\pi\)
−0.990997 + 0.133887i \(0.957254\pi\)
\(774\) 6.00000 + 10.3923i 0.215666 + 0.373544i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −66.0000 −2.36621
\(779\) 8.00000 + 3.46410i 0.286630 + 0.124114i
\(780\) 0 0
\(781\) 0.500000 + 0.866025i 0.0178914 + 0.0309888i
\(782\) 12.0000 + 20.7846i 0.429119 + 0.743256i
\(783\) 0 0
\(784\) 18.0000 + 31.1769i 0.642857 + 1.11346i
\(785\) 0 0
\(786\) 0 0
\(787\) 22.0000