# Properties

 Label 475.2.bc.a.6.15 Level $475$ Weight $2$ Character 475.6 Analytic conductor $3.793$ Analytic rank $0$ Dimension $1152$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$475 = 5^{2} \cdot 19$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 475.bc (of order $$45$$, degree $$24$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$3.79289409601$$ Analytic rank: $$0$$ Dimension: $$1152$$ Relative dimension: $$48$$ over $$\Q(\zeta_{45})$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{45}]$

## Embedding invariants

 Embedding label 6.15 Character $$\chi$$ $$=$$ 475.6 Dual form 475.2.bc.a.396.15

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.978277 - 0.611295i) q^{2} +(-2.30987 + 0.662346i) q^{3} +(-0.293398 - 0.601556i) q^{4} +(2.15159 - 0.608806i) q^{5} +(2.66459 + 0.764058i) q^{6} +(0.629622 - 1.09054i) q^{7} +(-0.321864 + 3.06233i) q^{8} +(2.35267 - 1.47011i) q^{9} +O(q^{10})$$ $$q+(-0.978277 - 0.611295i) q^{2} +(-2.30987 + 0.662346i) q^{3} +(-0.293398 - 0.601556i) q^{4} +(2.15159 - 0.608806i) q^{5} +(2.66459 + 0.764058i) q^{6} +(0.629622 - 1.09054i) q^{7} +(-0.321864 + 3.06233i) q^{8} +(2.35267 - 1.47011i) q^{9} +(-2.47701 - 0.719678i) q^{10} +(0.499803 - 0.555088i) q^{11} +(1.07615 + 1.19519i) q^{12} +(0.209026 + 5.98572i) q^{13} +(-1.28258 + 0.681962i) q^{14} +(-4.56667 + 2.83137i) q^{15} +(1.36274 - 1.74423i) q^{16} +(-1.59316 + 0.111404i) q^{17} -3.20024 q^{18} +(-1.77415 - 3.98150i) q^{19} +(-0.997505 - 1.11568i) q^{20} +(-0.732035 + 2.93603i) q^{21} +(-0.828269 + 0.237502i) q^{22} +(7.02875 - 0.987827i) q^{23} +(-1.28486 - 7.28678i) q^{24} +(4.25871 - 2.61981i) q^{25} +(3.45456 - 5.98347i) q^{26} +(0.363026 - 0.403181i) q^{27} +(-0.840749 - 0.0587909i) q^{28} +(-0.0907475 - 0.00634568i) q^{29} +(6.19827 + 0.0217254i) q^{30} +(5.43647 - 2.42047i) q^{31} +(3.38762 - 1.23299i) q^{32} +(-0.786823 + 1.61323i) q^{33} +(1.62665 + 0.864904i) q^{34} +(0.690765 - 2.72971i) q^{35} +(-1.57463 - 0.983936i) q^{36} +(-0.862743 + 2.65525i) q^{37} +(-0.698260 + 4.97955i) q^{38} +(-4.44744 - 13.6878i) q^{39} +(1.17184 + 6.78484i) q^{40} +(4.92546 - 6.30431i) q^{41} +(2.51091 - 2.42476i) q^{42} +(-1.24043 - 7.03482i) q^{43} +(-0.480558 - 0.137798i) q^{44} +(4.16698 - 4.59541i) q^{45} +(-7.47992 - 3.33027i) q^{46} +(0.369623 + 0.0258465i) q^{47} +(-1.99248 + 4.93157i) q^{48} +(2.70715 + 4.68893i) q^{49} +(-5.76767 - 0.0404328i) q^{50} +(3.60620 - 1.31255i) q^{51} +(3.53942 - 1.88194i) q^{52} +(-4.48906 - 9.20394i) q^{53} +(-0.601603 + 0.172507i) q^{54} +(0.737433 - 1.49861i) q^{55} +(3.13693 + 2.27911i) q^{56} +(6.73521 + 8.02167i) q^{57} +(0.0848971 + 0.0616813i) q^{58} +(-1.73816 - 4.30210i) q^{59} +(3.04308 + 1.91639i) q^{60} +(3.48991 - 0.490475i) q^{61} +(-6.79799 - 0.955395i) q^{62} +(-0.121919 - 3.49129i) q^{63} +(-8.39793 - 1.78504i) q^{64} +(4.09388 + 12.7516i) q^{65} +(1.75589 - 1.09720i) q^{66} +(1.28212 + 5.14230i) q^{67} +(0.534445 + 0.925687i) q^{68} +(-15.5813 + 6.93722i) q^{69} +(-2.34442 + 2.24815i) q^{70} +(-7.40951 - 7.15528i) q^{71} +(3.74473 + 7.67784i) q^{72} +(-0.0977086 + 2.79801i) q^{73} +(2.46714 - 2.07018i) q^{74} +(-8.10187 + 8.87216i) q^{75} +(-1.87456 + 2.23542i) q^{76} +(-0.290657 - 0.894549i) q^{77} +(-4.01647 + 16.1092i) q^{78} +(15.2511 - 4.37318i) q^{79} +(1.87017 - 4.58253i) q^{80} +(-4.21992 + 8.65211i) q^{81} +(-8.67226 + 3.15645i) q^{82} +(0.0853473 - 0.0379991i) q^{83} +(1.98097 - 0.421067i) q^{84} +(-3.36000 + 1.20962i) q^{85} +(-3.08687 + 7.64027i) q^{86} +(0.213818 - 0.0454485i) q^{87} +(1.53899 + 1.70922i) q^{88} +(6.15650 + 7.87996i) q^{89} +(-6.88562 + 1.94833i) q^{90} +(6.65926 + 3.54079i) q^{91} +(-2.65646 - 3.93836i) q^{92} +(-10.9544 + 9.19180i) q^{93} +(-0.345793 - 0.251234i) q^{94} +(-6.24122 - 7.48646i) q^{95} +(-7.00830 + 5.09183i) q^{96} +(-1.83358 + 7.35409i) q^{97} +(0.217973 - 6.24194i) q^{98} +(0.359832 - 2.04071i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9}+O(q^{10})$$ 1152 * q - 18 * q^2 - 18 * q^3 - 18 * q^4 - 24 * q^5 - 18 * q^6 - 30 * q^7 - 9 * q^8 - 18 * q^9 $$1152 q - 18 q^{2} - 18 q^{3} - 18 q^{4} - 24 q^{5} - 18 q^{6} - 30 q^{7} - 9 q^{8} - 18 q^{9} - 33 q^{10} - 9 q^{12} - 18 q^{13} - 18 q^{14} + 27 q^{15} - 30 q^{16} - 36 q^{17} - 144 q^{18} - 18 q^{19} - 54 q^{20} + 9 q^{21} + 6 q^{22} - 24 q^{23} - 120 q^{24} - 90 q^{25} - 24 q^{26} - 9 q^{27} + 54 q^{28} + 9 q^{30} - 45 q^{31} - 138 q^{32} + 54 q^{33} - 18 q^{34} + 45 q^{35} - 72 q^{36} - 36 q^{37} + 93 q^{38} - 36 q^{39} + 57 q^{40} - 18 q^{41} + 36 q^{42} - 252 q^{43} - 42 q^{44} - 90 q^{45} - 69 q^{46} - 18 q^{47} + 6 q^{48} - 486 q^{49} + 21 q^{50} + 12 q^{51} - 36 q^{53} - 120 q^{54} - 3 q^{55} + 234 q^{56} + 90 q^{57} + 180 q^{58} + 18 q^{59} + 69 q^{60} - 90 q^{61} - 144 q^{62} - 27 q^{63} + 93 q^{64} - 72 q^{65} + 42 q^{66} + 54 q^{67} - 48 q^{68} - 57 q^{69} + 12 q^{70} - 60 q^{71} - 318 q^{72} - 36 q^{73} - 66 q^{74} - 132 q^{75} - 48 q^{76} + 222 q^{77} - 39 q^{78} + 6 q^{79} + 129 q^{80} - 84 q^{81} + 120 q^{82} + 45 q^{83} - 63 q^{84} - 18 q^{85} + 72 q^{86} - 33 q^{87} - 45 q^{88} + 18 q^{89} + 57 q^{90} + 45 q^{91} + 324 q^{92} - 78 q^{93} - 24 q^{94} + 81 q^{95} - 132 q^{96} - 96 q^{97} - 153 q^{98} - 6 q^{99}+O(q^{100})$$ 1152 * q - 18 * q^2 - 18 * q^3 - 18 * q^4 - 24 * q^5 - 18 * q^6 - 30 * q^7 - 9 * q^8 - 18 * q^9 - 33 * q^10 - 9 * q^12 - 18 * q^13 - 18 * q^14 + 27 * q^15 - 30 * q^16 - 36 * q^17 - 144 * q^18 - 18 * q^19 - 54 * q^20 + 9 * q^21 + 6 * q^22 - 24 * q^23 - 120 * q^24 - 90 * q^25 - 24 * q^26 - 9 * q^27 + 54 * q^28 + 9 * q^30 - 45 * q^31 - 138 * q^32 + 54 * q^33 - 18 * q^34 + 45 * q^35 - 72 * q^36 - 36 * q^37 + 93 * q^38 - 36 * q^39 + 57 * q^40 - 18 * q^41 + 36 * q^42 - 252 * q^43 - 42 * q^44 - 90 * q^45 - 69 * q^46 - 18 * q^47 + 6 * q^48 - 486 * q^49 + 21 * q^50 + 12 * q^51 - 36 * q^53 - 120 * q^54 - 3 * q^55 + 234 * q^56 + 90 * q^57 + 180 * q^58 + 18 * q^59 + 69 * q^60 - 90 * q^61 - 144 * q^62 - 27 * q^63 + 93 * q^64 - 72 * q^65 + 42 * q^66 + 54 * q^67 - 48 * q^68 - 57 * q^69 + 12 * q^70 - 60 * q^71 - 318 * q^72 - 36 * q^73 - 66 * q^74 - 132 * q^75 - 48 * q^76 + 222 * q^77 - 39 * q^78 + 6 * q^79 + 129 * q^80 - 84 * q^81 + 120 * q^82 + 45 * q^83 - 63 * q^84 - 18 * q^85 + 72 * q^86 - 33 * q^87 - 45 * q^88 + 18 * q^89 + 57 * q^90 + 45 * q^91 + 324 * q^92 - 78 * q^93 - 24 * q^94 + 81 * q^95 - 132 * q^96 - 96 * q^97 - 153 * q^98 - 6 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/475\mathbb{Z}\right)^\times$$.

