Properties

Label 475.2.b.c.324.4
Level $475$
Weight $2$
Character 475.324
Analytic conductor $3.793$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(324,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.4
Root \(0.445042i\) of defining polynomial
Character \(\chi\) \(=\) 475.324
Dual form 475.2.b.c.324.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.246980i q^{2} -0.801938i q^{3} +1.93900 q^{4} +0.198062 q^{6} -1.69202i q^{7} +0.972853i q^{8} +2.35690 q^{9} +O(q^{10})\) \(q+0.246980i q^{2} -0.801938i q^{3} +1.93900 q^{4} +0.198062 q^{6} -1.69202i q^{7} +0.972853i q^{8} +2.35690 q^{9} -0.911854 q^{11} -1.55496i q^{12} +1.55496i q^{13} +0.417895 q^{14} +3.63773 q^{16} -5.29590i q^{17} +0.582105i q^{18} +1.00000 q^{19} -1.35690 q^{21} -0.225209i q^{22} +4.24698i q^{23} +0.780167 q^{24} -0.384043 q^{26} -4.29590i q^{27} -3.28083i q^{28} -5.00969 q^{29} +1.82908 q^{31} +2.84415i q^{32} +0.731250i q^{33} +1.30798 q^{34} +4.57002 q^{36} -6.29590i q^{37} +0.246980i q^{38} +1.24698 q^{39} +4.18060 q^{41} -0.335126i q^{42} +7.31767i q^{43} -1.76809 q^{44} -1.04892 q^{46} +2.04892i q^{47} -2.91723i q^{48} +4.13706 q^{49} -4.24698 q^{51} +3.01507i q^{52} -2.70171i q^{53} +1.06100 q^{54} +1.64609 q^{56} -0.801938i q^{57} -1.23729i q^{58} -9.87800 q^{59} +0.542877 q^{61} +0.451747i q^{62} -3.98792i q^{63} +6.57301 q^{64} -0.180604 q^{66} +13.9976i q^{67} -10.2687i q^{68} +3.40581 q^{69} -12.8780 q^{71} +2.29291i q^{72} -2.80731i q^{73} +1.55496 q^{74} +1.93900 q^{76} +1.54288i q^{77} +0.307979i q^{78} -1.59419 q^{79} +3.62565 q^{81} +1.03252i q^{82} +12.2349i q^{83} -2.63102 q^{84} -1.80731 q^{86} +4.01746i q^{87} -0.887100i q^{88} -2.91723 q^{89} +2.63102 q^{91} +8.23490i q^{92} -1.46681i q^{93} -0.506041 q^{94} +2.28083 q^{96} -1.55496i q^{97} +1.02177i q^{98} -2.14914 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{4} + 10 q^{6} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{4} + 10 q^{6} + 6 q^{9} + 2 q^{11} + 14 q^{14} + 36 q^{16} + 6 q^{19} + 2 q^{24} + 18 q^{26} + 14 q^{29} - 10 q^{31} + 18 q^{34} - 22 q^{36} - 2 q^{39} + 2 q^{41} + 30 q^{44} + 12 q^{46} + 14 q^{49} - 16 q^{51} + 26 q^{54} - 70 q^{56} - 20 q^{59} - 34 q^{61} - 98 q^{64} + 22 q^{66} - 6 q^{69} - 38 q^{71} + 10 q^{74} - 8 q^{76} - 36 q^{79} - 2 q^{81} + 14 q^{84} + 4 q^{86} - 4 q^{89} - 14 q^{91} - 22 q^{94} + 36 q^{96} - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.246980i 0.174641i 0.996180 + 0.0873205i \(0.0278304\pi\)
−0.996180 + 0.0873205i \(0.972170\pi\)
\(3\) − 0.801938i − 0.462999i −0.972835 0.231499i \(-0.925637\pi\)
0.972835 0.231499i \(-0.0743632\pi\)
\(4\) 1.93900 0.969501
\(5\) 0 0
\(6\) 0.198062 0.0808586
\(7\) − 1.69202i − 0.639524i −0.947498 0.319762i \(-0.896397\pi\)
0.947498 0.319762i \(-0.103603\pi\)
\(8\) 0.972853i 0.343955i
\(9\) 2.35690 0.785632
\(10\) 0 0
\(11\) −0.911854 −0.274934 −0.137467 0.990506i \(-0.543896\pi\)
−0.137467 + 0.990506i \(0.543896\pi\)
\(12\) − 1.55496i − 0.448878i
\(13\) 1.55496i 0.431268i 0.976474 + 0.215634i \(0.0691818\pi\)
−0.976474 + 0.215634i \(0.930818\pi\)
\(14\) 0.417895 0.111687
\(15\) 0 0
\(16\) 3.63773 0.909432
\(17\) − 5.29590i − 1.28444i −0.766519 0.642222i \(-0.778013\pi\)
0.766519 0.642222i \(-0.221987\pi\)
\(18\) 0.582105i 0.137204i
\(19\) 1.00000 0.229416
\(20\) 0 0
\(21\) −1.35690 −0.296099
\(22\) − 0.225209i − 0.0480148i
\(23\) 4.24698i 0.885556i 0.896631 + 0.442778i \(0.146007\pi\)
−0.896631 + 0.442778i \(0.853993\pi\)
\(24\) 0.780167 0.159251
\(25\) 0 0
\(26\) −0.384043 −0.0753170
\(27\) − 4.29590i − 0.826746i
\(28\) − 3.28083i − 0.620019i
\(29\) −5.00969 −0.930276 −0.465138 0.885238i \(-0.653995\pi\)
−0.465138 + 0.885238i \(0.653995\pi\)
\(30\) 0 0
\(31\) 1.82908 0.328513 0.164257 0.986418i \(-0.447477\pi\)
0.164257 + 0.986418i \(0.447477\pi\)
\(32\) 2.84415i 0.502779i
\(33\) 0.731250i 0.127294i
\(34\) 1.30798 0.224316
\(35\) 0 0
\(36\) 4.57002 0.761671
\(37\) − 6.29590i − 1.03504i −0.855671 0.517520i \(-0.826855\pi\)
0.855671 0.517520i \(-0.173145\pi\)
\(38\) 0.246980i 0.0400654i
\(39\) 1.24698 0.199677
\(40\) 0 0
\(41\) 4.18060 0.652901 0.326450 0.945214i \(-0.394147\pi\)
0.326450 + 0.945214i \(0.394147\pi\)
\(42\) − 0.335126i − 0.0517110i
\(43\) 7.31767i 1.11593i 0.829863 + 0.557967i \(0.188418\pi\)
−0.829863 + 0.557967i \(0.811582\pi\)
\(44\) −1.76809 −0.266549
\(45\) 0 0
\(46\) −1.04892 −0.154654
\(47\) 2.04892i 0.298865i 0.988772 + 0.149433i \(0.0477447\pi\)
−0.988772 + 0.149433i \(0.952255\pi\)
\(48\) − 2.91723i − 0.421066i
\(49\) 4.13706 0.591009
\(50\) 0 0
\(51\) −4.24698 −0.594696
\(52\) 3.01507i 0.418114i
\(53\) − 2.70171i − 0.371108i −0.982634 0.185554i \(-0.940592\pi\)
0.982634 0.185554i \(-0.0594080\pi\)
\(54\) 1.06100 0.144384
\(55\) 0 0
\(56\) 1.64609 0.219968
\(57\) − 0.801938i − 0.106219i
\(58\) − 1.23729i − 0.162464i
\(59\) −9.87800 −1.28601 −0.643003 0.765864i \(-0.722312\pi\)
−0.643003 + 0.765864i \(0.722312\pi\)
\(60\) 0 0
\(61\) 0.542877 0.0695082 0.0347541 0.999396i \(-0.488935\pi\)
0.0347541 + 0.999396i \(0.488935\pi\)
