Properties

Label 475.2.b.c
Level $475$
Weight $2$
Character orbit 475.b
Analytic conductor $3.793$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(324,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} + \beta_{3}) q^{2} + ( - \beta_{3} + \beta_1) q^{3} + (3 \beta_{4} + 2 \beta_{2} - 3) q^{4} + ( - \beta_{2} + 2) q^{6} + ( - \beta_{3} - \beta_1) q^{7} + (4 \beta_{5} - \beta_{3} - 4 \beta_1) q^{8}+ \cdots + (\beta_{4} + 3 \beta_{2} - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{4} + 10 q^{6} + 6 q^{9} + 2 q^{11} + 14 q^{14} + 36 q^{16} + 6 q^{19} + 2 q^{24} + 18 q^{26} + 14 q^{29} - 10 q^{31} + 18 q^{34} - 22 q^{36} - 2 q^{39} + 2 q^{41} + 30 q^{44} + 12 q^{46} + 14 q^{49}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
324.1
1.24698i
1.80194i
0.445042i
0.445042i
1.80194i
1.24698i
2.80194i 0.554958i −5.85086 0 1.55496 3.04892i 10.7899i 2.69202 0
324.2 1.44504i 2.24698i −0.0881460 0 3.24698 1.35690i 2.76271i −2.04892 0
324.3 0.246980i 0.801938i 1.93900 0 0.198062 1.69202i 0.972853i 2.35690 0
324.4 0.246980i 0.801938i 1.93900 0 0.198062 1.69202i 0.972853i 2.35690 0
324.5 1.44504i 2.24698i −0.0881460 0 3.24698 1.35690i 2.76271i −2.04892 0
324.6 2.80194i 0.554958i −5.85086 0 1.55496 3.04892i 10.7899i 2.69202 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 324.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.b.c 6
5.b even 2 1 inner 475.2.b.c 6
5.c odd 4 1 475.2.a.d 3
5.c odd 4 1 475.2.a.h yes 3
15.e even 4 1 4275.2.a.z 3
15.e even 4 1 4275.2.a.bn 3
20.e even 4 1 7600.2.a.bn 3
20.e even 4 1 7600.2.a.bw 3
95.g even 4 1 9025.2.a.w 3
95.g even 4 1 9025.2.a.be 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
475.2.a.d 3 5.c odd 4 1
475.2.a.h yes 3 5.c odd 4 1
475.2.b.c 6 1.a even 1 1 trivial
475.2.b.c 6 5.b even 2 1 inner
4275.2.a.z 3 15.e even 4 1
4275.2.a.bn 3 15.e even 4 1
7600.2.a.bn 3 20.e even 4 1
7600.2.a.bw 3 20.e even 4 1
9025.2.a.w 3 95.g even 4 1
9025.2.a.be 3 95.g even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 10T_{2}^{4} + 17T_{2}^{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 10 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 14 T^{4} + \cdots + 49 \) Copy content Toggle raw display
$11$ \( (T^{3} - T^{2} - 16 T - 13)^{2} \) Copy content Toggle raw display
$13$ \( T^{6} + 13 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{6} + 34 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$19$ \( (T - 1)^{6} \) Copy content Toggle raw display
$23$ \( T^{6} + 26 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$29$ \( (T^{3} - 7 T^{2} - 42 T + 91)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 5 T^{2} - 36 T + 43)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 41 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( (T^{3} - T^{2} - 114 T + 421)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 139 T^{4} + \cdots + 85849 \) Copy content Toggle raw display
$47$ \( T^{6} + 17 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$53$ \( T^{6} + 251 T^{4} + \cdots + 94249 \) Copy content Toggle raw display
$59$ \( (T^{3} + 10 T^{2} + \cdots - 328)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 17 T^{2} + \cdots - 41)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 285 T^{4} + \cdots + 312481 \) Copy content Toggle raw display
$71$ \( (T^{3} + 19 T^{2} + \cdots - 307)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 341 T^{4} + \cdots + 214369 \) Copy content Toggle raw display
$79$ \( (T^{3} + 18 T^{2} + \cdots + 97)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 173 T^{4} + \cdots + 19321 \) Copy content Toggle raw display
$89$ \( (T^{3} + 2 T^{2} + \cdots - 281)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + 13 T^{4} + \cdots + 1 \) Copy content Toggle raw display
show more
show less