 $$n$$ $$77$$ $$401$$ $$\chi(n)$$ $$e\left(\frac{2}{5}\right)$$ $$e\left(\frac{7}{9}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.978277 0.611295i −0.691746 0.432251i 0.137970 0.990436i $$-0.455942\pi$$
−0.829716 + 0.558185i $$0.811498\pi$$
$$3$$ −2.30987 + 0.662346i −1.33361 + 0.382406i −0.865342 0.501182i $$-0.832899\pi$$
−0.468265 + 0.883588i $$0.655121\pi$$
$$4$$ −0.293398 0.601556i −0.146699 0.300778i
$$5$$ 2.15159 0.608806i 0.962222 0.272266i
$$6$$ 2.66459 + 0.764058i 1.08781 + 0.311925i
$$7$$ 0.629622 1.09054i 0.237975 0.412184i −0.722158 0.691728i $$-0.756850\pi$$
0.960133 + 0.279544i $$0.0901831\pi$$
$$8$$ −0.321864 + 3.06233i −0.113796 + 1.08270i
$$9$$ 2.35267 1.47011i 0.784225 0.490038i
$$10$$ −2.47701 0.719678i −0.783301 0.227582i
$$11$$ 0.499803 0.555088i 0.150696 0.167365i −0.663070 0.748557i $$-0.730747\pi$$
0.813766 + 0.581192i $$0.197414\pi$$
$$12$$ 1.07615 + 1.19519i 0.310658 + 0.345021i
$$13$$ 0.209026 + 5.98572i 0.0579734 + 1.66014i 0.585552 + 0.810635i $$0.300878\pi$$
−0.527579 + 0.849506i $$0.676900\pi$$
$$14$$ −1.28258 + 0.681962i −0.342785 + 0.182262i
$$15$$ −4.56667 + 2.83137i −1.17911 + 0.731055i
$$16$$ 1.36274 1.74423i 0.340686 0.436058i
$$17$$ −1.59316 + 0.111404i −0.386397 + 0.0270195i −0.261634 0.965167i $$-0.584261\pi$$
−0.124763 + 0.992187i $$0.539817\pi$$
$$18$$ −3.20024 −0.754304
$$19$$ −1.77415 3.98150i −0.407019 0.913420i
$$20$$ −0.997505 1.11568i −0.223049 0.249474i
$$21$$ −0.732035 + 2.93603i −0.159743 + 0.640695i
$$22$$ −0.828269 + 0.237502i −0.176587 + 0.0506356i
$$23$$ 7.02875 0.987827i 1.46560 0.205976i 0.639189 0.769049i $$-0.279270\pi$$
0.826407 + 0.563073i $$0.190381\pi$$
$$24$$ −1.28486 7.28678i −0.262270 1.48741i
$$25$$ 4.25871 2.61981i 0.851742 0.523961i
$$26$$ 3.45456 5.98347i 0.677495 1.17346i
$$27$$ 0.363026 0.403181i 0.0698644 0.0775923i
$$28$$ −0.840749 0.0587909i −0.158887 0.0111104i
$$29$$ −0.0907475 0.00634568i −0.0168514 0.00117836i 0.0613283 0.998118i $$-0.480466\pi$$
−0.0781797 + 0.996939i $$0.524911\pi$$
$$30$$ 6.19827 + 0.0217254i 1.13164 + 0.00396650i
$$31$$ 5.43647 2.42047i 0.976418 0.434729i 0.144425 0.989516i $$-0.453867\pi$$
0.831993 + 0.554786i $$0.187200\pi$$
$$32$$ 3.38762 1.23299i 0.598851 0.217964i
$$33$$ −0.786823 + 1.61323i −0.136968 + 0.280827i
$$34$$ 1.62665 + 0.864904i 0.278968 + 0.148330i
$$35$$ 0.690765 2.72971i 0.116761 0.461405i
$$36$$ −1.57463 0.983936i −0.262438 0.163989i
$$37$$ −0.862743 + 2.65525i −0.141834 + 0.436520i −0.996590 0.0825094i $$-0.973707\pi$$
0.854756 + 0.519030i $$0.173707\pi$$
$$38$$ −0.698260 + 4.97955i −0.113273 + 0.807789i
$$39$$ −4.44744 13.6878i −0.712161 2.19181i
$$40$$ 1.17184 + 6.78484i 0.185285 + 1.07278i
$$41$$ 4.92546 6.30431i 0.769228 0.984567i −0.230705 0.973024i $$-0.574103\pi$$
0.999933 0.0115437i $$-0.00367455\pi$$
$$42$$ 2.51091 2.42476i 0.387443 0.374149i
$$43$$ −1.24043 7.03482i −0.189164 1.07280i −0.920488 0.390770i $$-0.872209\pi$$
0.731325 0.682030i $$-0.238902\pi$$
$$44$$ −0.480558 0.137798i −0.0724468 0.0207738i
$$45$$ 4.16698 4.59541i 0.621177 0.685043i
$$46$$ −7.47992 3.33027i −1.10285 0.491022i
$$47$$ 0.369623 + 0.0258465i 0.0539150 + 0.00377010i 0.0966885 0.995315i $$-0.469175\pi$$
−0.0427735 + 0.999085i $$0.513619\pi$$
$$48$$ −1.99248 + 4.93157i −0.287590 + 0.711810i
$$49$$ 2.70715 + 4.68893i 0.386736 + 0.669847i
$$50$$ −5.76767 0.0404328i −0.815672 0.00571806i
$$51$$ 3.60620 1.31255i 0.504969 0.183794i
$$52$$ 3.53942 1.88194i 0.490829 0.260979i
$$53$$ −4.48906 9.20394i −0.616620 1.26426i −0.947249 0.320498i $$-0.896150\pi$$
0.330629 0.943761i $$-0.392739\pi$$
$$54$$ −0.601603 + 0.172507i −0.0818678 + 0.0234752i
$$55$$ 0.737433 1.49861i 0.0994354 0.202072i
$$56$$ 3.13693 + 2.27911i 0.419190 + 0.304559i
$$57$$ 6.73521 + 8.02167i 0.892100 + 1.06250i
$$58$$ 0.0848971 + 0.0616813i 0.0111475 + 0.00809916i
$$59$$ −1.73816 4.30210i −0.226289 0.560085i 0.770737 0.637154i $$-0.219888\pi$$
−0.997026 + 0.0770685i $$0.975444\pi$$
$$60$$ 3.04308 + 1.91639i 0.392860 + 0.247405i
$$61$$ 3.48991 0.490475i 0.446838 0.0627989i 0.0878341 0.996135i $$-0.472005\pi$$
0.359004 + 0.933336i $$0.383117\pi$$
$$62$$ −6.79799 0.955395i −0.863346 0.121335i
$$63$$ −0.121919 3.49129i −0.0153603 0.439862i
$$64$$ −8.39793 1.78504i −1.04974 0.223130i
$$65$$ 4.09388 + 12.7516i 0.507784 + 1.58164i
$$66$$ 1.75589 1.09720i 0.216135 0.135056i
$$67$$ 1.28212 + 5.14230i 0.156636 + 0.628231i 0.996362 + 0.0852216i $$0.0271598\pi$$
−0.839726 + 0.543010i $$0.817285\pi$$
$$68$$ 0.534445 + 0.925687i 0.0648110 + 0.112256i
$$69$$ −15.5813 + 6.93722i −1.87576 + 0.835143i
$$70$$ −2.34442 + 2.24815i −0.280212 + 0.268705i
$$71$$ −7.40951 7.15528i −0.879347 0.849175i 0.110122 0.993918i $$-0.464876\pi$$
−0.989469 + 0.144743i $$0.953765\pi$$
$$72$$ 3.74473 + 7.67784i 0.441321 + 0.904842i
$$73$$ −0.0977086 + 2.79801i −0.0114359 + 0.327482i 0.980168 + 0.198169i $$0.0634995\pi$$
−0.991604 + 0.129313i $$0.958723\pi$$
$$74$$ 2.46714 2.07018i 0.286799 0.240653i
$$75$$ −8.10187 + 8.87216i −0.935523 + 1.02447i
$$76$$ −1.87456 + 2.23542i −0.215027 + 0.256420i
$$77$$ −0.290657 0.894549i −0.0331234 0.101943i
$$78$$ −4.01647 + 16.1092i −0.454776 + 1.82401i
$$79$$ 15.2511 4.37318i 1.71588 0.492021i 0.733624 0.679556i $$-0.237828\pi$$
0.982258 + 0.187535i $$0.0600498\pi$$
$$80$$ 1.87017 4.58253i 0.209092 0.512342i
$$81$$ −4.21992 + 8.65211i −0.468880 + 0.961346i
$$82$$ −8.67226 + 3.15645i −0.957691 + 0.348571i
$$83$$ 0.0853473 0.0379991i 0.00936809 0.00417094i −0.402047 0.915619i $$-0.631701\pi$$
0.411415 + 0.911448i $$0.365035\pi$$
$$84$$ 1.98097 0.421067i 0.216141 0.0459422i
$$85$$ −3.36000 + 1.20962i −0.364443 + 0.131202i
$$86$$ −3.08687 + 7.64027i −0.332866 + 0.823872i
$$87$$ 0.213818 0.0454485i 0.0229237 0.00487259i
$$88$$ 1.53899 + 1.70922i 0.164057 + 0.182204i
$$89$$ 6.15650 + 7.87996i 0.652588 + 0.835274i 0.994530 0.104447i $$-0.0333071\pi$$
−0.341943 + 0.939721i $$0.611085\pi$$
$$90$$ −6.88562 + 1.94833i −0.725808 + 0.205372i
$$91$$ 6.65926 + 3.54079i 0.698080 + 0.371176i
$$92$$ −2.65646 3.93836i −0.276955 0.410603i
$$93$$ −10.9544 + 9.19180i −1.13591 + 0.953146i
$$94$$ −0.345793 0.251234i −0.0356659 0.0259128i
$$95$$ −6.24122 7.48646i −0.640336 0.768095i
$$96$$ −7.00830 + 5.09183i −0.715282 + 0.519683i
$$97$$ −1.83358 + 7.35409i −0.186172 + 0.746694i 0.802506 + 0.596643i $$0.203499\pi$$
−0.988678 + 0.150051i $$0.952056\pi$$
$$98$$ 0.217973 6.24194i 0.0220186 0.630531i
$$99$$ 0.359832 2.04071i 0.0361645 0.205099i
$$100$$ −2.82546 1.79321i −0.282546 0.179321i
$$101$$ 12.0473 4.38484i 1.19875 0.436308i 0.335960 0.941876i $$-0.390939\pi$$
0.862787 + 0.505568i $$0.168717\pi$$
$$102$$ −4.33022 0.920417i −0.428756 0.0911348i
