Properties

Label 475.2.b.b.324.5
Level $475$
Weight $2$
Character 475.324
Analytic conductor $3.793$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(324,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.324");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.1827904.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 9x^{4} + 14x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 324.5
Root \(1.37720i\) of defining polynomial
Character \(\chi\) \(=\) 475.324
Dual form 475.2.b.b.324.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.65109i q^{2} +2.37720i q^{3} -0.726109 q^{4} -3.92498 q^{6} +0.377203i q^{7} +2.10331i q^{8} -2.65109 q^{9} +O(q^{10})\) \(q+1.65109i q^{2} +2.37720i q^{3} -0.726109 q^{4} -3.92498 q^{6} +0.377203i q^{7} +2.10331i q^{8} -2.65109 q^{9} -1.37720 q^{11} -1.72611i q^{12} +2.82167i q^{13} -0.622797 q^{14} -4.92498 q^{16} -6.37720i q^{17} -4.37720i q^{18} -1.00000 q^{19} -0.896688 q^{21} -2.27389i q^{22} +6.19887i q^{23} -5.00000 q^{24} -4.65884 q^{26} +0.829422i q^{27} -0.273891i q^{28} +3.37720 q^{29} +2.48052 q^{31} -3.92498i q^{32} -3.27389i q^{33} +10.5294 q^{34} +1.92498 q^{36} -5.58383i q^{37} -1.65109i q^{38} -6.70769 q^{39} +8.50106 q^{41} -1.48052i q^{42} -12.1522i q^{43} +1.00000 q^{44} -10.2349 q^{46} +6.87826i q^{47} -11.7077i q^{48} +6.85772 q^{49} +15.1599 q^{51} -2.04884i q^{52} +11.5478i q^{53} -1.36945 q^{54} -0.793375 q^{56} -2.37720i q^{57} +5.57608i q^{58} -6.05659 q^{59} +5.02830 q^{61} +4.09556i q^{62} -1.00000i q^{63} -3.36945 q^{64} +5.40550 q^{66} -3.22717i q^{67} +4.63055i q^{68} -14.7360 q^{69} -2.30219 q^{71} -5.57608i q^{72} -3.19887i q^{73} +9.21942 q^{74} +0.726109 q^{76} -0.519485i q^{77} -11.0750i q^{78} +6.71836 q^{79} -9.92498 q^{81} +14.0360i q^{82} +18.2165i q^{83} +0.651093 q^{84} +20.0643 q^{86} +8.02830i q^{87} -2.89669i q^{88} -1.50106 q^{89} -1.06434 q^{91} -4.50106i q^{92} +5.89669i q^{93} -11.3567 q^{94} +9.33048 q^{96} +11.7827i q^{97} +11.3227i q^{98} +3.65109 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 8 q^{4} - 6 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 8 q^{4} - 6 q^{6} - 2 q^{9} + 2 q^{11} - 14 q^{14} - 12 q^{16} - 6 q^{19} - 12 q^{21} - 30 q^{24} - 22 q^{26} + 10 q^{29} - 2 q^{31} - 10 q^{34} - 6 q^{36} + 22 q^{39} + 2 q^{41} + 6 q^{44} - 24 q^{46} + 14 q^{49} + 36 q^{51} + 10 q^{54} - 18 q^{56} + 12 q^{59} + 6 q^{61} - 2 q^{64} - 2 q^{66} - 2 q^{69} + 14 q^{71} + 2 q^{74} + 8 q^{76} + 36 q^{79} - 42 q^{81} - 10 q^{84} + 80 q^{86} + 40 q^{89} + 34 q^{91} - 90 q^{94} + 4 q^{96} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.65109i 1.16750i 0.811934 + 0.583750i \(0.198415\pi\)
−0.811934 + 0.583750i \(0.801585\pi\)
\(3\) 2.37720i 1.37248i 0.727376 + 0.686239i \(0.240740\pi\)
−0.727376 + 0.686239i \(0.759260\pi\)
\(4\) −0.726109 −0.363055
\(5\) 0 0
\(6\) −3.92498 −1.60237
\(7\) 0.377203i 0.142569i 0.997456 + 0.0712846i \(0.0227099\pi\)
−0.997456 + 0.0712846i \(0.977290\pi\)
\(8\) 2.10331i 0.743633i
\(9\) −2.65109 −0.883698
\(10\) 0 0
\(11\) −1.37720 −0.415242 −0.207621 0.978209i \(-0.566572\pi\)
−0.207621 + 0.978209i \(0.566572\pi\)
\(12\) − 1.72611i − 0.498285i
\(13\) 2.82167i 0.782591i 0.920265 + 0.391295i \(0.127973\pi\)
−0.920265 + 0.391295i \(0.872027\pi\)
\(14\) −0.622797 −0.166450
\(15\) 0 0
\(16\) −4.92498 −1.23125
\(17\) − 6.37720i − 1.54670i −0.633980 0.773349i \(-0.718580\pi\)
0.633980 0.773349i \(-0.281420\pi\)
\(18\) − 4.37720i − 1.03172i
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) −0.896688 −0.195673
\(22\) − 2.27389i − 0.484795i
\(23\) 6.19887i 1.29255i 0.763103 + 0.646277i \(0.223675\pi\)
−0.763103 + 0.646277i \(0.776325\pi\)
\(24\) −5.00000 −1.02062
\(25\) 0 0
\(26\) −4.65884 −0.913674
\(27\) 0.829422i 0.159622i
\(28\) − 0.273891i − 0.0517604i
\(29\) 3.37720 0.627131 0.313565 0.949567i \(-0.398476\pi\)
0.313565 + 0.949567i \(0.398476\pi\)
\(30\) 0 0
\(31\) 2.48052 0.445514 0.222757 0.974874i \(-0.428494\pi\)
0.222757 + 0.974874i \(0.428494\pi\)
\(32\) − 3.92498i − 0.693846i
\(33\) − 3.27389i − 0.569911i
\(34\) 10.5294 1.80577
\(35\) 0 0
\(36\) 1.92498 0.320831
\(37\) − 5.58383i − 0.917976i −0.888443 0.458988i \(-0.848212\pi\)
0.888443 0.458988i \(-0.151788\pi\)
\(38\) − 1.65109i − 0.267843i
\(39\) −6.70769 −1.07409
\(40\) 0 0
\(41\) 8.50106 1.32764 0.663821 0.747891i \(-0.268934\pi\)
0.663821 + 0.747891i \(0.268934\pi\)
\(42\) − 1.48052i − 0.228448i
\(43\) − 12.1522i − 1.85319i −0.376065 0.926593i \(-0.622723\pi\)
0.376065 0.926593i \(-0.377277\pi\)
\(44\) 1.00000 0.150756
\(45\) 0 0
\(46\) −10.2349 −1.50906
\(47\) 6.87826i 1.00330i 0.865071 + 0.501649i \(0.167273\pi\)
−0.865071 + 0.501649i \(0.832727\pi\)
\(48\) − 11.7077i − 1.68986i
\(49\) 6.85772 0.979674
\(50\) 0 0
\(51\) 15.1599 2.12281
\(52\) − 2.04884i − 0.284123i
\(53\) 11.5478i 1.58621i 0.609085 + 0.793105i \(0.291537\pi\)
−0.609085 + 0.793105i \(0.708463\pi\)
\(54\) −1.36945 −0.186359
\(55\) 0 0
\(56\) −0.793375 −0.106019
\(57\) − 2.37720i − 0.314868i
\(58\) 5.57608i 0.732175i