\(62\) 0.451747i 0.0573719i
\(63\) − 3.98792i − 0.502430i
\(64\) 6.57301 0.821626
\(65\) 0 0
\(66\) −0.180604 −0.0222308
\(67\) 13.9976i 1.71008i 0.518562 + 0.855040i \(0.326467\pi\)
−0.518562 + 0.855040i \(0.673533\pi\)
\(68\) − 10.2687i − 1.24527i
\(69\) 3.40581 0.410012
\(70\) 0 0
\(71\) −12.8780 −1.52834 −0.764169 0.645016i \(-0.776851\pi\)
−0.764169 + 0.645016i \(0.776851\pi\)
\(72\) 2.29291i 0.270222i
\(73\) − 2.80731i − 0.328571i −0.986413 0.164286i \(-0.947468\pi\)
0.986413 0.164286i \(-0.0525319\pi\)
\(74\) 1.55496 0.180760
\(75\) 0 0
\(76\) 1.93900 0.222419
\(77\) 1.54288i 0.175827i
\(78\) 0.307979i 0.0348717i
\(79\) −1.59419 −0.179360 −0.0896800 0.995971i \(-0.528584\pi\)
−0.0896800 + 0.995971i \(0.528584\pi\)
\(80\) 0 0
\(81\) 3.62565 0.402850
\(82\) 1.03252i 0.114023i
\(83\) 12.2349i 1.34295i 0.741025 + 0.671477i \(0.234340\pi\)
−0.741025 + 0.671477i \(0.765660\pi\)
\(84\) −2.63102 −0.287068
\(85\) 0 0
\(86\) −1.80731 −0.194888
\(87\) 4.01746i 0.430717i
\(88\) − 0.887100i − 0.0945652i
\(89\) −2.91723 −0.309226 −0.154613 0.987975i \(-0.549413\pi\)
−0.154613 + 0.987975i \(0.549413\pi\)
\(90\) 0 0
\(91\) 2.63102 0.275806
\(92\) 8.23490i 0.858547i
\(93\) − 1.46681i − 0.152101i
\(94\) −0.506041 −0.0521941
\(95\) 0 0
\(96\) 2.28083 0.232786
\(97\) − 1.55496i − 0.157882i −0.996879 0.0789410i \(-0.974846\pi\)
0.996879 0.0789410i \(-0.0251539\pi\)
\(98\) 1.02177i 0.103214i
\(99\) −2.14914 −0.215997
\(100\) 0 0
\(101\) −16.6015 −1.65191 −0.825955 0.563737i \(-0.809363\pi\)
−0.825955 + 0.563737i \(0.809363\pi\)
\(102\) − 1.04892i − 0.103858i
\(103\) − 4.84548i − 0.477439i −0.971089 0.238720i \(-0.923272\pi\)
0.971089 0.238720i \(-0.0767277\pi\)
\(104\) −1.51275 −0.148337
\(105\) 0 0
\(106\) 0.667267 0.0648107
\(107\) 4.46681i 0.431823i 0.976413 + 0.215912i \(0.0692723\pi\)
−0.976413 + 0.215912i \(0.930728\pi\)
\(108\) − 8.32975i − 0.801530i
\(109\) −18.8267 −1.80327 −0.901635 0.432498i \(-0.857632\pi\)
−0.901635 + 0.432498i \(0.857632\pi\)
\(110\) 0 0
\(111\) −5.04892 −0.479222
\(112\) − 6.15511i − 0.581603i
\(113\) 20.0368i 1.88491i 0.334337 + 0.942453i \(0.391488\pi\)
−0.334337 + 0.942453i \(0.608512\pi\)
\(114\) 0.198062 0.0185502
\(115\) 0 0
\(116\) −9.71379 −0.901903
\(117\) 3.66487i 0.338818i
\(118\) − 2.43967i − 0.224589i
\(119\) −8.96077 −0.821433
\(120\) 0 0
\(121\) −10.1685 −0.924411
\(122\) 0.134079i 0.0121390i
\(123\) − 3.35258i − 0.302292i
\(124\) 3.54660 0.318494
\(125\) 0 0
\(126\) 0.984935 0.0877449
\(127\) 17.8702i 1.58573i 0.609399 + 0.792863i \(0.291411\pi\)
−0.609399 + 0.792863i \(0.708589\pi\)
\(128\) 7.31170i 0.646269i
\(129\) 5.86831 0.516676
\(130\) 0 0
\(131\) 7.44265 0.650267 0.325134 0.945668i \(-0.394591\pi\)
0.325134 + 0.945668i \(0.394591\pi\)
\(132\) 1.41789i 0.123412i
\(133\) − 1.69202i − 0.146717i
\(134\) −3.45712 −0.298650
\(135\) 0 0
\(136\) 5.15213 0.441791
\(137\) − 5.68664i − 0.485843i −0.970046 0.242921i \(-0.921894\pi\)
0.970046 0.242921i \(-0.0781057\pi\)
\(138\) 0.841166i 0.0716048i
\(139\) −3.61596 −0.306701 −0.153351 0.988172i \(-0.549006\pi\)
−0.153351 + 0.988172i \(0.549006\pi\)
\(140\) 0 0
\(141\) 1.64310 0.138374
\(142\) − 3.18060i − 0.266910i
\(143\) − 1.41789i − 0.118570i
\(144\) 8.57374 0.714479
\(145\) 0 0
\(146\) 0.693349 0.0573820
\(147\) − 3.31767i − 0.273637i
\(148\) − 12.2078i − 1.00347i
\(149\) −3.29052 −0.269570 −0.134785 0.990875i \(-0.543034\pi\)
−0.134785 + 0.990875i \(0.543034\pi\)
\(150\) 0 0
\(151\) −10.2131 −0.831133 −0.415566 0.909563i \(-0.636417\pi\)
−0.415566 + 0.909563i \(0.636417\pi\)
\(152\) 0.972853i 0.0789088i
\(153\) − 12.4819i − 1.00910i
\(154\) −0.381059 −0.0307066
\(155\) 0 0
\(156\) 2.41789 0.193587
\(157\) − 14.3448i − 1.14484i −0.819960 0.572420i \(-0.806005\pi\)
0.819960 0.572420i \(-0.193995\pi\)
\(158\) − 0.393732i − 0.0313236i
\(159\) −2.16660 −0.171823
\(160\) 0 0
\(161\) 7.18598 0.566335
\(162\) 0.895461i 0.0703540i
\(163\) − 19.5308i − 1.52977i −0.644167 0.764885i \(-0.722796\pi\)
0.644167 0.764885i \(-0.277204\pi\)
\(164\) 8.10620 0.632988
\(165\) 0 0
\(166\) −3.02177 −0.234535
\(167\) − 11.8823i − 0.919481i −0.888053 0.459741i \(-0.847942\pi\)
0.888053 0.459741i \(-0.152058\pi\)
\(168\) − 1.32006i − 0.101845i
\(169\) 10.5821 0.814008
\(170\) 0 0
\(171\) 2.35690 0.180236
\(172\) 14.1890i 1.08190i
\(173\) 15.4722i 1.17633i 0.808741 + 0.588164i \(0.200149\pi\)
−0.808741 + 0.588164i \(0.799851\pi\)
\(174\) −0.992230 −0.0752208
\(175\) 0 0
\(176\) −3.31708 −0.250034
\(177\) 7.92154i 0.595420i
\(178\) − 0.720497i − 0.0540035i
\(179\) −2.16421 −0.161761 −0.0808803 0.996724i \(-0.525773\pi\)
−0.0808803 + 0.996724i \(0.525773\pi\)
\(180\) 0 0
\(181\) 16.8974 1.25597 0.627986 0.778225i \(-0.283879\pi\)
0.627986 + 0.778225i \(0.283879\pi\)
\(182\) 0.649809i 0.0481670i
\(183\) − 0.435353i − 0.0321822i
\(184\) −4.13169 −0.304592
\(185\) 0 0
\(186\) 0.362273 0.0265631
\(187\) 4.82908i 0.353138i
\(188\) 3.97285i 0.289750i
\(189\) −7.26875 −0.528724
\(190\) 0 0
\(191\) 5.92394 0.428641 0.214320 0.976763i \(-0.431246\pi\)