$$103$$ −11.2837 5.02381i −1.11181 0.495011i −0.233144 0.972442i $$-0.574901\pi$$
−0.878669 + 0.477431i $$0.841568\pi$$
$$104$$ −18.3975 1.28648i −1.80403 0.126150i
$$105$$ 0.212432 + 6.76281i 0.0207313 + 0.659983i
$$106$$ −1.23478 + 11.7481i −0.119932 + 1.14108i
$$107$$ 1.46403 2.53578i 0.141533 0.245143i −0.786541 0.617538i $$-0.788130\pi$$
0.928074 + 0.372395i $$0.121463\pi$$
$$108$$ −0.349047 0.100088i −0.0335871 0.00963095i
$$109$$ 4.98571 + 0.700697i 0.477545 + 0.0671146i 0.373839 0.927493i $$-0.378041\pi$$
0.103706 + 0.994608i $$0.466930\pi$$
$$110$$ −1.63750 + 1.01526i −0.156130 + 0.0968015i
$$111$$ 0.234134 6.70473i 0.0222230 0.636384i
$$112$$ −1.04414 2.58433i −0.0986617 0.244196i
$$113$$ 3.95664 12.1773i 0.372209 1.14554i −0.573133 0.819462i $$-0.694272\pi$$
0.945342 0.326080i $$-0.105728\pi$$
$$114$$ −1.68529 11.9646i −0.157842 1.12059i
$$115$$ 14.5216 6.40455i 1.35415 0.597227i
$$116$$ 0.0228079 + 0.0564515i 0.00211766 + 0.00524139i
$$117$$ 9.29147 + 13.7752i 0.858996 + 1.27351i
$$118$$ −0.929450 + 5.27117i −0.0855628 + 0.485251i
$$119$$ −0.881595 + 1.80754i −0.0808157 + 0.165697i
$$120$$ −7.20072 14.8960i −0.657333 1.35981i
$$121$$ 1.09149 + 10.3849i 0.0992267 + 0.944079i
$$122$$ −3.71393 1.65355i −0.336243 0.149705i
$$123$$ −7.20157 + 17.8245i −0.649344 + 1.60718i
$$124$$ −3.05110 2.56018i −0.273997 0.229911i
$$125$$ 7.56806 8.22949i 0.676908 0.736068i
$$126$$ −2.01494 + 3.48998i −0.179505 + 0.310912i
$$127$$ 11.1085 + 14.2182i 0.985716 + 1.26166i 0.965103 + 0.261872i $$0.0843398\pi$$
0.0206136 + 0.999788i $$0.493438\pi$$
$$128$$ 1.93784 + 1.87135i 0.171283 + 0.165406i
$$129$$ 7.52472 + 15.4280i 0.662515 + 1.35836i
$$130$$ 3.79003 14.9772i 0.332408 1.31358i
$$131$$ −4.20528 + 0.294062i −0.367417 + 0.0256923i −0.252272 0.967656i $$-0.581178\pi$$
−0.115145 + 0.993349i $$0.536733\pi$$
$$132$$ 1.20130 0.104560
$$133$$ −5.45902 0.572061i −0.473357 0.0496040i
$$134$$ 1.88919 5.81434i 0.163202 0.502283i
$$135$$ 0.535625 1.08849i 0.0460993 0.0936827i
$$136$$ 0.171622 4.91462i 0.0147165 0.421425i
$$137$$ 2.23410 + 1.18789i 0.190872 + 0.101489i 0.562157 0.827030i $$-0.309972\pi$$
−0.371285 + 0.928519i $$0.621083\pi$$
$$138$$ 19.4835 + 2.73822i 1.65854 + 0.233093i
$$139$$ 12.7662 + 16.3399i 1.08281 + 1.38594i 0.916581 + 0.399850i $$0.130938\pi$$
0.166231 + 0.986087i $$0.446840\pi$$
$$140$$ −1.84474 + 0.385359i −0.155909 + 0.0325688i
$$141$$ −0.870901 + 0.185116i −0.0733431 + 0.0155896i
$$142$$ 2.87456 + 11.5292i 0.241228 + 0.967513i
$$143$$ 3.42707 + 2.87566i 0.286586 + 0.240474i
$$144$$ 0.641872 6.10700i 0.0534893 0.508917i
$$145$$ −0.199115 + 0.0415943i −0.0165356 + 0.00345422i
$$146$$ 1.80599 2.67750i 0.149465 0.221591i
$$147$$ −9.35887 9.03776i −0.771907 0.745422i
$$148$$ 1.85041 0.260058i 0.152103 0.0213766i
$$149$$ −6.51781 2.37229i −0.533960 0.194345i 0.0609459 0.998141i $$-0.480588\pi$$
−0.594905 + 0.803796i $$0.702811\pi$$
$$150$$ 13.3494 3.72680i 1.08997 0.304292i
$$151$$ 0.849831 0.0691582 0.0345791 0.999402i $$-0.488991\pi$$
0.0345791 + 0.999402i $$0.488991\pi$$
$$152$$ 12.7637 4.15154i 1.03527 0.336735i
$$153$$ −3.58440 + 2.60422i −0.289782 + 0.210539i
$$154$$ −0.262491 + 1.05279i −0.0211521 + 0.0848366i
$$155$$ 10.2235 8.51762i 0.821169 0.684152i
$$156$$ −6.92912 + 6.69137i −0.554774 + 0.535739i
$$157$$ −1.58123 8.96759i −0.126196 0.715691i −0.980591 0.196067i $$-0.937183\pi$$
0.854395 0.519624i $$-0.173928\pi$$
$$158$$ −17.5931 5.04474i −1.39963 0.401338i
$$159$$ 16.4654 + 18.2866i 1.30579 + 1.45022i
$$160$$ 6.53812 4.71530i 0.516884 0.372777i
$$161$$ 3.34819 8.28707i 0.263875 0.653113i
$$162$$ 9.41724 5.88455i 0.739888 0.462334i
$$163$$ 6.50674 1.38305i 0.509647 0.108329i 0.0540911 0.998536i $$-0.482774\pi$$
0.455556 + 0.890207i $$0.349441\pi$$
$$164$$ −5.23752 1.11327i −0.408981 0.0869317i
$$165$$ −0.710781 + 3.95003i −0.0553342 + 0.307509i
$$166$$ −0.106722 0.0149988i −0.00828323 0.00116413i
$$167$$ −4.30930 + 4.16144i −0.333464 + 0.322022i −0.842473 0.538739i $$-0.818901\pi$$
0.509009 + 0.860761i $$0.330012\pi$$
$$168$$ −8.75548 3.18673i −0.675500 0.245862i
$$169$$ −22.8169 + 1.59551i −1.75514 + 0.122732i
$$170$$ 4.02645 + 0.870609i 0.308814 + 0.0667727i
$$171$$ −10.0273 6.75897i −0.766805 0.516872i
$$172$$ −3.86790 + 2.81019i −0.294925 + 0.214275i
$$173$$ −15.7259 9.82663i −1.19562 0.747104i −0.221945 0.975059i $$-0.571241\pi$$
−0.973672 + 0.227955i $$0.926796\pi$$
$$174$$ −0.236956 0.0862449i −0.0179636 0.00653821i
$$175$$ −0.175619 6.29377i −0.0132756 0.475764i
$$176$$ −0.287098 1.62822i −0.0216409 0.122731i
$$177$$ 6.86441 + 8.78604i 0.515961 + 0.660399i
$$178$$ −1.20578 11.4722i −0.0903770 0.859879i
$$179$$ −22.4862 10.0115i −1.68070 0.748296i −0.999874 0.0158498i $$-0.994955\pi$$
−0.680825 0.732446i $$-0.738379\pi$$
$$180$$ −3.98698 1.15839i −0.297172 0.0863412i
$$181$$ 3.80962 + 15.2795i 0.283167 + 1.13572i 0.928355 + 0.371696i $$0.121224\pi$$
−0.645188 + 0.764024i $$0.723221\pi$$
$$182$$ −4.35013 7.53465i −0.322453 0.558505i
$$183$$ −7.73640 + 3.44447i −0.571891 + 0.254622i
$$184$$ 0.762750 + 21.8423i 0.0562307 + 1.61024i
$$185$$ −0.239740 + 6.23826i −0.0176260 + 0.458646i
$$186$$ 16.3353 2.29578i 1.19776 0.168335i
$$187$$ −0.734425 + 0.940022i −0.0537065 + 0.0687412i
$$188$$ −0.0928986 0.229932i −0.00677533 0.0167695i
$$189$$ −0.211115 0.649745i −0.0153564 0.0472620i
$$190$$ 1.52921 + 11.1391i 0.110940 + 0.808113i
$$191$$ 5.92448 18.2337i 0.428681 1.31934i −0.470745 0.882269i $$-0.656015\pi$$
0.899426 0.437074i $$-0.143985\pi$$
$$192$$ 20.5805 1.43913i 1.48527 0.103860i
$$193$$ 12.1651 + 4.42773i 0.875662 + 0.318715i 0.740458 0.672103i $$-0.234609\pi$$
0.135204 + 0.990818i $$0.456831\pi$$
$$194$$ 6.28927 6.07347i 0.451543 0.436050i
$$195$$ −17.9023 26.7430i −1.28201 1.91511i
$$196$$ 2.02638 3.00423i 0.144741 0.214588i
$$197$$ 1.60092 + 15.2317i 0.114061 + 1.08522i 0.890487 + 0.455008i $$0.150364\pi$$
−0.776427 + 0.630208i $$0.782970\pi$$
$$198$$ −1.59949 + 1.77641i −0.113671 + 0.126244i
$$199$$ −0.457310 0.383729i −0.0324178 0.0272018i 0.626435 0.779474i $$-0.284513\pi$$
−0.658853 + 0.752272i $$0.728958\pi$$
$$200$$ 6.65199 + 13.8848i 0.470366 + 0.981803i
$$201$$ −6.36751 11.0289i −0.449130 0.777915i
$$202$$ −14.4660 3.07484i −1.01782 0.216345i
$$203$$ −0.0640568 + 0.0949681i −0.00449591 + 0.00666545i
$$204$$ −1.84763 1.78423i −0.129360 0.124921i
$$205$$ 6.75950 16.5630i 0.472104 1.15681i
$$206$$ 7.96752 + 11.8123i 0.555123 + 0.823004i
$$207$$ 15.0841 12.6571i 1.04842 0.879729i
$$208$$ 10.7253 + 7.79242i 0.743669 + 0.540307i
$$209$$ −3.09681 1.00516i −0.214211 0.0695282i
$$210$$ 3.92626 6.74576i 0.270938 0.465502i
$$211$$ 4.50941 + 2.81779i 0.310441 + 0.193985i 0.676188 0.736730i $$-0.263631\pi$$
