Newspace parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.0.153664.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} + 5x^{4} + 6x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} + 5x^{4} + 6x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + 2 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{3} + 3\nu \)
|
\(\beta_{4}\) | \(=\) |
\( \nu^{4} + 3\nu^{2} + 1 \)
|
\(\beta_{5}\) | \(=\) |
\( \nu^{5} + 4\nu^{3} + 3\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{3} - 3\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{4} - 3\beta_{2} + 5 \)
|
\(\nu^{5}\) | \(=\) |
\( \beta_{5} - 4\beta_{3} + 9\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).
\(n\) | \(77\) | \(401\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
324.1 |
|
− | 2.80194i | 0.554958i | −5.85086 | 0 | 1.55496 | 3.04892i | 10.7899i | 2.69202 | 0 | |||||||||||||||||||||||||||||||||||
324.2 | − | 1.44504i | 2.24698i | −0.0881460 | 0 | 3.24698 | − | 1.35690i | − | 2.76271i | −2.04892 | 0 | ||||||||||||||||||||||||||||||||||
324.3 | − | 0.246980i | 0.801938i | 1.93900 | 0 | 0.198062 | 1.69202i | − | 0.972853i | 2.35690 | 0 | |||||||||||||||||||||||||||||||||||
324.4 | 0.246980i | − | 0.801938i | 1.93900 | 0 | 0.198062 | − | 1.69202i | 0.972853i | 2.35690 | 0 | |||||||||||||||||||||||||||||||||||
324.5 | 1.44504i | − | 2.24698i | −0.0881460 | 0 | 3.24698 | 1.35690i | 2.76271i | −2.04892 | 0 | ||||||||||||||||||||||||||||||||||||
324.6 | 2.80194i | − | 0.554958i | −5.85086 | 0 | 1.55496 | − | 3.04892i | − | 10.7899i | 2.69202 | 0 | ||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.b.c | 6 | |
5.b | even | 2 | 1 | inner | 475.2.b.c | 6 | |
5.c | odd | 4 | 1 | 475.2.a.d | ✓ | 3 | |
5.c | odd | 4 | 1 | 475.2.a.h | yes | 3 | |
15.e | even | 4 | 1 | 4275.2.a.z | 3 | ||
15.e | even | 4 | 1 | 4275.2.a.bn | 3 | ||
20.e | even | 4 | 1 | 7600.2.a.bn | 3 | ||
20.e | even | 4 | 1 | 7600.2.a.bw | 3 | ||
95.g | even | 4 | 1 | 9025.2.a.w | 3 | ||
95.g | even | 4 | 1 | 9025.2.a.be | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.a.d | ✓ | 3 | 5.c | odd | 4 | 1 | |
475.2.a.h | yes | 3 | 5.c | odd | 4 | 1 | |
475.2.b.c | 6 | 1.a | even | 1 | 1 | trivial | |
475.2.b.c | 6 | 5.b | even | 2 | 1 | inner | |
4275.2.a.z | 3 | 15.e | even | 4 | 1 | ||
4275.2.a.bn | 3 | 15.e | even | 4 | 1 | ||
7600.2.a.bn | 3 | 20.e | even | 4 | 1 | ||
7600.2.a.bw | 3 | 20.e | even | 4 | 1 | ||
9025.2.a.w | 3 | 95.g | even | 4 | 1 | ||
9025.2.a.be | 3 | 95.g | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + 10T_{2}^{4} + 17T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + 10 T^{4} + 17 T^{2} + 1 \)
$3$
\( T^{6} + 6 T^{4} + 5 T^{2} + 1 \)
$5$
\( T^{6} \)
$7$
\( T^{6} + 14 T^{4} + 49 T^{2} + 49 \)
$11$
\( (T^{3} - T^{2} - 16 T - 13)^{2} \)
$13$
\( T^{6} + 13 T^{4} + 26 T^{2} + 1 \)
$17$
\( T^{6} + 34 T^{4} + 173 T^{2} + \cdots + 169 \)
$19$
\( (T - 1)^{6} \)
$23$
\( T^{6} + 26 T^{4} + 153 T^{2} + \cdots + 169 \)
$29$
\( (T^{3} - 7 T^{2} - 42 T + 91)^{2} \)
$31$
\( (T^{3} + 5 T^{2} - 36 T + 43)^{2} \)
$37$
\( T^{6} + 41 T^{4} + 54 T^{2} + 1 \)
$41$
\( (T^{3} - T^{2} - 114 T + 421)^{2} \)
$43$
\( T^{6} + 139 T^{4} + 6179 T^{2} + \cdots + 85849 \)
$47$
\( T^{6} + 17 T^{4} + 94 T^{2} + \cdots + 169 \)
$53$
\( T^{6} + 251 T^{4} + 14691 T^{2} + \cdots + 94249 \)
$59$
\( (T^{3} + 10 T^{2} - 32 T - 328)^{2} \)
$61$
\( (T^{3} + 17 T^{2} + 66 T - 41)^{2} \)
$67$
\( T^{6} + 285 T^{4} + 19046 T^{2} + \cdots + 312481 \)
$71$
\( (T^{3} + 19 T^{2} + 55 T - 307)^{2} \)
$73$
\( T^{6} + 341 T^{4} + 29826 T^{2} + \cdots + 214369 \)
$79$
\( (T^{3} + 18 T^{2} + 87 T + 97)^{2} \)
$83$
\( T^{6} + 173 T^{4} + 3618 T^{2} + \cdots + 19321 \)
$89$
\( (T^{3} + 2 T^{2} - 99 T - 281)^{2} \)
$97$
\( T^{6} + 13 T^{4} + 26 T^{2} + 1 \)
show more
show less