0.214320 + 0.976763i \(0.431246\pi\)
\(192\) − 5.27114i − 0.380412i
\(193\) − 4.43535i − 0.319264i −0.987177 0.159632i \(-0.948969\pi\)
0.987177 0.159632i \(-0.0510307\pi\)
\(194\) 0.384043 0.0275727
\(195\) 0 0
\(196\) 8.02177 0.572984
\(197\) − 16.4722i − 1.17359i −0.809734 0.586797i \(-0.800388\pi\)
0.809734 0.586797i \(-0.199612\pi\)
\(198\) − 0.530795i − 0.0377220i
\(199\) 24.4131 1.73060 0.865300 0.501255i \(-0.167128\pi\)
0.865300 + 0.501255i \(0.167128\pi\)
\(200\) 0 0
\(201\) 11.2252 0.791765
\(202\) − 4.10023i − 0.288491i
\(203\) 8.47650i 0.594934i
\(204\) −8.23490 −0.576558
\(205\) 0 0
\(206\) 1.19673 0.0833804
\(207\) 10.0097i 0.695721i
\(208\) 5.65651i 0.392209i
\(209\) −0.911854 −0.0630743
\(210\) 0 0
\(211\) −4.34050 −0.298813 −0.149406 0.988776i \(-0.547736\pi\)
−0.149406 + 0.988776i \(0.547736\pi\)
\(212\) − 5.23862i − 0.359790i
\(213\) 10.3274i 0.707619i
\(214\) −1.10321 −0.0754140
\(215\) 0 0
\(216\) 4.17928 0.284364
\(217\) − 3.09485i − 0.210092i
\(218\) − 4.64981i − 0.314925i
\(219\) −2.25129 −0.152128
\(220\) 0 0
\(221\) 8.23490 0.553939
\(222\) − 1.24698i − 0.0836918i
\(223\) 26.2379i 1.75702i 0.477725 + 0.878509i \(0.341461\pi\)
−0.477725 + 0.878509i \(0.658539\pi\)
\(224\) 4.81236 0.321540
\(225\) 0 0
\(226\) −4.94869 −0.329182
\(227\) − 14.6853i − 0.974699i −0.873207 0.487349i \(-0.837964\pi\)
0.873207 0.487349i \(-0.162036\pi\)
\(228\) − 1.55496i − 0.102980i
\(229\) 21.6407 1.43006 0.715029 0.699095i \(-0.246413\pi\)
0.715029 + 0.699095i \(0.246413\pi\)
\(230\) 0 0
\(231\) 1.23729 0.0814078
\(232\) − 4.87369i − 0.319973i
\(233\) 27.1183i 1.77658i 0.459286 + 0.888289i \(0.348105\pi\)
−0.459286 + 0.888289i \(0.651895\pi\)
\(234\) −0.905149 −0.0591715
\(235\) 0 0
\(236\) −19.1535 −1.24678
\(237\) 1.27844i 0.0830435i
\(238\) − 2.21313i − 0.143456i
\(239\) 11.5308 0.745865 0.372933 0.927858i \(-0.378352\pi\)
0.372933 + 0.927858i \(0.378352\pi\)
\(240\) 0 0
\(241\) 11.8194 0.761354 0.380677 0.924708i \(-0.375691\pi\)
0.380677 + 0.924708i \(0.375691\pi\)
\(242\) − 2.51142i − 0.161440i
\(243\) − 15.7952i − 1.01326i
\(244\) 1.05264 0.0673883
\(245\) 0 0
\(246\) 0.828020 0.0527926
\(247\) 1.55496i 0.0989396i
\(248\) 1.77943i 0.112994i
\(249\) 9.81163 0.621787
\(250\) 0 0
\(251\) −9.66487 −0.610041 −0.305021 0.952346i \(-0.598663\pi\)
−0.305021 + 0.952346i \(0.598663\pi\)
\(252\) − 7.73258i − 0.487107i
\(253\) − 3.87263i − 0.243470i
\(254\) −4.41358 −0.276933
\(255\) 0 0
\(256\) 11.3402 0.708761
\(257\) − 14.1860i − 0.884897i −0.896794 0.442449i \(-0.854110\pi\)
0.896794 0.442449i \(-0.145890\pi\)
\(258\) 1.44935i 0.0902328i
\(259\) −10.6528 −0.661932
\(260\) 0 0
\(261\) −11.8073 −0.730854
\(262\) 1.83818i 0.113563i
\(263\) − 21.7942i − 1.34389i −0.740603 0.671943i \(-0.765460\pi\)
0.740603 0.671943i \(-0.234540\pi\)
\(264\) −0.711399 −0.0437836
\(265\) 0 0
\(266\) 0.417895 0.0256228
\(267\) 2.33944i 0.143171i
\(268\) 27.1414i 1.65792i
\(269\) 24.7265 1.50760 0.753800 0.657104i \(-0.228219\pi\)
0.753800 + 0.657104i \(0.228219\pi\)
\(270\) 0 0
\(271\) −13.2295 −0.803636 −0.401818 0.915720i \(-0.631622\pi\)
−0.401818 + 0.915720i \(0.631622\pi\)
\(272\) − 19.2650i − 1.16811i
\(273\) − 2.10992i − 0.127698i
\(274\) 1.40449 0.0848481
\(275\) 0 0
\(276\) 6.60388 0.397507
\(277\) 0.560335i 0.0336673i 0.999858 + 0.0168336i \(0.00535856\pi\)
−0.999858 + 0.0168336i \(0.994641\pi\)
\(278\) − 0.893068i − 0.0535626i
\(279\) 4.31096 0.258091
\(280\) 0 0
\(281\) 27.6039 1.64671 0.823355 0.567527i \(-0.192100\pi\)
0.823355 + 0.567527i \(0.192100\pi\)
\(282\) 0.405813i 0.0241658i
\(283\) − 15.9608i − 0.948769i −0.880318 0.474385i \(-0.842671\pi\)
0.880318 0.474385i \(-0.157329\pi\)
\(284\) −24.9705 −1.48172
\(285\) 0 0
\(286\) 0.350191 0.0207072
\(287\) − 7.07367i − 0.417546i
\(288\) 6.70337i 0.395000i
\(289\) −11.0465 −0.649796
\(290\) 0 0
\(291\) −1.24698 −0.0730992
\(292\) − 5.44339i − 0.318550i
\(293\) 25.3327i 1.47995i 0.672632 + 0.739977i \(0.265164\pi\)
−0.672632 + 0.739977i \(0.734836\pi\)
\(294\) 0.819396 0.0477882
\(295\) 0 0
\(296\) 6.12498 0.356007
\(297\) 3.91723i 0.227301i
\(298\) − 0.812691i − 0.0470779i
\(299\) −6.60388 −0.381912
\(300\) 0 0
\(301\) 12.3817 0.713666
\(302\) − 2.52243i − 0.145150i
\(303\) 13.3134i 0.764832i
\(304\) 3.63773 0.208638
\(305\) 0 0
\(306\) 3.08277 0.176230
\(307\) 11.5574i 0.659613i 0.944049 + 0.329806i \(0.106983\pi\)
−0.944049 + 0.329806i \(0.893017\pi\)
\(308\) 2.99164i 0.170464i
\(309\) −3.88577 −0.221054
\(310\) 0 0
\(311\) −18.3424 −1.04010 −0.520052 0.854135i \(-0.674087\pi\)
−0.520052 + 0.854135i \(0.674087\pi\)
\(312\) 1.21313i 0.0686798i
\(313\) − 18.9119i − 1.06896i −0.845181 0.534481i \(-0.820507\pi\)
0.845181 0.534481i \(-0.179493\pi\)
\(314\) 3.54288 0.199936
\(315\) 0 0
\(316\) −3.09113 −0.173890
\(317\) − 20.2784i − 1.13895i −0.822008 0.569475i \(-0.807146\pi\)
0.822008 0.569475i \(-0.192854\pi\)
\(318\) − 0.535107i − 0.0300073i
\(319\) 4.56810 0.255765
\(320\) 0 0
\(321\) 3.58211 0.199934
\(322\) 1.77479i 0.0989052i