−0.365747 + 0.930714i $$0.619186\pi$$
$$212$$ −4.21960 + 5.40084i −0.289803 + 0.370931i
$$213$$ 21.8543 + 11.6201i 1.49743 + 0.796199i
$$214$$ −2.98233 + 1.58574i −0.203868 + 0.108399i
$$215$$ −6.95174 14.3809i −0.474105 0.980769i
$$216$$ 1.11783 + 1.24147i 0.0760586 + 0.0844717i
$$217$$ 0.783305 7.45265i 0.0531742 0.505919i
$$218$$ −4.44908 3.73322i −0.301330 0.252845i
$$219$$ −1.62755 6.52776i −0.109980 0.441105i
$$220$$ −1.11786 0.00391818i −0.0753659 0.000264163i
$$221$$ −0.999846 9.51290i −0.0672570 0.639907i
$$222$$ −4.32761 + 6.41595i −0.290450 + 0.430611i
$$223$$ −21.9267 + 11.6587i −1.46832 + 0.780721i −0.994972 0.100153i $$-0.968067\pi$$
−0.473351 + 0.880874i $$0.656956\pi$$
$$224$$ 0.788294 4.47064i 0.0526701 0.298707i
$$225$$ 6.16794 12.4243i 0.411196 0.828289i
$$226$$ −11.3146 + 9.49408i −0.752636 + 0.631537i
$$227$$ 4.22776 + 13.0117i 0.280606 + 0.863618i 0.987681 + 0.156479i $$0.0500144\pi$$
−0.707075 + 0.707139i $$0.749986\pi$$
$$228$$ 2.84939 6.40515i 0.188705 0.424191i
$$229$$ −5.31673 + 3.86283i −0.351340 + 0.255263i −0.749431 0.662083i $$-0.769673\pi$$
0.398091 + 0.917346i $$0.369673\pi$$
$$230$$ −18.1212 2.61158i −1.19488 0.172202i
$$231$$ 1.26388 + 1.87378i 0.0831573 + 0.123286i
$$232$$ 0.0486409 0.275856i 0.00319343 0.0181108i
$$233$$ 11.3593 23.2901i 0.744175 1.52579i −0.103123 0.994669i $$-0.532883\pi$$
0.847298 0.531117i $$-0.178228\pi$$
$$234$$ −0.668934 19.1558i −0.0437296 1.25225i
$$235$$ 0.811013 0.169417i 0.0529047 0.0110516i
$$236$$ −2.07798 + 2.30783i −0.135265 + 0.150227i
$$237$$ −32.3315 + 20.2030i −2.10016 + 1.31233i
$$238$$ 1.96738 1.22936i 0.127527 0.0796874i
$$239$$ −4.89749 + 5.43922i −0.316793 + 0.351834i −0.880419 0.474196i $$-0.842739\pi$$
0.563627 + 0.826029i $$0.309406\pi$$
$$240$$ −1.28464 + 11.8238i −0.0829234 + 0.763220i
$$241$$ 0.565749 + 16.2009i 0.0364431 + 1.04359i 0.870577 + 0.492032i $$0.163746\pi$$
−0.834134 + 0.551562i $$0.814032\pi$$
$$242$$ 5.28044 10.8265i 0.339439 0.695954i
$$243$$ 3.73416 21.1775i 0.239546 1.35853i
$$244$$ −1.31898 1.95547i −0.0844393 0.125186i
$$245$$ 8.67934 + 8.44053i 0.554503 + 0.539246i
$$246$$ 17.9412 13.0350i 1.14389 0.831083i
$$247$$ 23.4613 11.4518i 1.49281 0.728663i
$$248$$ 5.66248 + 17.4273i 0.359568 + 1.10664i
$$249$$ −0.171973 + 0.144303i −0.0108984 + 0.00914480i
$$250$$ −12.4343 + 3.42440i −0.786414 + 0.216578i
$$251$$ −3.89463 + 22.0875i −0.245827 + 1.39415i 0.572738 + 0.819738i $$0.305881\pi$$
−0.818565 + 0.574414i $$0.805230\pi$$
$$252$$ −2.06444 + 1.09768i −0.130047 + 0.0691474i
$$253$$ 2.96466 4.39529i 0.186387 0.276330i
$$254$$ −2.17564 20.6999i −0.136512 1.29882i
$$255$$ 6.95999 5.01955i 0.435852 0.314337i
$$256$$ 3.40227 + 13.6457i 0.212642 + 0.852859i
$$257$$ 2.52178 + 2.11603i 0.157305 + 0.131994i 0.718043 0.695999i $$-0.245038\pi$$
−0.560738 + 0.827993i $$0.689483\pi$$
$$258$$ 2.06978 19.6926i 0.128859 1.22601i
$$259$$ 2.35245 + 2.61266i 0.146174 + 0.162343i
$$260$$ 6.46966 6.20400i 0.401231 0.384756i
$$261$$ −0.222828 + 0.118480i −0.0137927 + 0.00733372i
$$262$$ 4.29369 + 2.28300i 0.265265 + 0.141044i
$$263$$ 3.34779 4.28498i 0.206434 0.264223i −0.673641 0.739059i $$-0.735270\pi$$
0.880074 + 0.474836i $$0.157493\pi$$
$$264$$ −4.68698 2.92875i −0.288464 0.180252i
$$265$$ −15.2621 17.0702i −0.937540 1.04861i
$$266$$ 4.99074 + 3.89671i 0.306002 + 0.238923i
$$267$$ −19.4400 14.1240i −1.18971 0.864374i
$$268$$ 2.71721 2.28001i 0.165980 0.139274i
$$269$$ 9.94207 + 14.7397i 0.606179 + 0.898697i 0.999788 0.0205809i $$-0.00655157\pi$$
−0.393610 + 0.919278i $$0.628774\pi$$
$$270$$ −1.18938 + 0.737424i −0.0723835 + 0.0448782i
$$271$$ −8.57547 8.28123i −0.520922 0.503049i 0.387062 0.922054i $$-0.373490\pi$$
−0.907984 + 0.419005i $$0.862379\pi$$
$$272$$ −1.97675 + 2.93065i −0.119858 + 0.177697i
$$273$$ −17.7273 3.76805i −1.07290 0.228053i
$$274$$ −1.45942 2.52779i −0.0881667 0.152709i
$$275$$ 0.674295 3.67335i 0.0406615 0.221511i
$$276$$ 8.74464 + 7.33763i 0.526366 + 0.441673i
$$277$$ 11.3953 12.6558i 0.684678 0.760412i −0.296181 0.955132i $$-0.595713\pi$$
0.980859 + 0.194720i $$0.0623799\pi$$
$$278$$ −2.50031 23.7889i −0.149959 1.42676i
$$279$$ 9.23187 13.6868i 0.552697 0.819407i
$$280$$ 8.13694 + 2.99394i 0.486275 + 0.178922i
$$281$$ 13.8065 13.3327i 0.823625 0.795365i −0.157748 0.987479i $$-0.550423\pi$$
0.981373 + 0.192114i $$0.0615345\pi$$
$$282$$ 0.965143 + 0.351283i 0.0574734 + 0.0209186i
$$283$$ −11.0353 + 0.771665i −0.655982 + 0.0458707i −0.393869 0.919167i $$-0.628864\pi$$
−0.262113 + 0.965037i $$0.584419\pi$$
$$284$$ −2.13036 + 6.55658i −0.126414 + 0.389062i
$$285$$ 19.3751 + 13.1589i 1.14768 + 0.779468i
$$286$$ −1.59475 4.90814i −0.0942997 0.290225i
$$287$$ −3.77390 9.34073i −0.222766 0.551366i
$$288$$ 6.15732 7.88101i 0.362823 0.464393i
$$289$$ −14.3088 + 2.01097i −0.841695 + 0.118293i
$$290$$ 0.220216 + 0.0810273i 0.0129315 + 0.00475809i
$$291$$ −0.635610 18.2015i −0.0372601 1.06699i
$$292$$ 1.71183 0.762154i 0.100177 0.0446017i
$$293$$ 0.886748 + 1.53589i 0.0518044 + 0.0897278i 0.890765 0.454465i $$-0.150169\pi$$
−0.838960 + 0.544193i $$0.816836\pi$$
$$294$$ 3.63083 + 14.5625i 0.211754 + 0.849300i
$$295$$ −6.35896 8.19816i −0.370233 0.477316i
$$296$$ −7.85356 3.49663i −0.456479 0.203237i
$$297$$ −0.0423594 0.403023i −0.00245794 0.0233857i
$$298$$ 4.92605 + 6.30506i 0.285359 + 0.365242i
$$299$$ 7.38205 + 41.8657i 0.426915 + 2.42116i
$$300$$ 7.71418 + 2.27065i 0.445378 + 0.131096i
$$301$$ −8.45273 3.07654i −0.487208 0.177329i
$$302$$ −0.831370 0.519497i −0.0478399 0.0298937i
$$303$$ −24.9234 + 18.1079i −1.43181 + 1.04027i
$$304$$ −9.36239 2.33123i −0.536970 0.133705i
$$305$$ 7.21027 3.17998i 0.412859 0.182085i
$$306$$ 5.09848 0.356521i 0.291461 0.0203809i
$$307$$ −26.9518 9.80964i −1.53822 0.559866i −0.572602 0.819834i $$-0.694066\pi$$
−0.965617 + 0.259968i $$0.916288\pi$$
$$308$$ −0.452843 + 0.437306i −0.0258031 + 0.0249178i
$$309$$ 29.3914 + 4.13069i 1.67202 + 0.234987i
$$310$$ −15.2082 + 2.08304i −0.863766 + 0.118309i
$$311$$ 19.0666 + 4.05272i 1.08117 + 0.229809i 0.713858 0.700291i $$-0.246946\pi$$
0.367308 + 0.930099i $$0.380280\pi$$
$$312$$ 43.3481 9.21392i 2.45410 0.521636i
$$313$$ 17.2323 10.7680i 0.974029 0.608641i 0.0531904 0.998584i $$-0.483061\pi$$
0.920839 + 0.389943i $$0.127505\pi$$
$$314$$ −3.93496 + 9.73938i −0.222063 + 0.549625i
$$315$$ −2.38784 7.43762i −0.134540 0.419063i
$$316$$ −7.10536 7.89130i −0.399708 0.443920i
$$317$$ −23.7499 6.81019i −1.33393 0.382498i −0.468471 0.883479i $$-0.655195\pi$$
−0.865458 + 0.500981i $$0.832973\pi$$
$$318$$ −4.92915 27.9546i −0.276413 1.56762i
$$319$$ −0.0488783 + 0.0472012i −0.00273666 + 0.00264276i
$$320$$ −19.1557 + 1.27204i −1.07084 + 0.0711093i