\(59\) −6.05659 −0.788501 −0.394251 0.919003i \(-0.628996\pi\)
−0.394251 + 0.919003i \(0.628996\pi\)
\(60\) 0 0
\(61\) 5.02830 0.643807 0.321904 0.946772i \(-0.395677\pi\)
0.321904 + 0.946772i \(0.395677\pi\)
\(62\) 4.09556i 0.520137i
\(63\) − 1.00000i − 0.125988i
\(64\) −3.36945 −0.421182
\(65\) 0 0
\(66\) 5.40550 0.665371
\(67\) − 3.22717i − 0.394262i −0.980377 0.197131i \(-0.936838\pi\)
0.980377 0.197131i \(-0.0631624\pi\)
\(68\) 4.63055i 0.561536i
\(69\) −14.7360 −1.77400
\(70\) 0 0
\(71\) −2.30219 −0.273219 −0.136610 0.990625i \(-0.543621\pi\)
−0.136610 + 0.990625i \(0.543621\pi\)
\(72\) − 5.57608i − 0.657147i
\(73\) − 3.19887i − 0.374400i −0.982322 0.187200i \(-0.940059\pi\)
0.982322 0.187200i \(-0.0599412\pi\)
\(74\) 9.21942 1.07174
\(75\) 0 0
\(76\) 0.726109 0.0832905
\(77\) − 0.519485i − 0.0592008i
\(78\) − 11.0750i − 1.25400i
\(79\) 6.71836 0.755874 0.377937 0.925831i \(-0.376634\pi\)
0.377937 + 0.925831i \(0.376634\pi\)
\(80\) 0 0
\(81\) −9.92498 −1.10278
\(82\) 14.0360i 1.55002i
\(83\) 18.2165i 1.99952i 0.0218996 + 0.999760i \(0.493029\pi\)
−0.0218996 + 0.999760i \(0.506971\pi\)
\(84\) 0.651093 0.0710401
\(85\) 0 0
\(86\) 20.0643 2.16359
\(87\) 8.02830i 0.860724i
\(88\) − 2.89669i − 0.308788i
\(89\) −1.50106 −0.159112 −0.0795561 0.996830i \(-0.525350\pi\)
−0.0795561 + 0.996830i \(0.525350\pi\)
\(90\) 0 0
\(91\) −1.06434 −0.111573
\(92\) − 4.50106i − 0.469268i
\(93\) 5.89669i 0.611458i
\(94\) −11.3567 −1.17135
\(95\) 0 0
\(96\) 9.33048 0.952288
\(97\) 11.7827i 1.19635i 0.801365 + 0.598176i \(0.204108\pi\)
−0.801365 + 0.598176i \(0.795892\pi\)
\(98\) 11.3227i 1.14377i
\(99\) 3.65109 0.366949
\(100\) 0 0
\(101\) −9.18820 −0.914260 −0.457130 0.889400i \(-0.651123\pi\)
−0.457130 + 0.889400i \(0.651123\pi\)
\(102\) 25.0304i 2.47838i
\(103\) − 9.47277i − 0.933379i −0.884421 0.466690i \(-0.845447\pi\)
0.884421 0.466690i \(-0.154553\pi\)
\(104\) −5.93486 −0.581961
\(105\) 0 0
\(106\) −19.0665 −1.85190
\(107\) 15.3510i 1.48404i 0.670378 + 0.742020i \(0.266132\pi\)
−0.670378 + 0.742020i \(0.733868\pi\)
\(108\) − 0.602251i − 0.0579516i
\(109\) 16.7643 1.60573 0.802863 0.596163i \(-0.203309\pi\)
0.802863 + 0.596163i \(0.203309\pi\)
\(110\) 0 0
\(111\) 13.2739 1.25990
\(112\) − 1.85772i − 0.175538i
\(113\) − 13.3305i − 1.25403i −0.779009 0.627013i \(-0.784277\pi\)
0.779009 0.627013i \(-0.215723\pi\)
\(114\) 3.92498 0.367608
\(115\) 0 0
\(116\) −2.45222 −0.227683
\(117\) − 7.48052i − 0.691574i
\(118\) − 10.0000i − 0.920575i
\(119\) 2.40550 0.220512
\(120\) 0 0
\(121\) −9.10331 −0.827574
\(122\) 8.30219i 0.751645i
\(123\) 20.2087i 1.82216i
\(124\) −1.80113 −0.161746
\(125\) 0 0
\(126\) 1.65109 0.147091
\(127\) 3.04672i 0.270353i 0.990822 + 0.135176i \(0.0431601\pi\)
−0.990822 + 0.135176i \(0.956840\pi\)
\(128\) − 13.4132i − 1.18557i
\(129\) 28.8881 2.54346
\(130\) 0 0
\(131\) −8.70769 −0.760794 −0.380397 0.924823i \(-0.624213\pi\)
−0.380397 + 0.924823i \(0.624213\pi\)
\(132\) 2.37720i 0.206909i
\(133\) − 0.377203i − 0.0327076i
\(134\) 5.32836 0.460300
\(135\) 0 0
\(136\) 13.4132 1.15018
\(137\) − 6.59450i − 0.563406i −0.959502 0.281703i \(-0.909101\pi\)
0.959502 0.281703i \(-0.0908993\pi\)
\(138\) − 24.3305i − 2.07115i
\(139\) 10.1677 0.862409 0.431205 0.902254i \(-0.358089\pi\)
0.431205 + 0.902254i \(0.358089\pi\)
\(140\) 0 0
\(141\) −16.3510 −1.37701
\(142\) − 3.80113i − 0.318983i
\(143\) − 3.88601i − 0.324965i
\(144\) 13.0566 1.08805
\(145\) 0 0
\(146\) 5.28164 0.437112
\(147\) 16.3022i 1.34458i
\(148\) 4.05447i 0.333275i
\(149\) 5.54003 0.453857 0.226929 0.973911i \(-0.427132\pi\)
0.226929 + 0.973911i \(0.427132\pi\)
\(150\) 0 0
\(151\) 5.12386 0.416974 0.208487 0.978025i \(-0.433146\pi\)
0.208487 + 0.978025i \(0.433146\pi\)
\(152\) − 2.10331i − 0.170601i
\(153\) 16.9066i 1.36681i
\(154\) 0.857718 0.0691169
\(155\) 0 0
\(156\) 4.87051 0.389953
\(157\) − 19.7643i − 1.57736i −0.614803 0.788681i \(-0.710765\pi\)
0.614803 0.788681i \(-0.289235\pi\)
\(158\) 11.0926i 0.882483i
\(159\) −27.4514 −2.17704
\(160\) 0 0
\(161\) −2.33823 −0.184279
\(162\) − 16.3871i − 1.28749i
\(163\) 13.5195i 1.05893i 0.848332 + 0.529464i \(0.177607\pi\)
−0.848332 + 0.529464i \(0.822393\pi\)
\(164\) −6.17270 −0.482007
\(165\) 0 0
\(166\) −30.0771 −2.33444
\(167\) − 13.1054i − 1.01413i −0.861908 0.507065i \(-0.830731\pi\)
0.861908 0.507065i \(-0.169269\pi\)
\(168\) − 1.88601i − 0.145509i
\(169\) 5.03817 0.387551
\(170\) 0 0
\(171\) 2.65109 0.202734
\(172\) 8.82379i 0.672808i
\(173\) 1.48827i 0.113151i 0.998398 + 0.0565754i \(0.0180181\pi\)
−0.998398 + 0.0565754i \(0.981982\pi\)
\(174\) −13.2555 −1.00489
\(175\) 0 0
\(176\) 6.78270 0.511265
\(177\) − 14.3977i − 1.08220i
\(178\) − 2.47839i − 0.185763i
\(179\) 17.1132 1.27910 0.639550 0.768750i \(-0.279121\pi\)
0.639550 + 0.768750i \(0.279121\pi\)
\(180\) 0 0
\(181\) −5.73891 −0.426569 −0.213285 0.976990i \(-0.568416\pi\)
−0.213285 + 0.976990i \(0.568416\pi\)
\(182\) − 1.75733i − 0.130262i
\(183\) 11.9533i 0.883612i
\(184\) −13.0382 −0.961187
\(185\) 0 0
\(186\) −9.73598 −0.713877