\(323\) − 5.29590i − 0.294672i
\(324\) 7.03013 0.390563
\(325\) 0 0
\(326\) 4.82371 0.267160
\(327\) 15.0978i 0.834912i
\(328\) 4.06711i 0.224569i
\(329\) 3.46681 0.191132
\(330\) 0 0
\(331\) −4.77479 −0.262446 −0.131223 0.991353i \(-0.541890\pi\)
−0.131223 + 0.991353i \(0.541890\pi\)
\(332\) 23.7235i 1.30200i
\(333\) − 14.8388i − 0.813160i
\(334\) 2.93469 0.160579
\(335\) 0 0
\(336\) −4.93602 −0.269282
\(337\) − 24.3967i − 1.32897i −0.747300 0.664487i \(-0.768650\pi\)
0.747300 0.664487i \(-0.231350\pi\)
\(338\) 2.61356i 0.142159i
\(339\) 16.0683 0.872710
\(340\) 0 0
\(341\) −1.66786 −0.0903196
\(342\) 0.582105i 0.0314766i
\(343\) − 18.8442i − 1.01749i
\(344\) −7.11901 −0.383832
\(345\) 0 0
\(346\) −3.82132 −0.205435
\(347\) 9.99761i 0.536700i 0.963322 + 0.268350i \(0.0864783\pi\)
−0.963322 + 0.268350i \(0.913522\pi\)
\(348\) 7.78986i 0.417580i
\(349\) −21.9584 −1.17541 −0.587703 0.809077i \(-0.699967\pi\)
−0.587703 + 0.809077i \(0.699967\pi\)
\(350\) 0 0
\(351\) 6.67994 0.356549
\(352\) − 2.59345i − 0.138231i
\(353\) − 36.8786i − 1.96285i −0.191848 0.981425i \(-0.561448\pi\)
0.191848 0.981425i \(-0.438552\pi\)
\(354\) −1.95646 −0.103985
\(355\) 0 0
\(356\) −5.65651 −0.299795
\(357\) 7.18598i 0.380322i
\(358\) − 0.534516i − 0.0282500i
\(359\) −16.5187 −0.871824 −0.435912 0.899989i \(-0.643574\pi\)
−0.435912 + 0.899989i \(0.643574\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 4.17331i 0.219344i
\(363\) 8.15452i 0.428001i
\(364\) 5.10156 0.267394
\(365\) 0 0
\(366\) 0.107523 0.00562034
\(367\) 6.83148i 0.356600i 0.983976 + 0.178300i \(0.0570598\pi\)
−0.983976 + 0.178300i \(0.942940\pi\)
\(368\) 15.4494i 0.805353i
\(369\) 9.85325 0.512940
\(370\) 0 0
\(371\) −4.57135 −0.237333
\(372\) − 2.84415i − 0.147462i
\(373\) − 4.76271i − 0.246604i −0.992369 0.123302i \(-0.960652\pi\)
0.992369 0.123302i \(-0.0393483\pi\)
\(374\) −1.19269 −0.0616723
\(375\) 0 0
\(376\) −1.99330 −0.102796
\(377\) − 7.78986i − 0.401198i
\(378\) − 1.79523i − 0.0923368i
\(379\) −14.3773 −0.738514 −0.369257 0.929327i \(-0.620388\pi\)
−0.369257 + 0.929327i \(0.620388\pi\)
\(380\) 0 0
\(381\) 14.3308 0.734190
\(382\) 1.46309i 0.0748583i
\(383\) − 30.6708i − 1.56721i −0.621261 0.783603i \(-0.713379\pi\)
0.621261 0.783603i \(-0.286621\pi\)
\(384\) 5.86353 0.299222
\(385\) 0 0
\(386\) 1.09544 0.0557565
\(387\) 17.2470i 0.876713i
\(388\) − 3.01507i − 0.153067i
\(389\) 12.9215 0.655148 0.327574 0.944825i \(-0.393769\pi\)
0.327574 + 0.944825i \(0.393769\pi\)
\(390\) 0 0
\(391\) 22.4916 1.13745
\(392\) 4.02475i 0.203281i
\(393\) − 5.96854i − 0.301073i
\(394\) 4.06829 0.204958
\(395\) 0 0
\(396\) −4.16719 −0.209409
\(397\) 29.8471i 1.49798i 0.662579 + 0.748992i \(0.269462\pi\)
−0.662579 + 0.748992i \(0.730538\pi\)
\(398\) 6.02954i 0.302234i
\(399\) −1.35690 −0.0679298
\(400\) 0 0
\(401\) −28.7101 −1.43371 −0.716856 0.697221i \(-0.754420\pi\)
−0.716856 + 0.697221i \(0.754420\pi\)
\(402\) 2.77240i 0.138275i
\(403\) 2.84415i 0.141677i
\(404\) −32.1903 −1.60153
\(405\) 0 0
\(406\) −2.09352 −0.103900
\(407\) 5.74094i 0.284568i
\(408\) − 4.13169i − 0.204549i
\(409\) 13.6203 0.673479 0.336739 0.941598i \(-0.390676\pi\)
0.336739 + 0.941598i \(0.390676\pi\)
\(410\) 0 0
\(411\) −4.56033 −0.224945
\(412\) − 9.39539i − 0.462878i
\(413\) 16.7138i 0.822432i
\(414\) −2.47219 −0.121501
\(415\) 0 0
\(416\) −4.42253 −0.216833
\(417\) 2.89977i 0.142002i
\(418\) − 0.225209i − 0.0110153i
\(419\) 2.13946 0.104519 0.0522596 0.998634i \(-0.483358\pi\)
0.0522596 + 0.998634i \(0.483358\pi\)
\(420\) 0 0
\(421\) −15.0562 −0.733795 −0.366897 0.930261i \(-0.619580\pi\)
−0.366897 + 0.930261i \(0.619580\pi\)
\(422\) − 1.07202i − 0.0521849i
\(423\) 4.82908i 0.234798i
\(424\) 2.62837 0.127645
\(425\) 0 0
\(426\) −2.55065 −0.123579
\(427\) − 0.918559i − 0.0444522i
\(428\) 8.66115i 0.418653i
\(429\) −1.13706 −0.0548979
\(430\) 0 0
\(431\) 4.37435 0.210705 0.105353 0.994435i \(-0.466403\pi\)
0.105353 + 0.994435i \(0.466403\pi\)
\(432\) − 15.6273i − 0.751869i
\(433\) − 33.1564i − 1.59340i −0.604377 0.796698i \(-0.706578\pi\)
0.604377 0.796698i \(-0.293422\pi\)
\(434\) 0.764365 0.0366907
\(435\) 0 0
\(436\) −36.5050 −1.74827
\(437\) 4.24698i 0.203161i
\(438\) − 0.556023i − 0.0265678i
\(439\) −32.2368 −1.53858 −0.769290 0.638900i \(-0.779390\pi\)
−0.769290 + 0.638900i \(0.779390\pi\)
\(440\) 0 0
\(441\) 9.75063 0.464316
\(442\) 2.03385i 0.0967405i
\(443\) 21.7362i 1.03272i 0.856373 + 0.516358i \(0.172713\pi\)
−0.856373 + 0.516358i \(0.827287\pi\)
\(444\) −9.78986 −0.464606
\(445\) 0 0
\(446\) −6.48022 −0.306847
\(447\) 2.63879i 0.124811i
\(448\) − 11.1217i − 0.525450i
\(449\) 24.9584 1.17786 0.588929 0.808185i \(-0.299550\pi\)
0.588929 + 0.808185i \(0.299550\pi\)
\(450\) 0 0
\(451\) −3.81210 −0.179505
\(452\) 38.8514i 1.82742i
\(453\) 8.19029i 0.384814i
\(454\) 3.62697 0.170222
\(455\) 0 0
\(456\) 0.780167 0.0365347
\(457\) − 13.1347i − 0.614414i −0.951643 0.307207i \(-0.900606\pi\)
0.951643 0.307207i \(-0.0993944\pi\)
\(458\) 5.34481i 0.249747i
\(459\) −22.7506 −1.06191