$$321$$ −1.70217 + 6.82702i −0.0950057 + 0.381047i
$$322$$ −8.34131 + 6.06032i −0.464843 + 0.337728i
$$323$$ 3.27006 + 6.14551i 0.181951 + 0.341945i
$$324$$ 6.44285 0.357936
$$325$$ 16.5716 + 24.9439i 0.919228 + 1.38364i
$$326$$ −7.21084 2.62453i −0.399372 0.145359i
$$327$$ −11.9805 + 1.68375i −0.662522 + 0.0931114i
$$328$$ 17.7205 + 17.1125i 0.978453 + 0.944881i
$$329$$ 0.260909 0.386814i 0.0143844 0.0213257i
$$330$$ 3.10997 3.42972i 0.171198 0.188800i
$$331$$ 0.811776 7.72353i 0.0446192 0.424524i −0.949297 0.314382i $$-0.898203\pi$$
0.993916 0.110142i $$-0.0351305\pi$$
$$332$$ −0.0478994 0.0401923i −0.00262882 0.00220584i
$$333$$ 1.87377 + 7.51527i 0.102682 + 0.411834i
$$334$$ 6.75956 1.43679i 0.369867 0.0786176i
$$335$$ 5.88926 + 10.2836i 0.321765 + 0.561851i
$$336$$ 4.12355 + 5.27790i 0.224958 + 0.287933i
$$337$$ −28.0765 3.94589i −1.52942 0.214947i −0.676289 0.736637i $$-0.736413\pi$$
−0.853135 + 0.521690i $$0.825302\pi$$
$$338$$ 23.2965 + 12.3870i 1.26716 + 0.673763i
$$339$$ −1.07377 + 30.7486i −0.0583190 + 1.67004i
$$340$$ 1.71347 + 1.66633i 0.0929261 + 0.0903693i
$$341$$ 1.37359 4.22747i 0.0743841 0.228931i
$$342$$ 5.67772 + 12.7418i 0.307016 + 0.688996i
$$343$$ 15.6326 0.844083
$$344$$ 21.9422 1.53435i 1.18304 0.0827264i
$$345$$ −29.3011 + 24.4120i −1.57752 + 1.31430i
$$346$$ 9.37730 + 19.2263i 0.504127 + 1.03361i
$$347$$ 4.29502 + 4.14765i 0.230569 + 0.222657i 0.800964 0.598713i $$-0.204321\pi$$
−0.570395 + 0.821370i $$0.693210\pi$$
$$348$$ −0.0900738 0.115289i −0.00482846 0.00618015i
$$349$$ −0.0680733 + 0.117906i −0.00364388 + 0.00631138i −0.867842 0.496841i $$-0.834493\pi$$
0.864198 + 0.503152i $$0.167827\pi$$
$$350$$ −3.67555 + 6.26440i −0.196466 + 0.334847i
$$351$$ 2.48921 + 2.08870i 0.132864 + 0.111486i
$$352$$ 1.00872 2.49668i 0.0537651 0.133073i
$$353$$ 25.1349 + 11.1908i 1.33780 + 0.595625i 0.945922 0.324394i $$-0.105160\pi$$
0.391874 + 0.920019i $$0.371827\pi$$
$$354$$ −1.34443 12.7914i −0.0714555 0.679853i
$$355$$ −20.2984 10.8843i −1.07733 0.577679i
$$356$$ 2.93393 6.01545i 0.155498 0.318818i
$$357$$ 0.839159 4.75911i 0.0444130 0.251879i
$$358$$ 15.8778 + 23.5398i 0.839166 + 1.24411i
$$359$$ 3.95441 + 9.78752i 0.208706 + 0.516565i 0.994836 0.101496i $$-0.0323628\pi$$
−0.786130 + 0.618061i $$0.787918\pi$$
$$360$$ 12.7315 + 14.2398i 0.671007 + 0.750502i
$$361$$ −12.7048 + 14.1276i −0.668671 + 0.743558i
$$362$$ 5.61345 17.2764i 0.295036 0.908029i
$$363$$ −9.39959 23.2648i −0.493351 1.22109i
$$364$$ 0.176168 5.04478i 0.00923370 0.264418i
$$365$$ 1.49321 + 6.07966i 0.0781584 + 0.318224i
$$366$$ 9.67393 + 1.35958i 0.505664 + 0.0710665i
$$367$$ −10.5760 3.03261i −0.552061 0.158301i −0.0120016 0.999928i $$-0.503820\pi$$
−0.540059 + 0.841627i $$0.681598\pi$$
$$368$$ 7.85539 13.6059i 0.409490 0.709258i
$$369$$ 2.31996 22.0730i 0.120772 1.14907i
$$370$$ 4.04795 5.95619i 0.210443 0.309648i
$$371$$ −12.8636 0.899514i −0.667847 0.0467004i
$$372$$ 8.74338 + 3.89280i 0.453323 + 0.201832i
$$373$$ −5.50571 1.17027i −0.285075 0.0605945i 0.0631549 0.998004i $$-0.479884\pi$$
−0.348230 + 0.937409i $$0.613217\pi$$
$$374$$ 1.29310 0.470651i 0.0668647 0.0243368i
$$375$$ −12.0305 + 24.0218i −0.621252 + 1.24048i
$$376$$ −0.198119 + 1.12359i −0.0102172 + 0.0579446i
$$377$$ 0.0190149 0.544516i 0.000979318 0.0280440i
$$378$$ −0.190657 + 0.764684i −0.00980635 + 0.0393311i
$$379$$ −10.5164 + 7.64062i −0.540192 + 0.392472i −0.824156 0.566362i $$-0.808350\pi$$
0.283964 + 0.958835i $$0.408350\pi$$
$$380$$ −2.67236 + 5.95096i −0.137089 + 0.305278i
$$381$$ −35.0765 25.4846i −1.79702 1.30561i
$$382$$ −16.9419 + 14.2160i −0.866825 + 0.727353i
$$383$$ −6.56748 9.73669i −0.335583 0.497522i 0.623045 0.782186i $$-0.285896\pi$$
−0.958627 + 0.284665i $$0.908118\pi$$
$$384$$ −5.71566 3.03907i −0.291676 0.155087i
$$385$$ −1.16998 1.74775i −0.0596278 0.0890738i
$$386$$ −9.19417 11.7680i −0.467971 0.598975i
$$387$$ −13.2603 14.7271i −0.674060 0.748619i
$$388$$ 4.96186 1.05468i 0.251900 0.0535431i
$$389$$ −0.991067 + 2.45298i −0.0502491 + 0.124371i −0.950221 0.311578i $$-0.899143\pi$$
0.899972 + 0.435949i $$0.143587\pi$$
$$390$$ 1.16556 + 37.1057i 0.0590203 + 1.87892i
$$391$$ −11.0878 + 2.35680i −0.560737 + 0.119188i
$$392$$ −15.2304 + 6.78100i −0.769250 + 0.342492i
$$393$$ 9.51891 3.46460i 0.480165 0.174766i
$$394$$ 7.74494 15.8795i 0.390184 0.799997i
$$395$$ 30.1517 18.6943i 1.51710 0.940610i
$$396$$ −1.33317 + 0.382282i −0.0669946 + 0.0192104i
$$397$$ 0.948482 3.80415i 0.0476029 0.190925i −0.941787 0.336211i $$-0.890855\pi$$
0.989390 + 0.145286i $$0.0464101\pi$$
$$398$$ 0.212804 + 0.654944i 0.0106669 + 0.0328294i
$$399$$ 12.9886 2.29437i 0.650242 0.114862i
$$400$$ 1.23398 10.9983i 0.0616989 0.549915i
$$401$$ 17.6987 14.8510i 0.883833 0.741624i −0.0831303 0.996539i $$-0.526492\pi$$
0.966964 + 0.254914i $$0.0820473\pi$$
$$402$$ −0.512696 + 14.6817i −0.0255710 + 0.732257i
$$403$$ 15.6246 + 32.0352i 0.778318 + 1.59579i
$$404$$ −6.17237 5.96059i −0.307087 0.296551i
$$405$$ −3.81209 + 21.1849i −0.189424 + 1.05269i
$$406$$ 0.120719 0.0537475i 0.00599118 0.00266744i
$$407$$ 1.04269 + 1.80600i 0.0516844 + 0.0895201i
$$408$$ 2.85875 + 11.4658i 0.141529 + 0.567644i
$$409$$ 27.5053 17.1872i 1.36005 0.849853i 0.363399 0.931634i $$-0.381616\pi$$
0.996650 + 0.0817804i $$0.0260606\pi$$
$$410$$ −16.7375 + 12.0711i −0.826607 + 0.596150i
$$411$$ −5.94730 1.26414i −0.293358 0.0623553i
$$412$$ 0.288506 + 8.26174i 0.0142137 + 0.407027i
$$413$$ −5.78598 0.813167i −0.284710 0.0400133i
$$414$$ −22.4937 + 3.16128i −1.10551 + 0.155369i
$$415$$ 0.160499 0.133719i 0.00787857 0.00656399i
$$416$$ 8.08845 + 20.0196i 0.396569 + 0.981542i
$$417$$ −40.3109 29.2876i −1.97404 1.43422i
$$418$$ 2.41509 + 2.87639i 0.118126 + 0.140689i
$$419$$ −10.5567 7.66989i −0.515728 0.374698i 0.299264 0.954170i $$-0.403259\pi$$
−0.814992 + 0.579472i $$0.803259\pi$$
$$420$$ 4.00588 2.11199i 0.195467 0.103055i
$$421$$ 9.13751 2.62014i 0.445335 0.127698i −0.0454728 0.998966i $$-0.514479\pi$$
0.490808 + 0.871268i $$0.336702\pi$$
$$422$$ −2.68895 5.51316i −0.130896 0.268377i
$$423$$ 0.907599 0.482579i 0.0441290 0.0234638i
$$424$$ 29.6304 10.7846i 1.43898 0.523745i
$$425$$ −6.49293 + 4.64820i −0.314953 + 0.225471i
$$426$$ −14.2762 24.7271i −0.691685 1.19803i
$$427$$ 1.66244 4.11469i 0.0804513 0.199124i
$$428$$ −1.95496 0.136704i −0.0944963 0.00660783i
$$429$$ −9.82079 4.37250i −0.474152 0.211106i
$$430$$ −1.99025 + 18.3181i −0.0959782 + 0.883375i
$$431$$ 7.57817 + 2.17300i 0.365028 + 0.104670i 0.453137 0.891441i $$-0.350305\pi$$
−0.0881096 + 0.996111i $$0.528083\pi$$
$$432$$ −0.208530 1.18263i −0.0100329 0.0568995i
$$433$$ −4.19645 + 4.05247i −0.201669 + 0.194749i −0.788634 0.614863i $$-0.789211\pi$$
