Newspace parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.2058981376.2 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2^{6} \) |
Twist minimal: | no (minimal twist has level 95) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} - 2x^{7} + 2x^{6} + 18x^{4} - 34x^{3} + 32x^{2} - 8x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( ( 120\nu^{7} - 143\nu^{6} + 138\nu^{5} + 30\nu^{4} + 2592\nu^{3} - 2311\nu^{2} + 3834\nu - 552 ) / 1631 \)
|
\(\beta_{2}\) | \(=\) |
\( ( -240\nu^{7} + 286\nu^{6} - 276\nu^{5} - 60\nu^{4} - 5184\nu^{3} + 4622\nu^{2} - 1144\nu - 527 ) / 1631 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 388\nu^{7} - 408\nu^{6} + 120\nu^{5} + 97\nu^{4} + 7076\nu^{3} - 6548\nu^{2} + 1632\nu - 480 ) / 1631 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -582\nu^{7} + 612\nu^{6} - 180\nu^{5} - 961\nu^{4} - 10614\nu^{3} + 9822\nu^{2} - 2448\nu - 7435 ) / 1631 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 1104\nu^{7} - 1968\nu^{6} + 1922\nu^{5} + 276\nu^{4} + 19932\nu^{3} - 32352\nu^{2} + 30706\nu - 4426 ) / 1631 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -1104\nu^{7} + 1968\nu^{6} - 1922\nu^{5} - 276\nu^{4} - 19932\nu^{3} + 33983\nu^{2} - 30706\nu + 4426 ) / 1631 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 2168\nu^{7} - 4432\nu^{6} + 3798\nu^{5} + 542\nu^{4} + 39000\nu^{3} - 76438\nu^{2} + 60134\nu - 8668 ) / 1631 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{2} + 2\beta _1 + 1 ) / 4 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{6} + \beta_{5} \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{7} + 2\beta_{6} - \beta_{5} - 2\beta_{3} - 4\beta_{2} + 8\beta _1 - 2 ) / 4 \)
|
\(\nu^{4}\) | \(=\) |
\( -2\beta_{4} - 3\beta_{3} - 10 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -6\beta_{7} - 12\beta_{6} + 4\beta_{5} - 12\beta_{3} - 17\beta_{2} - 34\beta _1 - 9 ) / 4 \)
|
\(\nu^{6}\) | \(=\) |
\( -3\beta_{7} - 23\beta_{6} - 17\beta_{5} - \beta_1 \)
|
\(\nu^{7}\) | \(=\) |
\( ( -29\beta_{7} - 62\beta_{6} + 13\beta_{5} + 2\beta_{4} + 60\beta_{3} + 74\beta_{2} - 148\beta _1 + 50 ) / 4 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).
\(n\) | \(77\) | \(401\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
324.1 |
|
− | 2.63010i | − | 3.04306i | −4.91744 | 0 | −8.00355 | − | 0.574672i | 7.67316i | −6.26020 | 0 | |||||||||||||||||||||||||||||||||||||||
324.2 | − | 2.14243i | 2.87834i | −2.59002 | 0 | 6.16666 | 3.10482i | 1.26409i | −5.28487 | 0 | ||||||||||||||||||||||||||||||||||||||||||
324.3 | − | 1.95594i | 0.296842i | −1.82571 | 0 | 0.580605 | 3.56331i | − | 0.340899i | 2.91188 | 0 | |||||||||||||||||||||||||||||||||||||||||
324.4 | − | 0.816594i | 1.53844i | 1.33317 | 0 | 1.25628 | − | 5.03316i | − | 2.72185i | 0.633188 | 0 | ||||||||||||||||||||||||||||||||||||||||
324.5 | 0.816594i | − | 1.53844i | 1.33317 | 0 | 1.25628 | 5.03316i | 2.72185i | 0.633188 | 0 | ||||||||||||||||||||||||||||||||||||||||||