\(460\) 0 0
\(461\) −35.3726 −1.64746 −0.823732 0.566979i \(-0.808112\pi\)
−0.823732 + 0.566979i \(0.808112\pi\)
\(462\) 0.305586i 0.0142171i
\(463\) 14.6963i 0.682997i 0.939882 + 0.341498i \(0.110934\pi\)
−0.939882 + 0.341498i \(0.889066\pi\)
\(464\) −18.2239 −0.846022
\(465\) 0 0
\(466\) −6.69766 −0.310263
\(467\) 33.2121i 1.53687i 0.639927 + 0.768435i \(0.278964\pi\)
−0.639927 + 0.768435i \(0.721036\pi\)
\(468\) 7.10620i 0.328484i
\(469\) 23.6843 1.09364
\(470\) 0 0
\(471\) −11.5036 −0.530060
\(472\) − 9.60984i − 0.442329i
\(473\) − 6.67264i − 0.306809i
\(474\) −0.315748 −0.0145028
\(475\) 0 0
\(476\) −17.3749 −0.796379
\(477\) − 6.36765i − 0.291555i
\(478\) 2.84787i 0.130259i
\(479\) −24.6219 −1.12500 −0.562502 0.826796i \(-0.690161\pi\)
−0.562502 + 0.826796i \(0.690161\pi\)
\(480\) 0 0
\(481\) 9.78986 0.446379
\(482\) 2.91915i 0.132964i
\(483\) − 5.76271i − 0.262212i
\(484\) −19.7168 −0.896217
\(485\) 0 0
\(486\) 3.90110 0.176958
\(487\) 29.5646i 1.33970i 0.742496 + 0.669851i \(0.233642\pi\)
−0.742496 + 0.669851i \(0.766358\pi\)
\(488\) 0.528139i 0.0239077i
\(489\) −15.6625 −0.708282
\(490\) 0 0
\(491\) 36.2978 1.63810 0.819049 0.573724i \(-0.194502\pi\)
0.819049 + 0.573724i \(0.194502\pi\)
\(492\) − 6.50066i − 0.293073i
\(493\) 26.5308i 1.19489i
\(494\) −0.384043 −0.0172789
\(495\) 0 0
\(496\) 6.65371 0.298760
\(497\) 21.7899i 0.977409i
\(498\) 2.42327i 0.108589i
\(499\) −7.84415 −0.351152 −0.175576 0.984466i \(-0.556179\pi\)
−0.175576 + 0.984466i \(0.556179\pi\)
\(500\) 0 0
\(501\) −9.52888 −0.425719
\(502\) − 2.38703i − 0.106538i
\(503\) − 20.4166i − 0.910330i −0.890407 0.455165i \(-0.849580\pi\)
0.890407 0.455165i \(-0.150420\pi\)
\(504\) 3.87966 0.172814
\(505\) 0 0
\(506\) 0.956459 0.0425198
\(507\) − 8.48619i − 0.376885i
\(508\) 34.6504i 1.53736i
\(509\) 14.7530 0.653916 0.326958 0.945039i \(-0.393976\pi\)
0.326958 + 0.945039i \(0.393976\pi\)
\(510\) 0 0
\(511\) −4.75004 −0.210129
\(512\) 17.4242i 0.770048i
\(513\) − 4.29590i − 0.189668i
\(514\) 3.50365 0.154539
\(515\) 0 0
\(516\) 11.3787 0.500918
\(517\) − 1.86831i − 0.0821683i
\(518\) − 2.63102i − 0.115600i
\(519\) 12.4077 0.544639
\(520\) 0 0
\(521\) 37.1487 1.62751 0.813756 0.581206i \(-0.197419\pi\)
0.813756 + 0.581206i \(0.197419\pi\)
\(522\) − 2.91617i − 0.127637i
\(523\) − 16.3623i − 0.715472i −0.933823 0.357736i \(-0.883549\pi\)
0.933823 0.357736i \(-0.116451\pi\)
\(524\) 14.4313 0.630434
\(525\) 0 0
\(526\) 5.38271 0.234698
\(527\) − 9.68664i − 0.421957i
\(528\) 2.66009i 0.115765i
\(529\) 4.96316 0.215790
\(530\) 0 0
\(531\) −23.2814 −1.01033
\(532\) − 3.28083i − 0.142242i
\(533\) 6.50066i 0.281575i
\(534\) −0.577793 −0.0250036
\(535\) 0 0
\(536\) −13.6176 −0.588191
\(537\) 1.73556i 0.0748950i
\(538\) 6.10693i 0.263289i
\(539\) −3.77240 −0.162489
\(540\) 0 0
\(541\) −2.08947 −0.0898335 −0.0449168 0.998991i \(-0.514302\pi\)
−0.0449168 + 0.998991i \(0.514302\pi\)
\(542\) − 3.26742i − 0.140348i
\(543\) − 13.5506i − 0.581514i
\(544\) 15.0623 0.645792
\(545\) 0 0
\(546\) 0.521106 0.0223013
\(547\) 1.86054i 0.0795511i 0.999209 + 0.0397756i \(0.0126643\pi\)
−0.999209 + 0.0397756i \(0.987336\pi\)
\(548\) − 11.0264i − 0.471025i
\(549\) 1.27950 0.0546079
\(550\) 0 0
\(551\) −5.00969 −0.213420
\(552\) 3.31336i 0.141026i
\(553\) 2.69740i 0.114705i
\(554\) −0.138391 −0.00587968
\(555\) 0 0
\(556\) −7.01134 −0.297347
\(557\) − 9.80061i − 0.415265i −0.978207 0.207633i \(-0.933424\pi\)
0.978207 0.207633i \(-0.0665758\pi\)
\(558\) 1.06472i 0.0450732i
\(559\) −11.3787 −0.481266
\(560\) 0 0
\(561\) 3.87263 0.163502
\(562\) 6.81759i 0.287583i
\(563\) − 38.0170i − 1.60222i −0.598514 0.801112i \(-0.704242\pi\)
0.598514 0.801112i \(-0.295758\pi\)
\(564\) 3.18598 0.134154
\(565\) 0 0
\(566\) 3.94198 0.165694
\(567\) − 6.13467i − 0.257632i
\(568\) − 12.5284i − 0.525680i
\(569\) 7.32975 0.307279 0.153640 0.988127i \(-0.450901\pi\)
0.153640 + 0.988127i \(0.450901\pi\)
\(570\) 0 0
\(571\) 37.8775 1.58513 0.792563 0.609791i \(-0.208746\pi\)
0.792563 + 0.609791i \(0.208746\pi\)
\(572\) − 2.74930i − 0.114954i
\(573\) − 4.75063i − 0.198460i
\(574\) 1.74705 0.0729206
\(575\) 0 0
\(576\) 15.4919 0.645496
\(577\) 28.6993i 1.19477i 0.801955 + 0.597384i \(0.203793\pi\)
−0.801955 + 0.597384i \(0.796207\pi\)
\(578\) − 2.72827i − 0.113481i
\(579\) −3.55688 −0.147819
\(580\) 0 0
\(581\) 20.7017 0.858852
\(582\) − 0.307979i − 0.0127661i
\(583\) 2.46357i 0.102030i
\(584\) 2.73110 0.113014
\(585\) 0 0
\(586\) −6.25667 −0.258461
\(587\) 3.72348i 0.153684i 0.997043 + 0.0768422i \(0.0244838\pi\)
−0.997043 + 0.0768422i \(0.975516\pi\)
\(588\) − 6.43296i − 0.265291i
\(589\) 1.82908 0.0753661
\(590\) 0 0
\(591\) −13.2097 −0.543373
\(592\) − 22.9028i − 0.941297i
\(593\) − 27.7399i − 1.13914i −0.821943 0.569570i \(-0.807110\pi\)
0.821943 0.569570i \(-0.192890\pi\)
\(594\) −0.967476 −0.0396960
\(595\) 0 0
\(596\) −6.38032 −0.261348
\(597\) − 19.5778i − 0.801266i
\(598\) − 1.63102i − 0.0666975i
\(599\) 23.5579 0.962551 0.481276 0.876569i \(-0.340174\pi\)