0.586965 + 0.809612i $$0.300322\pi$$
$$434$$ −5.32206 + 6.81192i −0.255467 + 0.326983i
$$435$$ 0.432381 0.227961i 0.0207311 0.0109299i
$$436$$ −1.04129 3.20477i −0.0498689 0.153481i
$$437$$ −16.4031 26.2325i −0.784668 1.25487i
$$438$$ −2.39819 + 7.38088i −0.114590 + 0.352672i
$$439$$ 11.2698 + 7.04217i 0.537880 + 0.336104i 0.771506 0.636222i $$-0.219504\pi$$
−0.233627 + 0.972326i $$0.575059\pi$$
$$440$$ 4.35187 + 2.74061i 0.207467 + 0.130653i
$$441$$ 13.2623 + 7.05169i 0.631538 + 0.335795i
$$442$$ −4.83707 + 9.91746i −0.230076 + 0.471725i
$$443$$ −25.5165 + 9.28724i −1.21232 + 0.441250i −0.867510 0.497420i $$-0.834281\pi$$
−0.344815 + 0.938671i $$0.612058\pi$$
$$444$$ −4.10196 + 1.82631i −0.194671 + 0.0866729i
$$445$$ 18.0437 + 13.2064i 0.855351 + 0.626041i
$$446$$ 28.5773 + 1.99832i 1.35317 + 0.0946231i
$$447$$ 16.6266 + 1.16264i 0.786411 + 0.0549912i
$$448$$ −7.23417 + 8.03436i −0.341782 + 0.379588i
$$449$$ −19.4124 + 33.6232i −0.916127 + 1.58678i −0.110885 + 0.993833i $$0.535368\pi$$
−0.805243 + 0.592945i $$0.797965\pi$$
$$450$$ −13.6289 + 8.38401i −0.642472 + 0.395226i
$$451$$ −1.03768 5.88498i −0.0488625 0.277113i
$$452$$ −8.48619 + 1.19266i −0.399157 + 0.0560978i
$$453$$ −1.96300 + 0.562882i −0.0922299 + 0.0264465i
$$454$$ 3.81808 15.3135i 0.179191 0.718697i
$$455$$ 16.4837 + 3.56415i 0.772767 + 0.167090i
$$456$$ −26.7328 + 18.0435i −1.25188 + 0.844966i
$$457$$ −30.9909 −1.44969 −0.724846 0.688911i $$-0.758089\pi$$
−0.724846 + 0.688911i $$0.758089\pi$$
$$458$$ 7.56257 0.528826i 0.353376 0.0247104i
$$459$$ −0.533441 + 0.682773i −0.0248989 + 0.0318691i
$$460$$ −8.11332 6.85649i −0.378285 0.319685i
$$461$$ −8.47224 + 4.50477i −0.394592 + 0.209808i −0.654897 0.755718i $$-0.727288\pi$$
0.260305 + 0.965526i $$0.416177\pi$$
$$462$$ −0.0909924 2.60568i −0.00423335 0.121227i
$$463$$ −20.0385 22.2550i −0.931269 1.03428i −0.999330 0.0365977i $$-0.988348\pi$$
0.0680612 0.997681i $$-0.478319\pi$$
$$464$$ −0.134734 + 0.149637i −0.00625486 + 0.00694673i
$$465$$ −17.9733 + 26.4461i −0.833493 + 1.22641i
$$466$$ −25.3497 + 15.8403i −1.17430 + 0.733786i
$$467$$ −3.73413 + 35.5278i −0.172795 + 1.64403i 0.473391 + 0.880853i $$0.343030\pi$$
−0.646186 + 0.763180i $$0.723637\pi$$
$$468$$ 5.56043 9.63095i 0.257031 0.445191i
$$469$$ 6.41511 + 1.83950i 0.296222 + 0.0849404i
$$470$$ −0.896960 0.330032i −0.0413737 0.0152232i
$$471$$ 9.59208 + 19.6667i 0.441980 + 0.906193i
$$472$$ 13.7339 3.93813i 0.632153 0.181267i
$$473$$ −4.52491 2.82748i −0.208056 0.130008i
$$474$$ 43.9792 2.02003
$$475$$ −17.9864 12.3081i −0.825272 0.564736i
$$476$$ 1.34599 0.0616935
$$477$$ −24.0921 15.0544i −1.10310 0.689295i
$$478$$ 8.11607 2.32725i 0.371221 0.106446i
$$479$$ −1.08799 2.23070i −0.0497114 0.101923i 0.872492 0.488628i $$-0.162502\pi$$
−0.922204 + 0.386704i $$0.873613\pi$$
$$480$$ −11.9791 + 15.2222i −0.546768 + 0.694797i
$$481$$ −16.0739 4.60912i −0.732908 0.210158i
$$482$$ 9.35010 16.1948i 0.425885 0.737655i
$$483$$ −2.24500 + 21.3598i −0.102151 + 0.971903i
$$484$$ 5.92684 3.70350i 0.269402 0.168341i
$$485$$ 0.532095 + 16.9393i 0.0241612 + 0.769174i
$$486$$ −16.5987 + 18.4347i −0.752933 + 0.836217i
$$487$$ 5.25732 + 5.83884i 0.238232 + 0.264583i 0.850391 0.526151i $$-0.176366\pi$$
−0.612159 + 0.790735i $$0.709699\pi$$
$$488$$ 0.378720 + 10.8451i 0.0171439 + 0.490936i
$$489$$ −14.1137 + 7.50438i −0.638243 + 0.339360i
$$490$$ −3.33114 13.5628i −0.150486 0.612706i
$$491$$ −19.3851 + 24.8118i −0.874836 + 1.11974i 0.117115 + 0.993118i $$0.462635\pi$$
−0.991951 + 0.126621i $$0.959587\pi$$
$$492$$ 12.8354 0.897537i 0.578664 0.0404641i
$$493$$ 0.145282 0.00654316
$$494$$ −29.9521 3.13874i −1.34761 0.141219i
$$495$$ −0.468184 4.60984i −0.0210433 0.207197i
$$496$$ 3.18665 12.7809i 0.143085 0.573881i
$$497$$ −12.4683 + 3.57522i −0.559279 + 0.160371i
$$498$$ 0.256449 0.0360415i 0.0114917 0.00161506i
$$499$$ −3.91463 22.2010i −0.175243 0.993851i −0.937863 0.347005i $$-0.887199\pi$$
0.762620 0.646846i $$-0.223912\pi$$
$$500$$ −7.17096 2.13809i −0.320695 0.0956184i
$$501$$ 7.19763 12.4667i 0.321566 0.556969i
$$502$$ 17.3120 19.2270i 0.772674 0.858141i
$$503$$ 8.54194 + 0.597311i 0.380866 + 0.0266328i 0.258907 0.965902i $$-0.416638\pi$$
0.121959 + 0.992535i $$0.461082\pi$$
$$504$$ 10.7307 + 0.750366i 0.477985 + 0.0334240i
$$505$$ 23.2513 16.7688i 1.03467 0.746204i
$$506$$ −5.58708 + 2.48753i −0.248376 + 0.110584i
$$507$$ 51.6473 18.7981i 2.29374 0.834852i
$$508$$ 5.29383 10.8540i 0.234876 0.481566i
$$509$$ −24.1611 12.8467i −1.07092 0.569418i −0.162171 0.986763i $$-0.551850\pi$$
−0.908748 + 0.417344i $$0.862961\pi$$
$$510$$ −9.87723 + 0.655902i −0.437371 + 0.0290438i
$$511$$ 2.98981 + 1.86824i 0.132261 + 0.0826461i
$$512$$ 6.67816 20.5532i 0.295136 0.908334i
$$513$$ −2.24933 0.730084i −0.0993105 0.0322340i
$$514$$ −1.17349 3.61162i −0.0517602 0.159302i
$$515$$ −27.3364 3.93964i −1.20459 0.173601i
$$516$$ 7.07304 9.05308i 0.311373 0.398540i
$$517$$ 0.199086 0.192255i 0.00875578 0.00845536i
$$518$$ −0.704239 3.99394i −0.0309425 0.175484i
$$519$$ 42.8335 + 12.2823i 1.88018 + 0.539133i
$$520$$ −40.3672 + 8.43255i −1.77022 + 0.369792i
$$521$$ −13.8803 6.17989i −0.608105 0.270746i 0.0794950 0.996835i $$-0.474669\pi$$
−0.687600 + 0.726089i $$0.741336\pi$$
$$522$$ 0.290414 + 0.0203077i 0.0127111 + 0.000888844i
$$523$$ −14.9477 + 36.9969i −0.653619 + 1.61776i 0.126380 + 0.991982i $$0.459664\pi$$
−0.779999 + 0.625781i $$0.784780\pi$$
$$524$$ 1.41072 + 2.44344i 0.0616275 + 0.106742i
$$525$$ 4.57431 + 14.4215i 0.199639 + 0.629406i
$$526$$ −5.89445 + 2.14541i −0.257010 + 0.0935441i
$$527$$ −8.39149 + 4.46183i −0.365539 + 0.194360i
$$528$$ 1.74160 + 3.57082i 0.0757935 + 0.155400i
$$529$$ 26.3185 7.54672i 1.14428 0.328118i
$$530$$ 4.49560 + 26.0290i 0.195276 + 1.13063i
$$531$$ −10.4139 7.56614i −0.451925 0.328343i
$$532$$ 1.25754 + 3.45175i 0.0545214 + 0.149652i
$$533$$ 38.7654 + 28.1647i 1.67912 + 1.21995i
$$534$$ 10.3838 + 25.7008i 0.449350 + 1.11218i
$$535$$ 1.60620 6.34727i 0.0694422 0.274416i
$$536$$ −16.1601 + 2.27115i −0.698009 + 0.0980987i
$$537$$ 58.5715 + 8.23168i 2.52754 + 0.355223i
$$538$$ −0.715773 20.4971i −0.0308592 0.883691i
$$539$$ 3.95581 + 0.840833i 0.170389 + 0.0362172i
$$540$$ −0.811942 0.00284592i −0.0349404 0.000122469i
$$541$$ 16.6525 10.4057i 0.715948 0.447374i −0.122420 0.992478i $$-0.539066\pi$$
0.838368 + 0.545104i $$0.183510\pi$$
$$542$$ 3.32690 + 13.3435i 0.142903 + 0.573151i
$$543$$ −18.9201 32.7706i −0.811939 1.40632i
$$544$$ −5.25964 + 2.34174i −0.225505 + 0.100401i
$$545$$ 11.1538 1.52772i 0.477777 0.0654403i
$$546$$ 15.0388 + 14.5228i 0.643601 + 0.621519i
$$547$$ −4.38666 8.99399i −0.187560 0.384555i 0.784206 0.620500i $$-0.213070\pi$$