\(187\) 8.78270i 0.642255i
\(188\) − 4.99437i − 0.364252i
\(189\) −0.312860 −0.0227572
\(190\) 0 0
\(191\) 22.3948 1.62043 0.810216 0.586131i \(-0.199350\pi\)
0.810216 + 0.586131i \(0.199350\pi\)
\(192\) − 8.00987i − 0.578063i
\(193\) − 21.3687i − 1.53815i −0.639159 0.769075i \(-0.720717\pi\)
0.639159 0.769075i \(-0.279283\pi\)
\(194\) −19.4543 −1.39674
\(195\) 0 0
\(196\) −4.97945 −0.355675
\(197\) − 1.11399i − 0.0793682i −0.999212 0.0396841i \(-0.987365\pi\)
0.999212 0.0396841i \(-0.0126352\pi\)
\(198\) 6.02830i 0.428412i
\(199\) 2.22505 0.157729 0.0788647 0.996885i \(-0.474870\pi\)
0.0788647 + 0.996885i \(0.474870\pi\)
\(200\) 0 0
\(201\) 7.67164 0.541116
\(202\) − 15.1706i − 1.06740i
\(203\) 1.27389i 0.0894096i
\(204\) −11.0078 −0.770697
\(205\) 0 0
\(206\) 15.6404 1.08972
\(207\) − 16.4338i − 1.14223i
\(208\) − 13.8967i − 0.963562i
\(209\) 1.37720 0.0952631
\(210\) 0 0
\(211\) −9.75441 −0.671521 −0.335760 0.941947i \(-0.608993\pi\)
−0.335760 + 0.941947i \(0.608993\pi\)
\(212\) − 8.38495i − 0.575881i
\(213\) − 5.47277i − 0.374988i
\(214\) −25.3460 −1.73262
\(215\) 0 0
\(216\) −1.74453 −0.118700
\(217\) 0.935657i 0.0635166i
\(218\) 27.6794i 1.87468i
\(219\) 7.60437 0.513856
\(220\) 0 0
\(221\) 17.9944 1.21043
\(222\) 21.9164i 1.47093i
\(223\) − 18.6433i − 1.24845i −0.781244 0.624225i \(-0.785415\pi\)
0.781244 0.624225i \(-0.214585\pi\)
\(224\) 1.48052 0.0989211
\(225\) 0 0
\(226\) 22.0099 1.46407
\(227\) 8.04672i 0.534080i 0.963686 + 0.267040i \(0.0860455\pi\)
−0.963686 + 0.267040i \(0.913954\pi\)
\(228\) 1.72611i 0.114314i
\(229\) −20.1415 −1.33099 −0.665493 0.746404i \(-0.731779\pi\)
−0.665493 + 0.746404i \(0.731779\pi\)
\(230\) 0 0
\(231\) 1.23492 0.0812518
\(232\) 7.10331i 0.466355i
\(233\) − 1.73386i − 0.113589i −0.998386 0.0567945i \(-0.981912\pi\)
0.998386 0.0567945i \(-0.0180880\pi\)
\(234\) 12.3510 0.807412
\(235\) 0 0
\(236\) 4.39775 0.286269
\(237\) 15.9709i 1.03742i
\(238\) 3.97170i 0.257447i
\(239\) 18.3150 1.18470 0.592349 0.805682i \(-0.298201\pi\)
0.592349 + 0.805682i \(0.298201\pi\)
\(240\) 0 0
\(241\) −2.19675 −0.141505 −0.0707526 0.997494i \(-0.522540\pi\)
−0.0707526 + 0.997494i \(0.522540\pi\)
\(242\) − 15.0304i − 0.966192i
\(243\) − 21.1054i − 1.35391i
\(244\) −3.65109 −0.233737
\(245\) 0 0
\(246\) −33.3665 −2.12737
\(247\) − 2.82167i − 0.179539i
\(248\) 5.21730i 0.331299i
\(249\) −43.3043 −2.74430
\(250\) 0 0
\(251\) −13.6716 −0.862946 −0.431473 0.902126i \(-0.642006\pi\)
−0.431473 + 0.902126i \(0.642006\pi\)
\(252\) 0.726109i 0.0457406i
\(253\) − 8.53711i − 0.536723i
\(254\) −5.03042 −0.315637
\(255\) 0 0
\(256\) 15.4076 0.962976
\(257\) − 28.4904i − 1.77718i −0.458701 0.888591i \(-0.651685\pi\)
0.458701 0.888591i \(-0.348315\pi\)
\(258\) 47.6970i 2.96949i
\(259\) 2.10624 0.130875
\(260\) 0 0
\(261\) −8.95328 −0.554194
\(262\) − 14.3772i − 0.888227i
\(263\) 5.36945i 0.331095i 0.986202 + 0.165547i \(0.0529391\pi\)
−0.986202 + 0.165547i \(0.947061\pi\)
\(264\) 6.88601 0.423805
\(265\) 0 0
\(266\) 0.622797 0.0381861
\(267\) − 3.56833i − 0.218378i
\(268\) 2.34328i 0.143139i
\(269\) −7.06727 −0.430899 −0.215449 0.976515i \(-0.569122\pi\)
−0.215449 + 0.976515i \(0.569122\pi\)
\(270\) 0 0
\(271\) 21.6970 1.31800 0.659000 0.752143i \(-0.270980\pi\)
0.659000 + 0.752143i \(0.270980\pi\)
\(272\) 31.4076i 1.90437i
\(273\) − 2.53016i − 0.153132i
\(274\) 10.8881 0.657776
\(275\) 0 0
\(276\) 10.6999 0.644060
\(277\) − 25.1132i − 1.50891i −0.656355 0.754453i \(-0.727902\pi\)
0.656355 0.754453i \(-0.272098\pi\)
\(278\) 16.7877i 1.00686i
\(279\) −6.57608 −0.393699
\(280\) 0 0
\(281\) −10.0411 −0.599001 −0.299501 0.954096i \(-0.596820\pi\)
−0.299501 + 0.954096i \(0.596820\pi\)
\(282\) − 26.9971i − 1.60765i
\(283\) − 20.9143i − 1.24323i −0.783324 0.621613i \(-0.786478\pi\)
0.783324 0.621613i \(-0.213522\pi\)
\(284\) 1.67164 0.0991936
\(285\) 0 0
\(286\) 6.41617 0.379396
\(287\) 3.20662i 0.189281i
\(288\) 10.4055i 0.613150i
\(289\) −23.6687 −1.39228
\(290\) 0 0
\(291\) −28.0099 −1.64197
\(292\) 2.32273i 0.135928i
\(293\) − 0.818748i − 0.0478318i −0.999714 0.0239159i \(-0.992387\pi\)
0.999714 0.0239159i \(-0.00761339\pi\)
\(294\) −26.9164 −1.56980
\(295\) 0 0
\(296\) 11.7445 0.682637
\(297\) − 1.14228i − 0.0662819i
\(298\) 9.14711i 0.529878i
\(299\) −17.4912 −1.01154
\(300\) 0 0
\(301\) 4.58383 0.264207
\(302\) 8.45997i 0.486817i
\(303\) − 21.8422i − 1.25480i
\(304\) 4.92498 0.282467
\(305\) 0 0
\(306\) −27.9143 −1.59575
\(307\) 7.44447i 0.424878i 0.977174 + 0.212439i \(0.0681407\pi\)
−0.977174 + 0.212439i \(0.931859\pi\)
\(308\) 0.377203i 0.0214931i
\(309\) 22.5187 1.28104
\(310\) 0 0
\(311\) −0.956204 −0.0542213 −0.0271107 0.999632i \(-0.508631\pi\)
−0.0271107 + 0.999632i \(0.508631\pi\)
\(312\) − 14.1084i − 0.798729i
\(313\) 5.98158i 0.338099i 0.985608 + 0.169049i \(0.0540697\pi\)
−0.985608 + 0.169049i \(0.945930\pi\)
\(314\) 32.6327 1.84157
\(315\) 0 0
\(316\) −4.87826 −0.274424
\(317\) − 22.6511i − 1.27221i −0.771602 0.636106i \(-0.780544\pi\)
0.771602 0.636106i \(-0.219456\pi\)