0.481276 + 0.876569i \(0.340174\pi\)
\(600\) 0 0
\(601\) −7.36898 −0.300587 −0.150293 0.988641i \(-0.548022\pi\)
−0.150293 + 0.988641i \(0.548022\pi\)
\(602\) 3.05802i 0.124635i
\(603\) 32.9909i 1.34349i
\(604\) −19.8033 −0.805783
\(605\) 0 0
\(606\) −3.28813 −0.133571
\(607\) − 28.4198i − 1.15352i −0.816912 0.576762i \(-0.804316\pi\)
0.816912 0.576762i \(-0.195684\pi\)
\(608\) 2.84415i 0.115346i
\(609\) 6.79763 0.275454
\(610\) 0 0
\(611\) −3.18598 −0.128891
\(612\) − 24.2024i − 0.978323i
\(613\) 6.48129i 0.261777i 0.991397 + 0.130888i \(0.0417829\pi\)
−0.991397 + 0.130888i \(0.958217\pi\)
\(614\) −2.85443 −0.115195
\(615\) 0 0
\(616\) −1.50099 −0.0604767
\(617\) 24.4650i 0.984924i 0.870334 + 0.492462i \(0.163903\pi\)
−0.870334 + 0.492462i \(0.836097\pi\)
\(618\) − 0.959706i − 0.0386051i
\(619\) 22.2457 0.894128 0.447064 0.894502i \(-0.352470\pi\)
0.447064 + 0.894502i \(0.352470\pi\)
\(620\) 0 0
\(621\) 18.2446 0.732130
\(622\) − 4.53020i − 0.181645i
\(623\) 4.93602i 0.197757i
\(624\) 4.53617 0.181592
\(625\) 0 0
\(626\) 4.67084 0.186684
\(627\) 0.731250i 0.0292033i
\(628\) − 27.8146i − 1.10992i
\(629\) −33.3424 −1.32945
\(630\) 0 0
\(631\) −15.5888 −0.620581 −0.310290 0.950642i \(-0.600426\pi\)
−0.310290 + 0.950642i \(0.600426\pi\)
\(632\) − 1.55091i − 0.0616919i
\(633\) 3.48081i 0.138350i
\(634\) 5.00836 0.198907
\(635\) 0 0
\(636\) −4.20105 −0.166582
\(637\) 6.43296i 0.254883i
\(638\) 1.12823i 0.0446670i
\(639\) −30.3521 −1.20071
\(640\) 0 0
\(641\) 8.17496 0.322892 0.161446 0.986882i \(-0.448384\pi\)
0.161446 + 0.986882i \(0.448384\pi\)
\(642\) 0.884707i 0.0349166i
\(643\) 11.1836i 0.441038i 0.975383 + 0.220519i \(0.0707750\pi\)
−0.975383 + 0.220519i \(0.929225\pi\)
\(644\) 13.9336 0.549062
\(645\) 0 0
\(646\) 1.30798 0.0514617
\(647\) − 16.2121i − 0.637362i −0.947862 0.318681i \(-0.896760\pi\)
0.947862 0.318681i \(-0.103240\pi\)
\(648\) 3.52722i 0.138562i
\(649\) 9.00730 0.353567
\(650\) 0 0
\(651\) −2.48188 −0.0972725
\(652\) − 37.8702i − 1.48311i
\(653\) 24.7952i 0.970312i 0.874427 + 0.485156i \(0.161237\pi\)
−0.874427 + 0.485156i \(0.838763\pi\)
\(654\) −3.72886 −0.145810
\(655\) 0 0
\(656\) 15.2079 0.593769
\(657\) − 6.61655i − 0.258136i
\(658\) 0.856232i 0.0333794i
\(659\) 20.2868 0.790262 0.395131 0.918625i \(-0.370699\pi\)
0.395131 + 0.918625i \(0.370699\pi\)
\(660\) 0 0
\(661\) 20.4222 0.794332 0.397166 0.917747i \(-0.369994\pi\)
0.397166 + 0.917747i \(0.369994\pi\)
\(662\) − 1.17928i − 0.0458339i
\(663\) − 6.60388i − 0.256473i
\(664\) −11.9028 −0.461917
\(665\) 0 0
\(666\) 3.66487 0.142011
\(667\) − 21.2760i − 0.823812i
\(668\) − 23.0398i − 0.891437i
\(669\) 21.0411 0.813498
\(670\) 0 0
\(671\) −0.495024 −0.0191102
\(672\) − 3.85922i − 0.148872i
\(673\) 28.7254i 1.10728i 0.832755 + 0.553641i \(0.186762\pi\)
−0.832755 + 0.553641i \(0.813238\pi\)
\(674\) 6.02549 0.232093
\(675\) 0 0
\(676\) 20.5187 0.789181
\(677\) − 44.0062i − 1.69130i −0.533740 0.845648i \(-0.679214\pi\)
0.533740 0.845648i \(-0.320786\pi\)
\(678\) 3.96854i 0.152411i
\(679\) −2.63102 −0.100969
\(680\) 0 0
\(681\) −11.7767 −0.451284
\(682\) − 0.411927i − 0.0157735i
\(683\) 8.48427i 0.324642i 0.986738 + 0.162321i \(0.0518979\pi\)
−0.986738 + 0.162321i \(0.948102\pi\)
\(684\) 4.57002 0.174739
\(685\) 0 0
\(686\) 4.65412 0.177695
\(687\) − 17.3545i − 0.662116i
\(688\) 26.6197i 1.01487i
\(689\) 4.20105 0.160047
\(690\) 0 0
\(691\) 20.2586 0.770673 0.385336 0.922776i \(-0.374085\pi\)
0.385336 + 0.922776i \(0.374085\pi\)
\(692\) 30.0006i 1.14045i
\(693\) 3.63640i 0.138135i
\(694\) −2.46921 −0.0937297
\(695\) 0 0
\(696\) −3.90840 −0.148147
\(697\) − 22.1400i − 0.838614i
\(698\) − 5.42327i − 0.205274i
\(699\) 21.7472 0.822553
\(700\) 0 0
\(701\) −23.4101 −0.884188 −0.442094 0.896969i \(-0.645764\pi\)
−0.442094 + 0.896969i \(0.645764\pi\)
\(702\) 1.64981i 0.0622680i
\(703\) − 6.29590i − 0.237454i
\(704\) −5.99362 −0.225893
\(705\) 0 0
\(706\) 9.10826 0.342794
\(707\) 28.0901i 1.05644i
\(708\) 15.3599i 0.577260i
\(709\) −30.3472 −1.13971 −0.569857 0.821744i \(-0.693001\pi\)
−0.569857 + 0.821744i \(0.693001\pi\)
\(710\) 0 0
\(711\) −3.75733 −0.140911
\(712\) − 2.83804i − 0.106360i
\(713\) 7.76809i 0.290917i
\(714\) −1.77479 −0.0664199
\(715\) 0 0
\(716\) −4.19641 −0.156827
\(717\) − 9.24698i − 0.345335i
\(718\) − 4.07979i − 0.152256i
\(719\) 38.3230 1.42921 0.714604 0.699529i \(-0.246607\pi\)
0.714604 + 0.699529i \(0.246607\pi\)
\(720\) 0 0
\(721\) −8.19865 −0.305334
\(722\) 0.246980i 0.00919163i
\(723\) − 9.47842i − 0.352506i
\(724\) 32.7640 1.21767
\(725\) 0 0
\(726\) −2.01400 −0.0747466
\(727\) − 2.69069i − 0.0997923i −0.998754 0.0498961i \(-0.984111\pi\)
0.998754 0.0498961i \(-0.0158890\pi\)
\(728\) 2.55960i 0.0948650i
\(729\) −1.78986 −0.0662910
\(730\) 0 0
\(731\) 38.7536 1.43335
\(732\) − 0.844150i − 0.0312007i
\(733\) 18.9651i 0.700491i 0.936658 + 0.350246i \(0.113902\pi\)
−0.936658 + 0.350246i \(0.886098\pi\)
\(734\) −1.68724 −0.0622770
\(735\) 0 0
\(736\) −12.0790 −0.445240
\(737\) − 12.7638i − 0.470160i