−0.971766 + 0.235945i $$0.924182\pi$$
$$548$$ 0.0591022 1.69246i 0.00252472 0.0722985i
$$549$$ 7.48958 6.28450i 0.319647 0.268216i
$$550$$ −2.90515 + 3.18136i −0.123876 + 0.135653i
$$551$$ 0.135735 + 0.372570i 0.00578249 + 0.0158720i
$$552$$ −16.2290 49.9478i −0.690753 2.12592i
$$553$$ 4.83331 19.3853i 0.205533 0.824348i
$$554$$ −18.8842 + 5.41495i −0.802312 + 0.230059i
$$555$$ −3.57812 14.5684i −0.151883 0.618394i
$$556$$ 6.08382 12.4737i 0.258011 0.529002i
$$557$$ −8.31775 + 3.02741i −0.352435 + 0.128276i −0.512170 0.858884i $$-0.671158\pi$$
0.159735 + 0.987160i $$0.448936\pi$$
$$558$$ −17.3980 + 7.74609i −0.736516 + 0.327918i
$$559$$ 41.8492 8.89532i 1.77003 0.376232i
$$560$$ −3.81991 4.92475i −0.161421 0.208109i
$$561$$ 1.07381 2.65778i 0.0453363 0.112211i
$$562$$ −21.6568 + 4.60329i −0.913537 + 0.194178i
$$563$$ 12.7505 + 14.1609i 0.537370 + 0.596810i 0.949287 0.314412i $$-0.101807\pi$$
−0.411917 + 0.911221i $$0.635141\pi$$
$$564$$ 0.366879 + 0.469583i 0.0154484 + 0.0197730i
$$565$$ 1.09947 28.6094i 0.0462552 1.20361i
$$566$$ 11.2673 + 5.99094i 0.473601 + 0.251818i
$$567$$ 6.77850 + 10.0495i 0.284670 + 0.422041i
$$568$$ 24.2967 20.3873i 1.01947 0.855433i
$$569$$ −6.45359 4.68881i −0.270549 0.196565i 0.444236 0.895910i $$-0.353475\pi$$
−0.714784 + 0.699345i $$0.753475\pi$$
$$570$$ −10.9102 24.7170i −0.456977 1.03528i
$$571$$ −36.9358 + 26.8354i −1.54572 + 1.12303i −0.599095 + 0.800678i $$0.704473\pi$$
−0.946621 + 0.322350i $$0.895527\pi$$
$$572$$ 0.724370 2.90529i 0.0302874 0.121476i
$$573$$ −1.60781 + 46.0416i −0.0671671 + 1.92341i
$$574$$ −2.01803 + 11.4448i −0.0842307 + 0.477696i
$$575$$ 27.3455 22.6208i 1.14039 0.943354i
$$576$$ −22.3818 + 8.14631i −0.932575 + 0.339430i
$$577$$ 33.9130 + 7.20844i 1.41182 + 0.300091i 0.849831 0.527055i $$-0.176704\pi$$
0.561987 + 0.827146i $$0.310037\pi$$
$$578$$ 15.2273 + 6.77963i 0.633372 + 0.281995i
$$579$$ −31.0325 2.17000i −1.28967 0.0901823i
$$580$$ 0.0834413 + 0.107575i 0.00346471 + 0.00446681i
$$581$$ 0.0122971 0.116999i 0.000510171 0.00485396i
$$582$$ −10.5047 + 18.1946i −0.435433 + 0.754192i
$$583$$ −7.35264 2.10834i −0.304515 0.0873184i
$$584$$ −8.53697 1.19979i −0.353262 0.0496478i
$$585$$ 28.3779 + 23.9819i 1.17328 + 0.991528i
$$586$$ 0.0713987 2.04459i 0.00294946 0.0844613i
$$587$$ −4.89963 12.1270i −0.202229 0.500535i 0.791654 0.610970i $$-0.209220\pi$$
−0.993883 + 0.110434i $$0.964776\pi$$
$$588$$ −2.69084 + 8.28155i −0.110968 + 0.341525i
$$589$$ −19.2822 17.3510i −0.794511 0.714936i
$$590$$ 1.20932 + 11.9073i 0.0497871 + 0.490215i
$$591$$ −13.7866 34.1230i −0.567105 1.40363i
$$592$$ 3.45567 + 5.12325i 0.142027 + 0.210564i
$$593$$ 6.16481 34.9624i 0.253158 1.43573i −0.547598 0.836742i $$-0.684458\pi$$
0.800756 0.598990i $$-0.204431\pi$$
$$594$$ −0.204927 + 0.420162i −0.00840824 + 0.0172395i
$$595$$ −0.796394 + 4.42581i −0.0326490 + 0.181440i
$$596$$ 0.485251 + 4.61685i 0.0198766 + 0.189114i
$$597$$ 1.31049 + 0.583468i 0.0536348 + 0.0238797i
$$598$$ 18.3706 45.4689i 0.751230 1.85936i
$$599$$ −34.9601 29.3350i −1.42843 1.19860i −0.946633 0.322313i $$-0.895540\pi$$
−0.481797 0.876283i $$-0.660016\pi$$
$$600$$ −24.5618 27.6662i −1.00273 1.12947i
$$601$$ 9.66507 16.7404i 0.394247 0.682855i −0.598758 0.800930i $$-0.704339\pi$$
0.993005 + 0.118075i $$0.0376723\pi$$
$$602$$ 6.38844 + 8.17683i 0.260373 + 0.333263i
$$603$$ 10.5762 + 10.2133i 0.430695 + 0.415917i
$$604$$ −0.249339 0.511221i −0.0101455 0.0208013i
$$605$$ 8.67083 + 21.6795i 0.352519 + 0.881398i
$$606$$ 35.4512 2.47899i 1.44011 0.100702i
$$607$$ 47.6125 1.93253 0.966266 0.257546i $$-0.0829139\pi$$
0.966266 + 0.257546i $$0.0829139\pi$$
$$608$$ −10.9193 11.3003i −0.442837 0.458287i
$$609$$ 0.0850614 0.261792i 0.00344686 0.0106084i
$$610$$ −8.99755 1.29670i −0.364300 0.0525018i
$$611$$ −0.0774494 + 2.21786i −0.00313327 + 0.0897251i
$$612$$ 2.61824 + 1.39214i 0.105836 + 0.0562741i
$$613$$ 14.5536 + 2.04537i 0.587813 + 0.0826118i 0.426809 0.904342i $$-0.359638\pi$$
0.161005 + 0.986954i $$0.448527\pi$$
$$614$$ 20.3697 + 26.0720i 0.822055 + 1.05218i
$$615$$ −4.64318 + 42.7355i −0.187231 + 1.72326i
$$616$$ 2.83296 0.602163i 0.114143 0.0242619i
$$617$$ −8.91248 35.7460i −0.358803 1.43908i −0.830351 0.557240i $$-0.811860\pi$$
0.471548 0.881840i $$-0.343695\pi$$
$$618$$ −26.2278 22.0078i −1.05504 0.885282i
$$619$$ 0.484470 4.60943i 0.0194725 0.185269i −0.980462 0.196708i $$-0.936975\pi$$
0.999935 + 0.0114398i $$0.00364147\pi$$
$$620$$ −8.12338 3.65093i −0.326243 0.146625i
$$621$$ 2.15335 3.19247i 0.0864108 0.128109i
$$622$$ −16.1750 15.6200i −0.648557 0.626304i
$$623$$ 12.4697 1.75250i 0.499586 0.0702123i
$$624$$ −29.9355 10.8956i −1.19838 0.436174i
$$625$$ 11.2732 22.3140i 0.450929 0.892560i
$$626$$ −23.4404 −0.936867
$$627$$ 7.81901 + 0.270627i 0.312261 + 0.0108078i
$$628$$ −4.93058 + 3.58227i −0.196751 + 0.142948i
$$629$$ 1.07868 4.32634i 0.0430097 0.172502i
$$630$$ −2.21061 + 8.73573i −0.0880730 + 0.348040i
$$631$$ 19.6160 18.9429i 0.780899 0.754106i −0.192973 0.981204i $$-0.561813\pi$$
0.973872 + 0.227098i $$0.0729239\pi$$
$$632$$ 8.48334 + 48.1114i 0.337449 + 1.91377i
$$633$$ −12.2825 3.52196i −0.488187 0.139985i
$$634$$ 19.0710 + 21.1805i 0.757406 + 0.841184i
$$635$$ 32.5570 + 23.8288i 1.29199 + 0.945619i
$$636$$ 6.16952 15.2701i 0.244638 0.605499i
$$637$$ −27.5007 + 17.1844i −1.08962 + 0.680870i
$$638$$ 0.0766704 0.0162968i 0.00303541 0.000645196i
$$639$$ −27.9512 5.94122i −1.10573 0.235031i
$$640$$ 5.30875 + 2.84662i 0.209847 + 0.112523i
$$641$$ 13.7301 + 1.92964i 0.542306 + 0.0762161i 0.405007 0.914314i $$-0.367269\pi$$
0.137299 + 0.990530i $$0.456158\pi$$
$$642$$ 5.83851 5.63819i 0.230428 0.222521i
$$643$$ −19.9914 7.27626i −0.788382 0.286948i −0.0837187 0.996489i $$-0.526680\pi$$
−0.704663 + 0.709542i $$0.748902\pi$$
$$644$$ −5.96749 + 0.417288i −0.235152 + 0.0164434i
$$645$$ 25.5828 + 28.6136i 1.00732 + 1.12666i
$$646$$ 0.557695 8.01098i 0.0219422 0.315188i
$$647$$ 10.5749 7.68309i 0.415741 0.302054i −0.360181 0.932882i $$-0.617285\pi$$
0.775922 + 0.630829i $$0.217285\pi$$
$$648$$ −25.1374 15.7076i −0.987489 0.617052i
$$649$$ −3.25678 1.18537i −0.127840 0.0465299i
$$650$$ −0.963575 34.5322i −0.0377945 1.35446i
$$651$$ 3.12690 + 17.7335i 0.122553 + 0.695031i
$$652$$ −2.74105 3.50838i −0.107348 0.137399i
$$653$$ −0.0454094 0.432041i −0.00177701 0.0169071i 0.993597 0.112978i $$-0.0360390\pi$$
−0.995374 + 0.0960711i $$0.969372\pi$$
$$654$$ 12.7495 + 5.67644i 0.498545 + 0.221966i
$$655$$ −8.86903 + 3.19290i −0.346542 + 0.124757i
$$656$$ −4.28403 17.1823i −0.167263 0.670857i
$$657$$ 3.88351 + 6.72644i 0.151510 + 0.262424i
$$658$$ −0.491699 + 0.218918i −0.0191684 + 0.00853433i