\(318\) − 45.3249i − 2.54169i
\(319\) −4.65109 −0.260411
\(320\) 0 0
\(321\) −36.4925 −2.03681
\(322\) − 3.86064i − 0.215145i
\(323\) 6.37720i 0.354837i
\(324\) 7.20662 0.400368
\(325\) 0 0
\(326\) −22.3219 −1.23630
\(327\) 39.8521i 2.20383i
\(328\) 17.8804i 0.987279i
\(329\) −2.59450 −0.143039
\(330\) 0 0
\(331\) 4.16283 0.228810 0.114405 0.993434i \(-0.463504\pi\)
0.114405 + 0.993434i \(0.463504\pi\)
\(332\) − 13.2272i − 0.725935i
\(333\) 14.8032i 0.811213i
\(334\) 21.6383 1.18399
\(335\) 0 0
\(336\) 4.41617 0.240922
\(337\) 18.0304i 0.982180i 0.871109 + 0.491090i \(0.163401\pi\)
−0.871109 + 0.491090i \(0.836599\pi\)
\(338\) 8.31849i 0.452466i
\(339\) 31.6893 1.72112
\(340\) 0 0
\(341\) −3.41617 −0.184996
\(342\) 4.37720i 0.236692i
\(343\) 5.22717i 0.282241i
\(344\) 25.5598 1.37809
\(345\) 0 0
\(346\) −2.45726 −0.132103
\(347\) − 7.43380i − 0.399067i −0.979891 0.199534i \(-0.936057\pi\)
0.979891 0.199534i \(-0.0639427\pi\)
\(348\) − 5.82942i − 0.312490i
\(349\) −21.9194 −1.17332 −0.586658 0.809835i \(-0.699557\pi\)
−0.586658 + 0.809835i \(0.699557\pi\)
\(350\) 0 0
\(351\) −2.34036 −0.124919
\(352\) 5.40550i 0.288114i
\(353\) 10.3695i 0.551910i 0.961171 + 0.275955i \(0.0889941\pi\)
−0.961171 + 0.275955i \(0.911006\pi\)
\(354\) 23.7720 1.26347
\(355\) 0 0
\(356\) 1.08993 0.0577664
\(357\) 5.71836i 0.302648i
\(358\) 28.2555i 1.49335i
\(359\) 23.9893 1.26611 0.633054 0.774108i \(-0.281801\pi\)
0.633054 + 0.774108i \(0.281801\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) − 9.47547i − 0.498020i
\(363\) − 21.6404i − 1.13583i
\(364\) 0.772829 0.0405073
\(365\) 0 0
\(366\) −19.7360 −1.03162
\(367\) − 35.0275i − 1.82842i −0.405240 0.914210i \(-0.632812\pi\)
0.405240 0.914210i \(-0.367188\pi\)
\(368\) − 30.5294i − 1.59145i
\(369\) −22.5371 −1.17323
\(370\) 0 0
\(371\) −4.35586 −0.226145
\(372\) − 4.28164i − 0.221993i
\(373\) 30.8003i 1.59478i 0.603464 + 0.797390i \(0.293787\pi\)
−0.603464 + 0.797390i \(0.706213\pi\)
\(374\) −14.5011 −0.749832
\(375\) 0 0
\(376\) −14.4671 −0.746086
\(377\) 9.52936i 0.490787i
\(378\) − 0.516561i − 0.0265691i
\(379\) −0.671640 −0.0344998 −0.0172499 0.999851i \(-0.505491\pi\)
−0.0172499 + 0.999851i \(0.505491\pi\)
\(380\) 0 0
\(381\) −7.24267 −0.371053
\(382\) 36.9759i 1.89185i
\(383\) − 30.1805i − 1.54215i −0.636745 0.771075i \(-0.719720\pi\)
0.636745 0.771075i \(-0.280280\pi\)
\(384\) 31.8860 1.62718
\(385\) 0 0
\(386\) 35.2816 1.79579
\(387\) 32.2165i 1.63766i
\(388\) − 8.55553i − 0.434341i
\(389\) 31.5109 1.59767 0.798834 0.601552i \(-0.205451\pi\)
0.798834 + 0.601552i \(0.205451\pi\)
\(390\) 0 0
\(391\) 39.5315 1.99919
\(392\) 14.4239i 0.728518i
\(393\) − 20.6999i − 1.04417i
\(394\) 1.83929 0.0926623
\(395\) 0 0
\(396\) −2.65109 −0.133222
\(397\) 12.5761i 0.631175i 0.948896 + 0.315588i \(0.102202\pi\)
−0.948896 + 0.315588i \(0.897798\pi\)
\(398\) 3.67376i 0.184149i
\(399\) 0.896688 0.0448905
\(400\) 0 0
\(401\) 24.6036 1.22864 0.614322 0.789056i \(-0.289430\pi\)
0.614322 + 0.789056i \(0.289430\pi\)
\(402\) 12.6666i 0.631752i
\(403\) 6.99920i 0.348655i
\(404\) 6.67164 0.331926
\(405\) 0 0
\(406\) −2.10331 −0.104386
\(407\) 7.69006i 0.381182i
\(408\) 31.8860i 1.57859i
\(409\) −13.6666 −0.675770 −0.337885 0.941187i \(-0.609711\pi\)
−0.337885 + 0.941187i \(0.609711\pi\)
\(410\) 0 0
\(411\) 15.6765 0.773263
\(412\) 6.87826i 0.338868i
\(413\) − 2.28456i − 0.112416i
\(414\) 27.1337 1.33355
\(415\) 0 0
\(416\) 11.0750 0.542997
\(417\) 24.1706i 1.18364i
\(418\) 2.27389i 0.111220i
\(419\) −12.6893 −0.619911 −0.309956 0.950751i \(-0.600314\pi\)
−0.309956 + 0.950751i \(0.600314\pi\)
\(420\) 0 0
\(421\) 29.1826 1.42227 0.711136 0.703055i \(-0.248181\pi\)
0.711136 + 0.703055i \(0.248181\pi\)
\(422\) − 16.1054i − 0.784000i
\(423\) − 18.2349i − 0.886612i
\(424\) −24.2886 −1.17956
\(425\) 0 0
\(426\) 9.03605 0.437798
\(427\) 1.89669i 0.0917872i
\(428\) − 11.1465i − 0.538788i
\(429\) 9.23784 0.446007
\(430\) 0 0
\(431\) −29.9816 −1.44416 −0.722081 0.691809i \(-0.756814\pi\)
−0.722081 + 0.691809i \(0.756814\pi\)
\(432\) − 4.08489i − 0.196534i
\(433\) − 4.76216i − 0.228855i −0.993432 0.114427i \(-0.963497\pi\)
0.993432 0.114427i \(-0.0365033\pi\)
\(434\) −1.54486 −0.0741555
\(435\) 0 0
\(436\) −12.1727 −0.582967
\(437\) − 6.19887i − 0.296532i
\(438\) 12.5555i 0.599926i
\(439\) −6.88601 −0.328652 −0.164326 0.986406i \(-0.552545\pi\)
−0.164326 + 0.986406i \(0.552545\pi\)
\(440\) 0 0
\(441\) −18.1805 −0.865736
\(442\) 29.7104i 1.41318i
\(443\) 8.65109i 0.411026i 0.978654 + 0.205513i \(0.0658863\pi\)
−0.978654 + 0.205513i \(0.934114\pi\)
\(444\) −9.63830 −0.457413
\(445\) 0 0
\(446\) 30.7819 1.45757
\(447\) 13.1698i 0.622909i
\(448\) − 1.27097i − 0.0600476i
\(449\) −8.63055 −0.407301 −0.203650 0.979044i \(-0.565281\pi\)
−0.203650 + 0.979044i \(0.565281\pi\)
\(450\) 0 0
\(451\) −11.7077 −0.551293
\(452\) 9.67939i 0.455280i
\(453\) 12.1805i 0.572288i
\(454\) −13.2859 −0.623538
\(455\) 0 0
\(456\) 5.00000 0.234146
\(457\) 28.6092i 1.33828i 0.743135 + 0.669141i \(0.233338\pi\)
