Newspace parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.b (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.0.1827904.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} + 9x^{4} + 14x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} + 9x^{4} + 14x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{4} + 5\nu^{2} - 1 ) / 5 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{4} + 10\nu^{2} + 14 ) / 5 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{5} + 10\nu^{3} + 19\nu ) / 5 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -3\nu^{5} - 25\nu^{3} - 27\nu ) / 5 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} - \beta_{2} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{5} + 3\beta_{4} - 6\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -5\beta_{3} + 10\beta_{2} + 16 \)
|
\(\nu^{5}\) | \(=\) |
\( -10\beta_{5} - 25\beta_{4} + 41\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).
\(n\) | \(77\) | \(401\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
324.1 |
|
− | 2.37720i | 1.27389i | −3.65109 | 0 | 3.02830 | − | 0.726109i | 3.92498i | 1.37720 | 0 | ||||||||||||||||||||||||||||||||||
324.2 | − | 1.65109i | − | 2.37720i | −0.726109 | 0 | −3.92498 | − | 0.377203i | − | 2.10331i | −2.65109 | 0 | |||||||||||||||||||||||||||||||||
324.3 | − | 1.27389i | − | 1.65109i | 0.377203 | 0 | −2.10331 | − | 3.65109i | − | 3.02830i | 0.273891 | 0 | |||||||||||||||||||||||||||||||||
324.4 | 1.27389i | 1.65109i | 0.377203 | 0 | −2.10331 | 3.65109i | 3.02830i | 0.273891 | 0 | |||||||||||||||||||||||||||||||||||||
324.5 | 1.65109i | 2.37720i | −0.726109 | 0 | −3.92498 | 0.377203i | 2.10331i | −2.65109 | 0 | |||||||||||||||||||||||||||||||||||||
324.6 | 2.37720i | − | 1.27389i | −3.65109 | 0 | 3.02830 | 0.726109i | − | 3.92498i | 1.37720 | 0 | |||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.b.b | 6 | |
5.b | even | 2 | 1 | inner | 475.2.b.b | 6 | |
5.c | odd | 4 | 1 | 475.2.a.e | ✓ | 3 | |
5.c | odd | 4 | 1 | 475.2.a.g | yes | 3 | |
15.e | even | 4 | 1 | 4275.2.a.ba | 3 | ||
15.e | even | 4 | 1 | 4275.2.a.bm | 3 | ||
20.e | even | 4 | 1 | 7600.2.a.bh | 3 | ||
20.e | even | 4 | 1 | 7600.2.a.cc | 3 | ||
95.g | even | 4 | 1 | 9025.2.a.y | 3 | ||
95.g | even | 4 | 1 | 9025.2.a.bc | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
475.2.a.e | ✓ | 3 | 5.c | odd | 4 | 1 | |
475.2.a.g | yes | 3 | 5.c | odd | 4 | 1 | |
475.2.b.b | 6 | 1.a | even | 1 | 1 | trivial | |
475.2.b.b | 6 | 5.b | even | 2 | 1 | inner | |
4275.2.a.ba | 3 | 15.e | even | 4 | 1 | ||
4275.2.a.bm | 3 | 15.e | even | 4 | 1 | ||
7600.2.a.bh | 3 | 20.e | even | 4 | 1 | ||
7600.2.a.cc | 3 | 20.e | even | 4 | 1 | ||
9025.2.a.y | 3 | 95.g | even | 4 | 1 | ||
9025.2.a.bc | 3 | 95.g | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} + 10T_{2}^{4} + 29T_{2}^{2} + 25 \)
acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} + 10 T^{4} + 29 T^{2} + 25 \)
$3$
\( T^{6} + 10 T^{4} + 29 T^{2} + 25 \)
$5$
\( T^{6} \)
$7$
\( T^{6} + 14 T^{4} + 9 T^{2} + 1 \)
$11$
\( (T^{3} - T^{2} - 4 T - 1)^{2} \)
$13$
\( T^{6} + 81 T^{4} + 1914 T^{2} + \cdots + 10609 \)
$17$
\( T^{6} + 74 T^{4} + 1509 T^{2} + \cdots + 6241 \)
$19$
\( (T + 1)^{6} \)
$23$
\( T^{6} + 82 T^{4} + 2081 T^{2} + \cdots + 15625 \)
$29$
\( (T^{3} - 5 T^{2} + 4 T + 5)^{2} \)
$31$
\( (T^{3} + T^{2} - 30 T + 53)^{2} \)
$37$
\( T^{6} + 173 T^{4} + 9426 T^{2} + \cdots + 156025 \)
$41$
\( (T^{3} - T^{2} - 82 T + 155)^{2} \)
$43$
\( T^{6} + 251 T^{4} + 15939 T^{2} + \cdots + 100489 \)
$47$
\( T^{6} + 209 T^{4} + 9694 T^{2} + \cdots + 96721 \)
$53$
\( T^{6} + 355 T^{4} + 35699 T^{2} + \cdots + 819025 \)
$59$
\( (T^{3} - 6 T^{2} - 40 T + 200)^{2} \)
$61$
\( (T^{3} - 3 T^{2} - 10 T - 1)^{2} \)
$67$
\( T^{6} + 169 T^{4} + 4394 T^{2} + \cdots + 28561 \)
$71$
\( (T^{3} - 7 T^{2} - T + 47)^{2} \)
$73$
\( T^{6} + 61 T^{4} + 794 T^{2} + \cdots + 2809 \)
$79$
\( (T^{3} - 18 T^{2} + 17 T + 395)^{2} \)
$83$
\( T^{6} + 549 T^{4} + 72114 T^{2} + \cdots + 17161 \)
$89$
\( (T^{3} - 20 T^{2} + 51 T + 125)^{2} \)
$97$
\( T^{6} + 169 T^{4} + 4394 T^{2} + \cdots + 28561 \)
show more
show less