324.6 | 1.95594i | − | 0.296842i | −1.82571 | 0 | 0.580605 | − | 3.56331i | 0.340899i | 2.91188 | 0 | |||||||||||||||||||||||||||||||||||||||||
324.7 | 2.14243i | − | 2.87834i | −2.59002 | 0 | 6.16666 | − | 3.10482i | − | 1.26409i | −5.28487 | 0 | ||||||||||||||||||||||||||||||||||||||||
324.8 | 2.63010i | 3.04306i | −4.91744 | 0 | −8.00355 | 0.574672i | − | 7.67316i | −6.26020 | 0 | ||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.b.e | 8 | |
5.b | even | 2 | 1 | inner | 475.2.b.e | 8 | |
5.c | odd | 4 | 1 | 95.2.a.b | ✓ | 4 | |
5.c | odd | 4 | 1 | 475.2.a.i | 4 | ||
15.e | even | 4 | 1 | 855.2.a.m | 4 | ||
15.e | even | 4 | 1 | 4275.2.a.bo | 4 | ||
20.e | even | 4 | 1 | 1520.2.a.t | 4 | ||
20.e | even | 4 | 1 | 7600.2.a.cf | 4 | ||
35.f | even | 4 | 1 | 4655.2.a.y | 4 | ||
40.i | odd | 4 | 1 | 6080.2.a.cc | 4 | ||
40.k | even | 4 | 1 | 6080.2.a.ch | 4 | ||
95.g | even | 4 | 1 | 1805.2.a.p | 4 | ||
95.g | even | 4 | 1 | 9025.2.a.bf | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.a.b | ✓ | 4 | 5.c | odd | 4 | 1 | |
475.2.a.i | 4 | 5.c | odd | 4 | 1 | ||
475.2.b.e | 8 | 1.a | even | 1 | 1 | trivial | |
475.2.b.e | 8 | 5.b | even | 2 | 1 | inner | |
855.2.a.m | 4 | 15.e | even | 4 | 1 | ||
1520.2.a.t | 4 | 20.e | even | 4 | 1 | ||
1805.2.a.p | 4 | 95.g | even | 4 | 1 | ||
4275.2.a.bo | 4 | 15.e | even | 4 | 1 | ||
4655.2.a.y | 4 | 35.f | even | 4 | 1 | ||
6080.2.a.cc | 4 | 40.i | odd | 4 | 1 | ||
6080.2.a.ch | 4 | 40.k | even | 4 | 1 | ||
7600.2.a.cf | 4 | 20.e | even | 4 | 1 | ||
9025.2.a.bf | 4 | 95.g | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 16T_{2}^{6} + 86T_{2}^{4} + 172T_{2}^{2} + 81 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 16 T^{6} + 86 T^{4} + 172 T^{2} + \cdots + 81 \)
$3$
\( T^{8} + 20 T^{6} + 120 T^{4} + \cdots + 16 \)
$5$
\( T^{8} \)
$7$
\( T^{8} + 48 T^{6} + 704 T^{4} + \cdots + 1024 \)
$11$
\( (T^{4} - 4 T^{3} - 16 T^{2} + 32 T + 48)^{2} \)
$13$
\( T^{8} + 52 T^{6} + 744 T^{4} + \cdots + 400 \)
$17$
\( T^{8} + 80 T^{6} + 1248 T^{4} + \cdots + 2304 \)
$19$
\( (T + 1)^{8} \)
$23$
\( T^{8} + 112 T^{6} + 3968 T^{4} + \cdots + 82944 \)
$29$
\( (T^{4} + 4 T^{3} - 32 T^{2} - 16 T + 48)^{2} \)
$31$
\( (T^{4} - 4 T^{3} - 80 T^{2} + 512 T - 640)^{2} \)
$37$
\( T^{8} + 84 T^{6} + 1064 T^{4} + \cdots + 16 \)
$41$
\( (T^{4} - 16 T^{3} + 56 T^{2} + 32 T - 240)^{2} \)
$43$
\( T^{8} + 48 T^{6} + 704 T^{4} + \cdots + 1024 \)
$47$
\( T^{8} + 272 T^{6} + 21952 T^{4} + \cdots + 1115136 \)
$53$
\( T^{8} + 100 T^{6} + 2984 T^{4} + \cdots + 121104 \)
$59$
\( (T^{4} - 64 T^{2} + 224 T - 192)^{2} \)
$61$
\( (T^{4} - 20 T^{3} + 56 T^{2} + 688 T - 2656)^{2} \)
$67$
\( T^{8} + 308 T^{6} + 15480 T^{4} + \cdots + 1157776 \)
$71$
\( (T^{4} + 20 T^{3} + 32 T^{2} - 1024 T - 4224)^{2} \)
$73$
\( T^{8} + 272 T^{6} + 21984 T^{4} + \cdots + 30976 \)
$79$
\( (T^{4} - 16 T^{3} + 32 T^{2} + 480 T - 1856)^{2} \)
$83$
\( T^{8} + 144 T^{6} + 6144 T^{4} + \cdots + 230400 \)
$89$
\( (T^{4} + 4 T^{3} - 144 T^{2} + 176 T + 240)^{2} \)
$97$
\( T^{8} + 452 T^{6} + 46920 T^{4} + \cdots + 1926544 \)
show more
show less