\(738\) 2.43355i 0.0895803i
\(739\) −29.8278 −1.09723 −0.548616 0.836075i \(-0.684845\pi\)
−0.548616 + 0.836075i \(0.684845\pi\)
\(740\) 0 0
\(741\) 1.24698 0.0458089
\(742\) − 1.12903i − 0.0414480i
\(743\) 8.78448i 0.322271i 0.986932 + 0.161136i \(0.0515157\pi\)
−0.986932 + 0.161136i \(0.948484\pi\)
\(744\) 1.42699 0.0523161
\(745\) 0 0
\(746\) 1.17629 0.0430671
\(747\) 28.8364i 1.05507i
\(748\) 9.36360i 0.342367i
\(749\) 7.55794 0.276161
\(750\) 0 0
\(751\) −18.1142 −0.660998 −0.330499 0.943806i \(-0.607217\pi\)
−0.330499 + 0.943806i \(0.607217\pi\)
\(752\) 7.45340i 0.271798i
\(753\) 7.75063i 0.282449i
\(754\) 1.92394 0.0700656
\(755\) 0 0
\(756\) −14.0941 −0.512598
\(757\) 0.222816i 0.00809840i 0.999992 + 0.00404920i \(0.00128890\pi\)
−0.999992 + 0.00404920i \(0.998711\pi\)
\(758\) − 3.55091i − 0.128975i
\(759\) −3.10560 −0.112726
\(760\) 0 0
\(761\) −6.07798 −0.220327 −0.110163 0.993913i \(-0.535137\pi\)
−0.110163 + 0.993913i \(0.535137\pi\)
\(762\) 3.53942i 0.128220i
\(763\) 31.8552i 1.15323i
\(764\) 11.4865 0.415568
\(765\) 0 0
\(766\) 7.57507 0.273698
\(767\) − 15.3599i − 0.554613i
\(768\) − 9.09411i − 0.328156i
\(769\) 14.6267 0.527453 0.263726 0.964598i \(-0.415048\pi\)
0.263726 + 0.964598i \(0.415048\pi\)
\(770\) 0 0
\(771\) −11.3763 −0.409706
\(772\) − 8.60015i − 0.309526i
\(773\) − 4.05728i − 0.145930i −0.997334 0.0729651i \(-0.976754\pi\)
0.997334 0.0729651i \(-0.0232462\pi\)
\(774\) −4.25965 −0.153110
\(775\) 0 0
\(776\) 1.51275 0.0543044
\(777\) 8.54288i 0.306474i
\(778\) 3.19136i 0.114416i
\(779\) 4.18060 0.149786
\(780\) 0 0
\(781\) 11.7429 0.420192
\(782\) 5.55496i 0.198645i
\(783\) 21.5211i 0.769102i
\(784\) 15.0495 0.537482
\(785\) 0 0
\(786\) 1.47411 0.0525797
\(787\) − 19.5657i − 0.697442i −0.937227 0.348721i \(-0.886616\pi\)
0.937227 0.348721i \(-0.113384\pi\)
\(788\) − 31.9396i − 1.13780i
\(789\) −17.4776 −0.622218
\(790\) 0 0
\(791\) 33.9028 1.20544
\(792\) − 2.09080i − 0.0742934i
\(793\) 0.844150i 0.0299767i
\(794\) −7.37163 −0.261609
\(795\) 0 0
\(796\) 47.3370 1.67782
\(797\) − 38.9051i − 1.37809i −0.724718 0.689046i \(-0.758030\pi\)
0.724718 0.689046i \(-0.241970\pi\)
\(798\) − 0.335126i − 0.0118633i
\(799\) 10.8509 0.383876
\(800\) 0 0
\(801\) −6.87561 −0.242938
\(802\) − 7.09080i − 0.250385i
\(803\) 2.55986i 0.0903355i
\(804\) 21.7657 0.767617
\(805\) 0 0
\(806\) −0.702447 −0.0247426
\(807\) − 19.8291i − 0.698017i
\(808\) − 16.1508i − 0.568183i
\(809\) 22.5730 0.793625 0.396812 0.917900i \(-0.370116\pi\)
0.396812 + 0.917900i \(0.370116\pi\)
\(810\) 0 0
\(811\) −46.3605 −1.62794 −0.813968 0.580909i \(-0.802697\pi\)
−0.813968 + 0.580909i \(0.802697\pi\)
\(812\) 16.4359i 0.576789i
\(813\) 10.6093i 0.372083i
\(814\) −1.41789 −0.0496972
\(815\) 0 0
\(816\) −15.4494 −0.540836
\(817\) 7.31767i 0.256013i
\(818\) 3.36393i 0.117617i
\(819\) 6.20105 0.216682
\(820\) 0 0
\(821\) −17.8194 −0.621901 −0.310951 0.950426i \(-0.600647\pi\)
−0.310951 + 0.950426i \(0.600647\pi\)
\(822\) − 1.12631i − 0.0392846i
\(823\) − 32.5394i − 1.13425i −0.823631 0.567126i \(-0.808055\pi\)
0.823631 0.567126i \(-0.191945\pi\)
\(824\) 4.71394 0.164218
\(825\) 0 0
\(826\) −4.12797 −0.143630
\(827\) − 39.8256i − 1.38487i −0.721479 0.692436i \(-0.756537\pi\)
0.721479 0.692436i \(-0.243463\pi\)
\(828\) 19.4088i 0.674502i
\(829\) −38.7525 −1.34593 −0.672966 0.739674i \(-0.734980\pi\)
−0.672966 + 0.739674i \(0.734980\pi\)
\(830\) 0 0
\(831\) 0.449354 0.0155879
\(832\) 10.2208i 0.354341i
\(833\) − 21.9095i − 0.759118i
\(834\) −0.716185 −0.0247994
\(835\) 0 0
\(836\) −1.76809 −0.0611505
\(837\) − 7.85756i − 0.271597i
\(838\) 0.528402i 0.0182533i
\(839\) −2.76749 −0.0955445 −0.0477723 0.998858i \(-0.515212\pi\)
−0.0477723 + 0.998858i \(0.515212\pi\)
\(840\) 0 0
\(841\) −3.90302 −0.134587
\(842\) − 3.71858i − 0.128151i
\(843\) − 22.1366i − 0.762425i
\(844\) −8.41624 −0.289699
\(845\) 0 0
\(846\) −1.19269 −0.0410054
\(847\) 17.2054i 0.591183i
\(848\) − 9.82808i − 0.337498i
\(849\) −12.7995 −0.439279
\(850\) 0 0
\(851\) 26.7385 0.916586
\(852\) 20.0248i 0.686037i
\(853\) 24.1390i 0.826503i 0.910617 + 0.413252i \(0.135607\pi\)
−0.910617 + 0.413252i \(0.864393\pi\)
\(854\) 0.226865 0.00776317
\(855\) 0 0
\(856\) −4.34555 −0.148528
\(857\) 3.16229i 0.108022i 0.998540 + 0.0540109i \(0.0172006\pi\)
−0.998540 + 0.0540109i \(0.982799\pi\)
\(858\) − 0.280831i − 0.00958743i
\(859\) −4.86426 −0.165967 −0.0829833 0.996551i \(-0.526445\pi\)
−0.0829833 + 0.996551i \(0.526445\pi\)
\(860\) 0 0
\(861\) −5.67264 −0.193323
\(862\) 1.08038i 0.0367978i
\(863\) 4.54958i 0.154870i 0.996997 + 0.0774348i \(0.0246730\pi\)
−0.996997 + 0.0774348i \(0.975327\pi\)
\(864\) 12.2182 0.415671
\(865\) 0 0
\(866\) 8.18896 0.278272
\(867\) 8.85862i 0.300855i
\(868\) − 6.00092i − 0.203684i
\(869\) 1.45367 0.0493122
\(870\) 0 0
\(871\) −21.7657 −0.737502
\(872\) − 18.3156i − 0.620245i
\(873\) − 3.66487i − 0.124037i
\(874\) −1.04892 −0.0354802
\(875\) 0 0
\(876\) −4.36526 −0.147488
\(877\) 18.6595i 0.630086i 0.949077 + 0.315043i \(0.102019\pi\)