−0.743135 + 0.669141i \(0.766662\pi\)
\(458\) − 33.2555i − 1.55393i
\(459\) 5.28939 0.246888
\(460\) 0 0
\(461\) −39.1025 −1.82119 −0.910593 0.413305i \(-0.864374\pi\)
−0.910593 + 0.413305i \(0.864374\pi\)
\(462\) 2.03897i 0.0948615i
\(463\) − 8.04380i − 0.373827i −0.982376 0.186913i \(-0.940152\pi\)
0.982376 0.186913i \(-0.0598484\pi\)
\(464\) −16.6327 −0.772152
\(465\) 0 0
\(466\) 2.86276 0.132615
\(467\) − 17.0488i − 0.788926i −0.918912 0.394463i \(-0.870931\pi\)
0.918912 0.394463i \(-0.129069\pi\)
\(468\) 5.43167i 0.251079i
\(469\) 1.21730 0.0562096
\(470\) 0 0
\(471\) 46.9837 2.16489
\(472\) − 12.7389i − 0.586356i
\(473\) 16.7360i 0.769521i
\(474\) −26.3695 −1.21119
\(475\) 0 0
\(476\) −1.74666 −0.0800578
\(477\) − 30.6142i − 1.40173i
\(478\) 30.2397i 1.38313i
\(479\) −22.5478 −1.03023 −0.515117 0.857120i \(-0.672252\pi\)
−0.515117 + 0.857120i \(0.672252\pi\)
\(480\) 0 0
\(481\) 15.7557 0.718399
\(482\) − 3.62704i − 0.165207i
\(483\) − 5.55845i − 0.252918i
\(484\) 6.61000 0.300455
\(485\) 0 0
\(486\) 34.8470 1.58069
\(487\) 24.5577i 1.11281i 0.830910 + 0.556407i \(0.187820\pi\)
−0.830910 + 0.556407i \(0.812180\pi\)
\(488\) 10.5761i 0.478757i
\(489\) −32.1386 −1.45336
\(490\) 0 0
\(491\) −16.9298 −0.764032 −0.382016 0.924156i \(-0.624770\pi\)
−0.382016 + 0.924156i \(0.624770\pi\)
\(492\) − 14.6738i − 0.661544i
\(493\) − 21.5371i − 0.969983i
\(494\) 4.65884 0.209611
\(495\) 0 0
\(496\) −12.2165 −0.548537
\(497\) − 0.868391i − 0.0389527i
\(498\) − 71.4995i − 3.20397i
\(499\) −0.418295 −0.0187255 −0.00936273 0.999956i \(-0.502980\pi\)
−0.00936273 + 0.999956i \(0.502980\pi\)
\(500\) 0 0
\(501\) 31.1543 1.39187
\(502\) − 22.5732i − 1.00749i
\(503\) − 12.5993i − 0.561776i −0.959741 0.280888i \(-0.909371\pi\)
0.959741 0.280888i \(-0.0906290\pi\)
\(504\) 2.10331 0.0936890
\(505\) 0 0
\(506\) 14.0956 0.626624
\(507\) 11.9767i 0.531906i
\(508\) − 2.21225i − 0.0981528i
\(509\) −12.8209 −0.568275 −0.284138 0.958784i \(-0.591707\pi\)
−0.284138 + 0.958784i \(0.591707\pi\)
\(510\) 0 0
\(511\) 1.20662 0.0533779
\(512\) − 1.38708i − 0.0613007i
\(513\) − 0.829422i − 0.0366199i
\(514\) 47.0403 2.07486
\(515\) 0 0
\(516\) −20.9759 −0.923415
\(517\) − 9.47277i − 0.416612i
\(518\) 3.47759i 0.152797i
\(519\) −3.53791 −0.155297
\(520\) 0 0
\(521\) 11.3743 0.498316 0.249158 0.968463i \(-0.419846\pi\)
0.249158 + 0.968463i \(0.419846\pi\)
\(522\) − 14.7827i − 0.647021i
\(523\) 33.0948i 1.44713i 0.690255 + 0.723566i \(0.257498\pi\)
−0.690255 + 0.723566i \(0.742502\pi\)
\(524\) 6.32273 0.276210
\(525\) 0 0
\(526\) −8.86547 −0.386553
\(527\) − 15.8187i − 0.689075i
\(528\) 16.1239i 0.701701i
\(529\) −15.4260 −0.670698
\(530\) 0 0
\(531\) 16.0566 0.696797
\(532\) 0.273891i 0.0118747i
\(533\) 23.9872i 1.03900i
\(534\) 5.89164 0.254956
\(535\) 0 0
\(536\) 6.78775 0.293186
\(537\) 40.6815i 1.75554i
\(538\) − 11.6687i − 0.503074i
\(539\) −9.44447 −0.406802
\(540\) 0 0
\(541\) 31.4338 1.35144 0.675722 0.737156i \(-0.263832\pi\)
0.675722 + 0.737156i \(0.263832\pi\)
\(542\) 35.8238i 1.53876i
\(543\) − 13.6425i − 0.585458i
\(544\) −25.0304 −1.07317
\(545\) 0 0
\(546\) 4.17753 0.178782
\(547\) 23.3460i 0.998202i 0.866544 + 0.499101i \(0.166336\pi\)
−0.866544 + 0.499101i \(0.833664\pi\)
\(548\) 4.78833i 0.204547i
\(549\) −13.3305 −0.568931
\(550\) 0 0
\(551\) −3.37720 −0.143874
\(552\) − 30.9944i − 1.31921i
\(553\) 2.53418i 0.107764i
\(554\) 41.4642 1.76165
\(555\) 0 0
\(556\) −7.38283 −0.313102
\(557\) − 15.9229i − 0.674673i −0.941384 0.337337i \(-0.890474\pi\)
0.941384 0.337337i \(-0.109526\pi\)
\(558\) − 10.8577i − 0.459644i
\(559\) 34.2894 1.45029
\(560\) 0 0
\(561\) −20.8783 −0.881481
\(562\) − 16.5788i − 0.699334i
\(563\) − 29.6404i − 1.24919i −0.780947 0.624597i \(-0.785263\pi\)
0.780947 0.624597i \(-0.214737\pi\)
\(564\) 11.8726 0.499928
\(565\) 0 0
\(566\) 34.5315 1.45147
\(567\) − 3.74373i − 0.157222i
\(568\) − 4.84222i − 0.203175i
\(569\) 7.64334 0.320426 0.160213 0.987082i \(-0.448782\pi\)
0.160213 + 0.987082i \(0.448782\pi\)
\(570\) 0 0
\(571\) −10.5577 −0.441824 −0.220912 0.975294i \(-0.570903\pi\)
−0.220912 + 0.975294i \(0.570903\pi\)
\(572\) 2.82167i 0.117980i
\(573\) 53.2370i 2.22401i
\(574\) −5.29444 −0.220986
\(575\) 0 0
\(576\) 8.93273 0.372197
\(577\) − 38.9447i − 1.62129i −0.585538 0.810645i \(-0.699117\pi\)
0.585538 0.810645i \(-0.300883\pi\)
\(578\) − 39.0793i − 1.62548i
\(579\) 50.7976 2.11108
\(580\) 0 0
\(581\) −6.87131 −0.285070
\(582\) − 46.2469i − 1.91700i
\(583\) − 15.9036i − 0.658661i
\(584\) 6.72823 0.278416
\(585\) 0 0
\(586\) 1.35183 0.0558436
\(587\) 10.9992i 0.453986i 0.973896 + 0.226993i \(0.0728894\pi\)
−0.973896 + 0.226993i \(0.927111\pi\)
\(588\) − 11.8372i − 0.488157i
\(589\) −2.48052 −0.102208
\(590\) 0 0
\(591\) 2.64817 0.108931
\(592\) 27.5003i 1.13025i
\(593\) 26.7848i 1.09992i 0.835191 + 0.549960i \(0.185357\pi\)
−0.835191 + 0.549960i \(0.814643\pi\)
\(594\) 1.88601 0.0773841
\(595\) 0 0
\(596\) −4.02267 −0.164775
\(597\) 5.28939i 0.216480i
\(598\) − 28.8796i − 1.18097i