$$659$$ −0.263330 7.54079i −0.0102579 0.293747i −0.993668 0.112353i $$-0.964161\pi$$
0.983410 0.181394i $$-0.0580610\pi$$
$$660$$ 2.58471 0.731358i 0.100610 0.0284681i
$$661$$ −40.1693 + 5.64543i −1.56241 + 0.219582i −0.866731 0.498776i $$-0.833783\pi$$
−0.695674 + 0.718357i $$0.744894\pi$$
$$662$$ −5.51550 + 7.05951i −0.214366 + 0.274376i
$$663$$ 8.61035 + 21.3114i 0.334398 + 0.827665i
$$664$$ 0.0888955 + 0.273592i 0.00344981 + 0.0106174i
$$665$$ −12.0939 + 2.09264i −0.468980 + 0.0811493i
$$666$$ 2.76098 8.49743i 0.106986 0.329269i
$$667$$ −0.644110 + 0.0450406i −0.0249400 + 0.00174398i
$$668$$ 3.76768 + 1.37132i 0.145776 + 0.0530582i
$$669$$ 42.9259 41.4531i 1.65961 1.60267i
$$670$$ 0.524971 13.6603i 0.0202814 0.527742i
$$671$$ 1.47201 2.18235i 0.0568264 0.0842487i
$$672$$ 1.14025 + 10.8487i 0.0439860 + 0.418499i
$$673$$ −30.9704 + 34.3962i −1.19382 + 1.32587i −0.261086 + 0.965316i $$0.584081\pi$$
−0.932737 + 0.360559i $$0.882586\pi$$
$$674$$ 25.0545 + 21.0232i 0.965062 + 0.809783i
$$675$$ 0.489766 2.66809i 0.0188511 0.102695i
$$676$$ 7.65422 + 13.2575i 0.294393 + 0.509904i
$$677$$ 41.7105 + 8.86584i 1.60306 + 0.340742i 0.920700 0.390271i $$-0.127619\pi$$
0.682364 + 0.731013i $$0.260952\pi$$
$$678$$ 19.8469 29.4243i 0.762217 1.13003i
$$679$$ 6.86544 + 6.62988i 0.263471 + 0.254431i
$$680$$ −2.62279 10.6788i −0.100579 0.409512i
$$681$$ −18.3839 27.2552i −0.704471 1.04442i
$$682$$ −3.92799 + 3.29597i −0.150410 + 0.126209i
$$683$$ 10.0847 + 7.32693i 0.385879 + 0.280357i 0.763765 0.645495i $$-0.223349\pi$$
−0.377886 + 0.925852i $$0.623349\pi$$
$$684$$ −1.12391 + 8.01504i −0.0429740 + 0.306463i
$$685$$ 5.53008 + 1.19573i 0.211293 + 0.0456865i
$$686$$ −15.2930 9.55616i −0.583891 0.364856i
$$687$$ 9.72245 12.4442i 0.370935 0.474775i
$$688$$ −13.9607 7.42306i −0.532249 0.283002i
$$689$$ 54.1539 28.7941i 2.06310 1.09697i
$$690$$ 43.5876 5.97011i 1.65935 0.227278i
$$691$$ −9.60516 10.6676i −0.365398 0.405815i 0.532209 0.846613i $$-0.321362\pi$$
−0.897606 + 0.440798i $$0.854696\pi$$
$$692$$ −1.29731 + 12.3431i −0.0493165 + 0.469215i
$$693$$ −1.99891 1.67729i −0.0759323 0.0637148i
$$694$$ −1.66628 6.68307i −0.0632510 0.253686i
$$695$$ 37.4155 + 27.3848i 1.41925 + 1.03876i
$$696$$ 0.0703578 + 0.669410i 0.00266691 + 0.0253739i
$$697$$ −7.14471 + 10.5925i −0.270625 + 0.401218i
$$698$$ 0.138670 0.0737322i 0.00524874 0.00279081i
$$699$$ −10.8126 + 61.3210i −0.408968 + 2.31938i
$$700$$ −3.73453 + 1.95223i −0.141152 + 0.0737873i
$$701$$ −23.6159 + 19.8161i −0.891958 + 0.748442i −0.968602 0.248617i $$-0.920024\pi$$
0.0766436 + 0.997059i $$0.475580\pi$$
$$702$$ −1.15833 3.56497i −0.0437183 0.134551i
$$703$$ 12.1025 1.27581i 0.456455 0.0481180i
$$704$$ −5.18817 + 3.76942i −0.195536 + 0.142066i
$$705$$ −1.76113 + 0.928504i −0.0663278 + 0.0349695i
$$706$$ −17.7480 26.3125i −0.667956 0.990285i
$$707$$ 2.80338 15.8988i 0.105432 0.597935i
$$708$$ 3.27129 6.70714i 0.122943 0.252070i
$$709$$ −0.468907 13.4277i −0.0176102 0.504289i −0.975865 0.218374i $$-0.929925\pi$$
0.958255 0.285915i $$-0.0922975\pi$$
$$710$$ 13.2040 + 23.0562i 0.495536 + 0.865283i
$$711$$ 29.4518 32.7095i 1.10453 1.22670i
$$712$$ −26.1126 + 16.3170i −0.978610 + 0.611504i
$$713$$ 35.8206 22.3832i 1.34149 0.838256i
$$714$$ −3.73015 + 4.14275i −0.139597 + 0.155039i
$$715$$ 9.12439 + 4.10082i 0.341233 + 0.153362i
$$716$$ 0.574939 + 16.4641i 0.0214865 + 0.615292i
$$717$$ 7.70995 15.8077i 0.287933 0.590351i
$$718$$ 2.11455 11.9922i 0.0789144 0.447546i
$$719$$ 11.6867 + 17.3263i 0.435842 + 0.646162i 0.981414 0.191902i $$-0.0614654\pi$$
−0.545572 + 0.838064i $$0.683688\pi$$
$$720$$ −2.33693 13.5306i −0.0870923 0.504254i
$$721$$ −12.5831 + 9.14216i −0.468619 + 0.340472i
$$722$$ 21.0649 6.05436i 0.783955 0.225320i
$$723$$ −12.0374 37.0474i −0.447677 1.37781i
$$724$$ 8.07377 6.77470i 0.300059 0.251780i
$$725$$ −0.403092 + 0.210716i −0.0149704 + 0.00782581i
$$726$$ −5.02626 + 28.5053i −0.186542 + 1.05793i
$$727$$ −27.0082 + 14.3605i −1.00168 + 0.532602i −0.887475 0.460856i $$-0.847542\pi$$
−0.114203 + 0.993457i $$0.536431\pi$$
$$728$$ −12.9864 + 19.2532i −0.481310 + 0.713571i
$$729$$ 2.38268 + 22.6697i 0.0882475 + 0.839619i
$$730$$ 2.25569 6.86039i 0.0834868 0.253914i
$$731$$ 2.75991 + 11.0694i 0.102079 + 0.409416i
$$732$$ 4.34189 + 3.64328i 0.160481 + 0.134659i
$$733$$ −2.12174 + 20.1870i −0.0783682 + 0.745624i 0.882817 + 0.469718i $$0.155644\pi$$
−0.961185 + 0.275906i $$0.911022\pi$$
$$734$$ 8.49240 + 9.43176i 0.313460 + 0.348133i
$$735$$ −25.6387 13.7478i −0.945699 0.507097i
$$736$$ 22.5927 12.0128i 0.832779 0.442796i
$$737$$ 3.49523 + 1.85845i 0.128749 + 0.0684568i
$$738$$ −15.7627 + 20.1753i −0.580232 + 0.742663i
$$739$$ 7.05214 + 4.40667i 0.259417 + 0.162102i 0.653393 0.757019i $$-0.273345\pi$$
−0.393976 + 0.919121i $$0.628901\pi$$
$$740$$ 3.82300 1.68608i 0.140536 0.0619815i
$$741$$ −46.6077 + 41.9918i −1.71218 + 1.54261i
$$742$$ 12.0343 + 8.74346i 0.441795 + 0.320983i
$$743$$ −3.32981 + 2.79404i −0.122159 + 0.102503i −0.701821 0.712354i $$-0.747629\pi$$
0.579662 + 0.814857i $$0.303185\pi$$
$$744$$ −24.6225 36.5044i −0.902705 1.33832i
$$745$$ −15.4679 1.13612i −0.566701 0.0416242i
$$746$$ 4.67073 + 4.51047i 0.171007 + 0.165140i
$$747$$ 0.144931 0.214870i 0.00530277 0.00786167i
$$748$$ 0.780955 + 0.165997i 0.0285545 + 0.00606945i
$$749$$ −1.84357 3.19316i −0.0673626 0.116676i
$$750$$ 26.4535 16.1457i 0.965947 0.589559i
$$751$$ −22.1935 18.6225i −0.809852 0.679546i 0.140720 0.990049i $$-0.455058\pi$$
−0.950572 + 0.310503i $$0.899503\pi$$
$$752$$ 0.548783 0.609486i 0.0200121 0.0222257i
$$753$$ −5.63348 53.5990i −0.205296 1.95326i
$$754$$ −0.351462 + 0.521063i −0.0127995 + 0.0189760i
$$755$$ 1.82849 0.517382i 0.0665456 0.0188295i
$$756$$ −0.328917 + 0.317632i −0.0119626 + 0.0115522i
$$757$$ 23.7811 + 8.65562i 0.864340 + 0.314594i 0.735873 0.677120i $$-0.236772\pi$$
0.128467 + 0.991714i $$0.458994\pi$$
$$758$$ 14.9586 1.04601i 0.543322 0.0379928i
$$759$$ −3.93680 + 12.1162i −0.142897 + 0.439791i
$$760$$ 24.9348 16.7031i 0.904482 0.605884i
$$761$$ −2.12153 6.52941i −0.0769055 0.236691i 0.905212 0.424961i $$-0.139712\pi$$
−0.982117 + 0.188270i $$0.939712\pi$$
$$762$$ 18.7359 + 46.3731i 0.678731 + 1.67992i
$$763$$ 3.90325 4.99593i 0.141307 0.180865i
$$764$$ −12.7068 + 1.78583i −0.459717 + 0.0646089i
$$765$$ −6.12671 + 7.78542i −0.221512 + 0.281483i
$$766$$ 0.472822 + 13.5399i 0.0170838 + 0.489215i
$$767$$ 25.3878 11.3034i 0.916702 0.408142i
$$768$$ −16.8970 29.2665i −0.609718 1.05606i
$$769$$ 11.1030 + 44.5317i 0.400384 + 1.60585i 0.744970 + 0.667098i $$0.232464\pi$$
−0.344586 + 0.938755i $$0.611981\pi$$
$$770$$ 0.0761735 + 2.42499i 0.00274510 + 0.0873906i