−0.949077 + 0.315043i \(0.897981\pi\)
\(878\) − 7.96184i − 0.268699i
\(879\) 20.3153 0.685217
\(880\) 0 0
\(881\) 19.4306 0.654632 0.327316 0.944915i \(-0.393856\pi\)
0.327316 + 0.944915i \(0.393856\pi\)
\(882\) 2.40821i 0.0810885i
\(883\) 25.6437i 0.862979i 0.902118 + 0.431490i \(0.142012\pi\)
−0.902118 + 0.431490i \(0.857988\pi\)
\(884\) 15.9675 0.537044
\(885\) 0 0
\(886\) −5.36839 −0.180354
\(887\) 31.0062i 1.04109i 0.853835 + 0.520544i \(0.174271\pi\)
−0.853835 + 0.520544i \(0.825729\pi\)
\(888\) − 4.91185i − 0.164831i
\(889\) 30.2368 1.01411
\(890\) 0 0
\(891\) −3.30606 −0.110757
\(892\) 50.8753i 1.70343i
\(893\) 2.04892i 0.0685644i
\(894\) −0.651728 −0.0217970
\(895\) 0 0
\(896\) 12.3716 0.413305
\(897\) 5.29590i 0.176825i
\(898\) 6.16421i 0.205702i
\(899\) −9.16315 −0.305608
\(900\) 0 0
\(901\) −14.3080 −0.476668
\(902\) − 0.941511i − 0.0313489i
\(903\) − 9.92931i − 0.330427i
\(904\) −19.4929 −0.648324
\(905\) 0 0
\(906\) −2.02284 −0.0672042
\(907\) 17.7676i 0.589964i 0.955503 + 0.294982i \(0.0953136\pi\)
−0.955503 + 0.294982i \(0.904686\pi\)
\(908\) − 28.4748i − 0.944971i
\(909\) −39.1280 −1.29779
\(910\) 0 0
\(911\) 41.7313 1.38262 0.691309 0.722559i \(-0.257034\pi\)
0.691309 + 0.722559i \(0.257034\pi\)
\(912\) − 2.91723i − 0.0965992i
\(913\) − 11.1564i − 0.369224i
\(914\) 3.24400 0.107302
\(915\) 0 0
\(916\) 41.9614 1.38644
\(917\) − 12.5931i − 0.415862i
\(918\) − 5.61894i − 0.185453i
\(919\) −30.4088 −1.00309 −0.501547 0.865130i \(-0.667236\pi\)
−0.501547 + 0.865130i \(0.667236\pi\)
\(920\) 0 0
\(921\) 9.26828 0.305400
\(922\) − 8.73630i − 0.287715i
\(923\) − 20.0248i − 0.659123i
\(924\) 2.39911 0.0789249
\(925\) 0 0
\(926\) −3.62969 −0.119279
\(927\) − 11.4203i − 0.375091i
\(928\) − 14.2483i − 0.467724i
\(929\) 28.8219 0.945616 0.472808 0.881165i \(-0.343240\pi\)
0.472808 + 0.881165i \(0.343240\pi\)
\(930\) 0 0
\(931\) 4.13706 0.135587
\(932\) 52.5824i 1.72239i
\(933\) 14.7095i 0.481567i
\(934\) −8.20270 −0.268401
\(935\) 0 0
\(936\) −3.56538 −0.116538
\(937\) 50.4601i 1.64846i 0.566255 + 0.824230i \(0.308392\pi\)
−0.566255 + 0.824230i \(0.691608\pi\)
\(938\) 5.84953i 0.190994i
\(939\) −15.1661 −0.494928
\(940\) 0 0
\(941\) 1.10082 0.0358857 0.0179428 0.999839i \(-0.494288\pi\)
0.0179428 + 0.999839i \(0.494288\pi\)
\(942\) − 2.84117i − 0.0925702i
\(943\) 17.7549i 0.578180i
\(944\) −35.9335 −1.16954
\(945\) 0 0
\(946\) 1.64801 0.0535813
\(947\) 13.9353i 0.452836i 0.974030 + 0.226418i \(0.0727015\pi\)
−0.974030 + 0.226418i \(0.927299\pi\)
\(948\) 2.47889i 0.0805107i
\(949\) 4.36526 0.141702
\(950\) 0 0
\(951\) −16.2620 −0.527333
\(952\) − 8.71751i − 0.282536i
\(953\) − 41.3400i − 1.33913i −0.742751 0.669567i \(-0.766480\pi\)
0.742751 0.669567i \(-0.233520\pi\)
\(954\) 1.57268 0.0509174
\(955\) 0 0
\(956\) 22.3582 0.723117
\(957\) − 3.66334i − 0.118419i
\(958\) − 6.08111i − 0.196472i
\(959\) −9.62192 −0.310708
\(960\) 0 0
\(961\) −27.6544 −0.892079
\(962\) 2.41789i 0.0779561i
\(963\) 10.5278i 0.339254i
\(964\) 22.9178 0.738133
\(965\) 0 0
\(966\) 1.42327 0.0457930
\(967\) 5.26875i 0.169432i 0.996405 + 0.0847158i \(0.0269982\pi\)
−0.996405 + 0.0847158i \(0.973002\pi\)
\(968\) − 9.89248i − 0.317956i
\(969\) −4.24698 −0.136433
\(970\) 0 0
\(971\) −5.15346 −0.165382 −0.0826911 0.996575i \(-0.526351\pi\)
−0.0826911 + 0.996575i \(0.526351\pi\)
\(972\) − 30.6270i − 0.982361i
\(973\) 6.11828i 0.196143i
\(974\) −7.30186 −0.233967
\(975\) 0 0
\(976\) 1.97484 0.0632130
\(977\) − 4.77612i − 0.152802i −0.997077 0.0764008i \(-0.975657\pi\)
0.997077 0.0764008i \(-0.0243428\pi\)
\(978\) − 3.86831i − 0.123695i
\(979\) 2.66009 0.0850168
\(980\) 0 0
\(981\) −44.3726 −1.41671
\(982\) 8.96482i 0.286079i
\(983\) − 28.9758i − 0.924186i −0.886832 0.462093i \(-0.847099\pi\)
0.886832 0.462093i \(-0.152901\pi\)
\(984\) 3.26157 0.103975
\(985\) 0 0
\(986\) −6.55257 −0.208676
\(987\) − 2.78017i − 0.0884937i
\(988\) 3.01507i 0.0959220i
\(989\) −31.0780 −0.988222
\(990\) 0 0
\(991\) −38.5042 −1.22313 −0.611564 0.791195i \(-0.709459\pi\)
−0.611564 + 0.791195i \(0.709459\pi\)
\(992\) 5.20219i 0.165170i
\(993\) 3.82908i 0.121512i
\(994\) −5.38165 −0.170696
\(995\) 0 0
\(996\) 19.0248 0.602822
\(997\) − 10.1491i − 0.321427i −0.987001 0.160713i \(-0.948621\pi\)
0.987001 0.160713i \(-0.0513795\pi\)
\(998\) − 1.93735i − 0.0613256i
\(999\) −27.0465 −0.855714
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.b.c.324.4 6
5.2 odd 4 475.2.a.h.1.1 yes 3
5.3 odd 4 475.2.a.d.1.3 3
5.4 even 2 inner 475.2.b.c.324.3 6
15.2 even 4 4275.2.a.z.1.3 3
15.8 even 4 4275.2.a.bn.1.1 3
20.3 even 4 7600.2.a.bw.1.1 3
20.7 even 4 7600.2.a.bn.1.3 3
95.18 even 4 9025.2.a.be.1.1 3
95.37 even 4 9025.2.a.w.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.d.1.3 3 5.3 odd 4
475.2.a.h.1.1 yes 3 5.2 odd 4
475.2.b.c.324.3 6 5.4 even 2 inner
475.2.b.c.324.4 6 1.1 even 1 trivial
4275.2.a.z.1.3 3 15.2 even 4
4275.2.a.bn.1.1 3 15.8 even 4
7600.2.a.bn.1.3 3 20.7 even 4
7600.2.a.bw.1.1 3 20.3 even 4
9025.2.a.w.1.3 3 95.37 even 4
9025.2.a.be.1.1 3 95.18 even 4