\(599\) 3.44930 0.140934 0.0704672 0.997514i \(-0.477551\pi\)
0.0704672 + 0.997514i \(0.477551\pi\)
\(600\) 0 0
\(601\) −37.0686 −1.51206 −0.756030 0.654537i \(-0.772863\pi\)
−0.756030 + 0.654537i \(0.772863\pi\)
\(602\) 7.56833i 0.308462i
\(603\) 8.55553i 0.348408i
\(604\) −3.72048 −0.151384
\(605\) 0 0
\(606\) 36.0635 1.46498
\(607\) 14.8732i 0.603685i 0.953358 + 0.301843i \(0.0976017\pi\)
−0.953358 + 0.301843i \(0.902398\pi\)
\(608\) 3.92498i 0.159179i
\(609\) −3.02830 −0.122713
\(610\) 0 0
\(611\) −19.4082 −0.785172
\(612\) − 12.2760i − 0.496228i
\(613\) − 40.4671i − 1.63445i −0.576317 0.817226i \(-0.695511\pi\)
0.576317 0.817226i \(-0.304489\pi\)
\(614\) −12.2915 −0.496045
\(615\) 0 0
\(616\) 1.09264 0.0440237
\(617\) − 8.76991i − 0.353063i −0.984295 0.176532i \(-0.943512\pi\)
0.984295 0.176532i \(-0.0564878\pi\)
\(618\) 37.1805i 1.49562i
\(619\) −32.0510 −1.28824 −0.644119 0.764926i \(-0.722776\pi\)
−0.644119 + 0.764926i \(0.722776\pi\)
\(620\) 0 0
\(621\) −5.14148 −0.206321
\(622\) − 1.57878i − 0.0633034i
\(623\) − 0.566205i − 0.0226845i
\(624\) 33.0352 1.32247
\(625\) 0 0
\(626\) −9.87614 −0.394730
\(627\) 3.27389i 0.130747i
\(628\) 14.3510i 0.572668i
\(629\) −35.6092 −1.41983
\(630\) 0 0
\(631\) −18.9709 −0.755220 −0.377610 0.925965i \(-0.623254\pi\)
−0.377610 + 0.925965i \(0.623254\pi\)
\(632\) 14.1308i 0.562093i
\(633\) − 23.1882i − 0.921648i
\(634\) 37.3991 1.48531
\(635\) 0 0
\(636\) 19.9327 0.790384
\(637\) 19.3502i 0.766684i
\(638\) − 7.67939i − 0.304030i
\(639\) 6.10331 0.241443
\(640\) 0 0
\(641\) −44.3433 −1.75145 −0.875727 0.482806i \(-0.839617\pi\)
−0.875727 + 0.482806i \(0.839617\pi\)
\(642\) − 60.2525i − 2.37798i
\(643\) 42.9397i 1.69338i 0.532090 + 0.846688i \(0.321407\pi\)
−0.532090 + 0.846688i \(0.678593\pi\)
\(644\) 1.69781 0.0669032
\(645\) 0 0
\(646\) −10.5294 −0.414272
\(647\) − 17.9864i − 0.707118i −0.935412 0.353559i \(-0.884971\pi\)
0.935412 0.353559i \(-0.115029\pi\)
\(648\) − 20.8753i − 0.820061i
\(649\) 8.34116 0.327419
\(650\) 0 0
\(651\) −2.22425 −0.0871751
\(652\) − 9.81663i − 0.384449i
\(653\) − 21.7274i − 0.850260i −0.905132 0.425130i \(-0.860228\pi\)
0.905132 0.425130i \(-0.139772\pi\)
\(654\) −65.7995 −2.57297
\(655\) 0 0
\(656\) −41.8676 −1.63465
\(657\) 8.48052i 0.330856i
\(658\) − 4.28376i − 0.166998i
\(659\) 40.8590 1.59164 0.795821 0.605532i \(-0.207040\pi\)
0.795821 + 0.605532i \(0.207040\pi\)
\(660\) 0 0
\(661\) 33.7282 1.31188 0.655938 0.754815i \(-0.272273\pi\)
0.655938 + 0.754815i \(0.272273\pi\)
\(662\) 6.87322i 0.267135i
\(663\) 42.7763i 1.66129i
\(664\) −38.3150 −1.48691
\(665\) 0 0
\(666\) −24.4415 −0.947091
\(667\) 20.9349i 0.810601i
\(668\) 9.51598i 0.368184i
\(669\) 44.3190 1.71347
\(670\) 0 0
\(671\) −6.92498 −0.267336
\(672\) 3.51948i 0.135767i
\(673\) − 11.0622i − 0.426417i −0.977007 0.213209i \(-0.931609\pi\)
0.977007 0.213209i \(-0.0683914\pi\)
\(674\) −29.7699 −1.14669
\(675\) 0 0
\(676\) −3.65826 −0.140702
\(677\) 6.14711i 0.236253i 0.992999 + 0.118126i \(0.0376888\pi\)
−0.992999 + 0.118126i \(0.962311\pi\)
\(678\) 52.3219i 2.00941i
\(679\) −4.44447 −0.170563
\(680\) 0 0
\(681\) −19.1287 −0.733013
\(682\) − 5.64042i − 0.215983i
\(683\) − 13.6073i − 0.520669i −0.965519 0.260334i \(-0.916167\pi\)
0.965519 0.260334i \(-0.0838328\pi\)
\(684\) −1.92498 −0.0736036
\(685\) 0 0
\(686\) −8.63055 −0.329516
\(687\) − 47.8804i − 1.82675i
\(688\) 59.8492i 2.28173i
\(689\) −32.5840 −1.24135
\(690\) 0 0
\(691\) −40.3043 −1.53325 −0.766624 0.642096i \(-0.778065\pi\)
−0.766624 + 0.642096i \(0.778065\pi\)
\(692\) − 1.08064i − 0.0410799i
\(693\) 1.37720i 0.0523156i
\(694\) 12.2739 0.465911
\(695\) 0 0
\(696\) −16.8860 −0.640063
\(697\) − 54.2130i − 2.05346i
\(698\) − 36.1909i − 1.36985i
\(699\) 4.12174 0.155898
\(700\) 0 0
\(701\) −3.23704 −0.122261 −0.0611307 0.998130i \(-0.519471\pi\)
−0.0611307 + 0.998130i \(0.519471\pi\)
\(702\) − 3.86415i − 0.145843i
\(703\) 5.58383i 0.210598i
\(704\) 4.64042 0.174892
\(705\) 0 0
\(706\) −17.1209 −0.644355
\(707\) − 3.46582i − 0.130345i
\(708\) 10.4543i 0.392898i
\(709\) −20.2370 −0.760018 −0.380009 0.924983i \(-0.624079\pi\)
−0.380009 + 0.924983i \(0.624079\pi\)
\(710\) 0 0
\(711\) −17.8110 −0.667965
\(712\) − 3.15720i − 0.118321i
\(713\) 15.3764i 0.575851i
\(714\) −9.44155 −0.353341
\(715\) 0 0
\(716\) −12.4260 −0.464383
\(717\) 43.5384i 1.62597i
\(718\) 39.6086i 1.47818i
\(719\) −47.8804 −1.78564 −0.892819 0.450416i \(-0.851276\pi\)
−0.892819 + 0.450416i \(0.851276\pi\)
\(720\) 0 0
\(721\) 3.57315 0.133071
\(722\) 1.65109i 0.0614473i
\(723\) − 5.22212i − 0.194213i
\(724\) 4.16707 0.154868
\(725\) 0 0
\(726\) 35.7304 1.32608
\(727\) − 17.7926i − 0.659890i −0.944000 0.329945i \(-0.892970\pi\)
0.944000 0.329945i \(-0.107030\pi\)
\(728\) − 2.23864i − 0.0829697i
\(729\) 20.3969 0.755443
\(730\) 0 0
\(731\) −77.4968 −2.86632
\(732\) − 8.67939i − 0.320799i
\(733\) − 5.66097i − 0.209093i −0.994520 0.104546i \(-0.966661\pi\)
0.994520 0.104546i \(-0.0333390\pi\)
\(734\) 57.8337 2.13468
\(735\) 0 0
\(736\) 24.3305 0.896834
\(737\) 4.44447i 0.163714i
\(738\) − 37.2109i − 1.36975i
\(739\) 5.59955 0.205983 0.102991 0.994682i \(-0.467159\pi\)
0.102991 + 0.994682i \(0.467159\pi\)
\(740\) 0 0
\(741\) 6.70769 0.246413
\(742\) − 7.19193i − 0.264024i
\(743\) 5.81663i 0.213391i 0.994292 + 0.106696i \(0.0340270\pi\)
−0.994292 + 0.106696i \(0.965973\pi\)
\(744\) −12.4026 −0.454700
\(745\) 0 0
\(746\) −50.8542 −1.86191
\(747\) − 48.2936i − 1.76697i
\(748\) − 6.37720i − 0.233174i
\(749\) −5.79045 −0.211579
\(750\) 0 0
\(751\) −41.1797 −1.50267 −0.751333 0.659923i \(-0.770589\pi\)
−0.751333 + 0.659923i \(0.770589\pi\)
\(752\) − 33.8753i − 1.23531i
\(753\) − 32.5003i − 1.18438i
\(754\) −15.7339 −0.572993
\(755\) 0 0
\(756\) 0.227171 0.00826212
\(757\) 33.5208i 1.21833i 0.793042 + 0.609167i \(0.208496\pi\)
−0.793042 + 0.609167i \(0.791504\pi\)
\(758\) − 1.10894i − 0.0402785i
\(759\) 20.2944 0.736641
\(760\) 0 0
\(761\) 31.5032 1.14199 0.570995 0.820954i \(-0.306558\pi\)
0.570995 + 0.820954i \(0.306558\pi\)
\(762\) − 11.9583i − 0.433204i
\(763\) 6.32353i 0.228927i
\(764\) −16.2611 −0.588306
\(765\) 0 0
\(766\) 49.8307 1.80046
\(767\) − 17.0897i − 0.617074i
\(768\) 36.6270i 1.32166i
\(769\) 1.22425 0.0441475 0.0220737 0.999756i \(-0.492973\pi\)
0.0220737 + 0.999756i \(0.492973\pi\)
\(770\) 0 0
\(771\) 67.7274 2.43914
\(772\) 15.5160i 0.558432i
\(773\) 40.6687i 1.46275i 0.681974 + 0.731376i \(0.261122\pi\)
−0.681974 + 0.731376i \(0.738878\pi\)
\(774\) −53.1924 −1.91196
\(775\) 0 0
\(776\) −24.7827 −0.889647
\(777\) 5.00695i 0.179623i
\(778\) 52.0275i 1.86528i
\(779\) −8.50106 −0.304582
\(780\) 0 0
\(781\) 3.17058 0.113452
\(782\) 65.2702i 2.33406i
\(783\) 2.80113i 0.100104i
\(784\) −33.7742 −1.20622
\(785\) 0 0
\(786\) 34.1775 1.21907
\(787\) 39.9525i 1.42415i 0.702102 + 0.712076i \(0.252245\pi\)
−0.702102 + 0.712076i \(0.747755\pi\)
\(788\) 0.808876i 0.0288150i
\(789\) −12.7643 −0.454420
\(790\) 0 0
\(791\) 5.02830 0.178786
\(792\) 7.67939i 0.272875i
\(793\) 14.1882i 0.503838i
\(794\) −20.7643 −0.736897
\(795\) 0 0
\(796\) −1.61563 −0.0572644
\(797\) 4.53791i 0.160741i 0.996765 + 0.0803705i \(0.0256103\pi\)
−0.996765 + 0.0803705i \(0.974390\pi\)
\(798\) 1.48052i 0.0524097i
\(799\) 43.8641 1.55180
\(800\) 0 0
\(801\) 3.97945 0.140607
\(802\) 40.6228i 1.43444i
\(803\) 4.40550i 0.155467i
\(804\) −5.57045 −0.196455
\(805\) 0 0
\(806\) −11.5563 −0.407054
\(807\) − 16.8003i − 0.591399i
\(808\) − 19.3257i − 0.679874i
\(809\) −55.5958 −1.95465 −0.977323 0.211756i \(-0.932082\pi\)
−0.977323 + 0.211756i \(0.932082\pi\)
\(810\) 0 0
\(811\) 42.3326 1.48650 0.743249 0.669014i \(-0.233284\pi\)
0.743249 + 0.669014i \(0.233284\pi\)
\(812\) − 0.924984i − 0.0324606i
\(813\) 51.5782i 1.80893i
\(814\) −12.6970 −0.445030
\(815\) 0 0
\(816\) −74.6623 −2.61370
\(817\) 12.1522i 0.425150i
\(818\) − 22.5648i − 0.788961i
\(819\) 2.82167 0.0985972
\(820\) 0 0
\(821\) −3.10543 −0.108380 −0.0541902 0.998531i \(-0.517258\pi\)
−0.0541902 + 0.998531i \(0.517258\pi\)
\(822\) 25.8833i 0.902784i
\(823\) − 45.2002i − 1.57558i −0.615944 0.787790i \(-0.711225\pi\)
0.615944 0.787790i \(-0.288775\pi\)
\(824\) 19.9242 0.694092
\(825\) 0 0
\(826\) 3.77203 0.131246
\(827\) 35.6503i 1.23968i 0.784727 + 0.619841i \(0.212803\pi\)
−0.784727 + 0.619841i \(0.787197\pi\)
\(828\) 11.9327i 0.414691i
\(829\) 18.4330 0.640204 0.320102 0.947383i \(-0.396283\pi\)
0.320102 + 0.947383i \(0.396283\pi\)
\(830\) 0 0
\(831\) 59.6991 2.07094
\(832\) − 9.50749i − 0.329613i
\(833\) − 43.7331i − 1.51526i
\(834\) −39.9079 −1.38190
\(835\) 0 0
\(836\) −1.00000 −0.0345857
\(837\) 2.05739i 0.0711139i
\(838\) − 20.9512i − 0.723746i
\(839\) 14.1805 0.489564 0.244782 0.969578i \(-0.421284\pi\)
0.244782 + 0.969578i \(0.421284\pi\)
\(840\) 0 0
\(841\) −17.5945 −0.606707
\(842\) 48.1832i 1.66050i
\(843\) − 23.8697i − 0.822117i
\(844\) 7.08277 0.243799
\(845\) 0 0
\(846\) 30.1076 1.03512
\(847\) − 3.43380i − 0.117987i
\(848\) − 56.8726i − 1.95301i
\(849\) 49.7176 1.70630
\(850\) 0 0
\(851\) 34.6134 1.18653
\(852\) 3.97383i 0.136141i
\(853\) 42.6639i 1.46078i 0.683028 + 0.730392i \(0.260663\pi\)
−0.683028 + 0.730392i \(0.739337\pi\)
\(854\) −3.13161 −0.107161
\(855\) 0 0
\(856\) −32.2880 −1.10358
\(857\) 1.42392i 0.0486403i 0.999704 + 0.0243201i \(0.00774210\pi\)
−0.999704 + 0.0243201i \(0.992258\pi\)
\(858\) 15.2525i 0.520713i
\(859\) 8.27894 0.282474 0.141237 0.989976i \(-0.454892\pi\)
0.141237 + 0.989976i \(0.454892\pi\)
\(860\) 0 0
\(861\) −7.62280 −0.259784
\(862\) − 49.5024i − 1.68606i
\(863\) 30.4154i 1.03535i 0.855577 + 0.517676i \(0.173203\pi\)
−0.855577 + 0.517676i \(0.826797\pi\)
\(864\) 3.25547 0.110753
\(865\) 0 0
\(866\) 7.86276 0.267188
\(867\) − 56.2653i − 1.91087i
\(868\) − 0.679390i − 0.0230600i
\(869\) −9.25254 −0.313871
\(870\) 0 0
\(871\) 9.10602 0.308546
\(872\) 35.2605i 1.19407i
\(873\) − 31.2370i − 1.05721i
\(874\) 10.2349 0.346201
\(875\) 0 0
\(876\) −5.52161 −0.186558
\(877\) − 57.8484i − 1.95340i −0.214608 0.976700i \(-0.568847\pi\)
0.214608 0.976700i \(-0.431153\pi\)
\(878\) − 11.3695i − 0.383700i
\(879\) 1.94633 0.0656481
\(880\) 0 0
\(881\) 18.4055 0.620097 0.310049 0.950721i \(-0.399655\pi\)
0.310049 + 0.950721i \(0.399655\pi\)
\(882\) − 30.0176i − 1.01075i
\(883\) − 18.7947i − 0.632492i −0.948677 0.316246i \(-0.897578\pi\)
0.948677 0.316246i \(-0.102422\pi\)
\(884\) −13.0659 −0.439453
\(885\) 0 0
\(886\) −14.2838 −0.479872
\(887\) 11.1471i 0.374283i 0.982333 + 0.187142i \(0.0599223\pi\)
−0.982333 + 0.187142i \(0.940078\pi\)
\(888\) 27.9191i 0.936905i
\(889\) −1.14923 −0.0385440
\(890\) 0 0
\(891\) 13.6687 0.457919
\(892\) 13.5371i 0.453256i
\(893\) − 6.87826i − 0.230172i
\(894\) −21.7445 −0.727246
\(895\) 0 0
\(896\) 5.05952 0.169027
\(897\) − 41.5801i − 1.38832i
\(898\) − 14.2498i − 0.475523i
\(899\) 8.37720 0.279395
\(900\) 0 0
\(901\) 73.6425 2.45339
\(902\) − 19.3305i − 0.643635i
\(903\) 10.8967i 0.362619i
\(904\) 28.0382 0.932536
\(905\) 0 0
\(906\) −20.1111 −0.668145
\(907\) − 38.5598i − 1.28036i −0.768226 0.640178i \(-0.778861\pi\)
0.768226 0.640178i \(-0.221139\pi\)
\(908\) − 5.84280i − 0.193900i
\(909\) 24.3588 0.807930
\(910\) 0 0
\(911\) −1.79820 −0.0595771 −0.0297885 0.999556i \(-0.509483\pi\)
−0.0297885 + 0.999556i \(0.509483\pi\)
\(912\) 11.7077i 0.387680i
\(913\) − 25.0878i − 0.830285i
\(914\) −47.2365 −1.56244
\(915\) 0 0
\(916\) 14.6249 0.483221
\(917\) − 3.28456i − 0.108466i
\(918\) 8.73328i 0.288241i
\(919\) 32.4458 1.07029 0.535144 0.844761i \(-0.320257\pi\)
0.535144 + 0.844761i \(0.320257\pi\)
\(920\) 0 0
\(921\) −17.6970 −0.583136
\(922\) − 64.5619i − 2.12623i
\(923\) − 6.49602i − 0.213819i
\(924\) −0.896688 −0.0294989
\(925\) 0 0
\(926\) 13.2811 0.436443
\(927\) 25.1132i 0.824825i
\(928\) − 13.2555i − 0.435132i
\(929\) 18.4231 0.604443 0.302222 0.953238i \(-0.402272\pi\)
0.302222 + 0.953238i \(0.402272\pi\)
\(930\) 0 0
\(931\) −6.85772 −0.224753
\(932\) 1.25897i 0.0412390i
\(933\) − 2.27309i − 0.0744176i
\(934\) 28.1492 0.921071
\(935\) 0 0
\(936\) 15.7339 0.514277
\(937\) − 8.29926i − 0.271125i −0.990769 0.135563i \(-0.956716\pi\)
0.990769 0.135563i \(-0.0432842\pi\)
\(938\) 2.00987i 0.0656247i
\(939\) −14.2194 −0.464033
\(940\) 0 0
\(941\) 33.6687 1.09757 0.548784 0.835964i \(-0.315091\pi\)
0.548784 + 0.835964i \(0.315091\pi\)
\(942\) 77.5745i 2.52751i
\(943\) 52.6970i 1.71605i
\(944\) 29.8286 0.970839
\(945\) 0 0
\(946\) −27.6327 −0.898416
\(947\) − 1.35103i − 0.0439026i −0.999759 0.0219513i \(-0.993012\pi\)
0.999759 0.0219513i \(-0.00698787\pi\)
\(948\) − 11.5966i − 0.376641i
\(949\) 9.02617 0.293002
\(950\) 0 0
\(951\) 53.8462 1.74608
\(952\) 5.05952i 0.163980i
\(953\) − 6.70769i − 0.217283i −0.994081 0.108642i \(-0.965350\pi\)
0.994081 0.108642i \(-0.0346501\pi\)
\(954\) 50.5470 1.63652
\(955\) 0 0
\(956\) −13.2987 −0.430110
\(957\) − 11.0566i − 0.357409i
\(958\) − 37.2285i − 1.20280i
\(959\) 2.48746 0.0803244
\(960\) 0 0
\(961\) −24.8470 −0.801518
\(962\) 26.0142i 0.838731i
\(963\) − 40.6970i − 1.31144i
\(964\) 1.59508 0.0513741
\(965\) 0 0
\(966\) 9.17753 0.295282
\(967\) − 19.5174i − 0.627636i −0.949483 0.313818i \(-0.898392\pi\)
0.949483 0.313818i \(-0.101608\pi\)
\(968\) − 19.1471i − 0.615411i
\(969\) −15.1599 −0.487006
\(970\) 0 0
\(971\) −8.50669 −0.272993 −0.136496 0.990641i \(-0.543584\pi\)
−0.136496 + 0.990641i \(0.543584\pi\)
\(972\) 15.3249i 0.491545i
\(973\) 3.83527i 0.122953i
\(974\) −40.5470 −1.29921
\(975\) 0 0
\(976\) −24.7643 −0.792685
\(977\) − 19.7048i − 0.630411i −0.949023 0.315206i \(-0.897927\pi\)
0.949023 0.315206i \(-0.102073\pi\)
\(978\) − 53.0638i − 1.69679i
\(979\) 2.06727 0.0660701
\(980\) 0 0
\(981\) −44.4437 −1.41898
\(982\) − 27.9527i − 0.892006i
\(983\) − 12.4677i − 0.397658i −0.980034 0.198829i \(-0.936286\pi\)
0.980034 0.198829i \(-0.0637139\pi\)
\(984\) −42.5053 −1.35502
\(985\) 0 0
\(986\) 35.5598 1.13245
\(987\) − 6.16765i − 0.196319i
\(988\) 2.04884i 0.0651824i
\(989\) 75.3297 2.39534
\(990\) 0 0
\(991\) 25.0841 0.796822 0.398411 0.917207i \(-0.369562\pi\)
0.398411 + 0.917207i \(0.369562\pi\)
\(992\) − 9.73598i − 0.309118i
\(993\) 9.89589i 0.314036i
\(994\) 1.43380 0.0454772
\(995\) 0 0
\(996\) 31.4437 0.996331
\(997\) − 11.8775i − 0.376163i −0.982153 0.188082i \(-0.939773\pi\)
0.982153 0.188082i \(-0.0602269\pi\)
\(998\) − 0.690644i − 0.0218620i
\(999\) 4.63135 0.146529
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.b.b.324.5 6
5.2 odd 4 475.2.a.g.1.1 yes 3
5.3 odd 4 475.2.a.e.1.3 3
5.4 even 2 inner 475.2.b.b.324.2 6
15.2 even 4 4275.2.a.ba.1.3 3
15.8 even 4 4275.2.a.bm.1.1 3
20.3 even 4 7600.2.a.cc.1.3 3
20.7 even 4 7600.2.a.bh.1.1 3
95.18 even 4 9025.2.a.bc.1.1 3
95.37 even 4 9025.2.a.y.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
475.2.a.e.1.3 3 5.3 odd 4
475.2.a.g.1.1 yes 3 5.2 odd 4
475.2.b.b.324.2 6 5.4 even 2 inner
475.2.b.b.324.5 6 1.1 even 1 trivial
4275.2.a.ba.1.3 3 15.2 even 4
4275.2.a.bm.1.1 3 15.8 even 4
7600.2.a.bh.1.1 3 20.7 even 4
7600.2.a.cc.1.3 3 20.3 even 4
9025.2.a.y.1.3 3 95.37 even 4
9025.2.a.bc.1.1 3 95.18 even 4