Properties

Label 475.2.b.a
Level $475$
Weight $2$
Character orbit 475.b
Analytic conductor $3.793$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.79289409601\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 19)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 i q^{3} + 2 q^{4} -i q^{7} - q^{9} +O(q^{10})\) \( q + 2 i q^{3} + 2 q^{4} -i q^{7} - q^{9} + 3 q^{11} + 4 i q^{12} + 4 i q^{13} + 4 q^{16} -3 i q^{17} - q^{19} + 2 q^{21} + 4 i q^{27} -2 i q^{28} -6 q^{29} -4 q^{31} + 6 i q^{33} -2 q^{36} + 2 i q^{37} -8 q^{39} -6 q^{41} + i q^{43} + 6 q^{44} -3 i q^{47} + 8 i q^{48} + 6 q^{49} + 6 q^{51} + 8 i q^{52} -12 i q^{53} -2 i q^{57} + 6 q^{59} - q^{61} + i q^{63} + 8 q^{64} -4 i q^{67} -6 i q^{68} + 6 q^{71} + 7 i q^{73} -2 q^{76} -3 i q^{77} -8 q^{79} -11 q^{81} -12 i q^{83} + 4 q^{84} -12 i q^{87} -12 q^{89} + 4 q^{91} -8 i q^{93} + 8 i q^{97} -3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{4} - 2 q^{9} + O(q^{10}) \) \( 2 q + 4 q^{4} - 2 q^{9} + 6 q^{11} + 8 q^{16} - 2 q^{19} + 4 q^{21} - 12 q^{29} - 8 q^{31} - 4 q^{36} - 16 q^{39} - 12 q^{41} + 12 q^{44} + 12 q^{49} + 12 q^{51} + 12 q^{59} - 2 q^{61} + 16 q^{64} + 12 q^{71} - 4 q^{76} - 16 q^{79} - 22 q^{81} + 8 q^{84} - 24 q^{89} + 8 q^{91} - 6 q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
324.1
1.00000i
1.00000i
0 2.00000i 2.00000 0 0 1.00000i 0 −1.00000 0
324.2 0 2.00000i 2.00000 0 0 1.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 475.2.b.a 2
5.b even 2 1 inner 475.2.b.a 2
5.c odd 4 1 19.2.a.a 1
5.c odd 4 1 475.2.a.b 1
15.e even 4 1 171.2.a.b 1
15.e even 4 1 4275.2.a.i 1
20.e even 4 1 304.2.a.f 1
20.e even 4 1 7600.2.a.c 1
35.f even 4 1 931.2.a.a 1
35.k even 12 2 931.2.f.b 2
35.l odd 12 2 931.2.f.c 2
40.i odd 4 1 1216.2.a.o 1
40.k even 4 1 1216.2.a.b 1
55.e even 4 1 2299.2.a.b 1
60.l odd 4 1 2736.2.a.c 1
65.h odd 4 1 3211.2.a.a 1
85.g odd 4 1 5491.2.a.b 1
95.g even 4 1 361.2.a.b 1
95.g even 4 1 9025.2.a.d 1
95.l even 12 2 361.2.c.a 2
95.m odd 12 2 361.2.c.c 2
95.q odd 36 6 361.2.e.d 6
95.r even 36 6 361.2.e.e 6
105.k odd 4 1 8379.2.a.j 1
285.j odd 4 1 3249.2.a.d 1
380.j odd 4 1 5776.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
19.2.a.a 1 5.c odd 4 1
171.2.a.b 1 15.e even 4 1
304.2.a.f 1 20.e even 4 1
361.2.a.b 1 95.g even 4 1
361.2.c.a 2 95.l even 12 2
361.2.c.c 2 95.m odd 12 2
361.2.e.d 6 95.q odd 36 6
361.2.e.e 6 95.r even 36 6
475.2.a.b 1 5.c odd 4 1
475.2.b.a 2 1.a even 1 1 trivial
475.2.b.a 2 5.b even 2 1 inner
931.2.a.a 1 35.f even 4 1
931.2.f.b 2 35.k even 12 2
931.2.f.c 2 35.l odd 12 2
1216.2.a.b 1 40.k even 4 1
1216.2.a.o 1 40.i odd 4 1
2299.2.a.b 1 55.e even 4 1
2736.2.a.c 1 60.l odd 4 1
3211.2.a.a 1 65.h odd 4 1
3249.2.a.d 1 285.j odd 4 1
4275.2.a.i 1 15.e even 4 1
5491.2.a.b 1 85.g odd 4 1
5776.2.a.c 1 380.j odd 4 1
7600.2.a.c 1 20.e even 4 1
8379.2.a.j 1 105.k odd 4 1
9025.2.a.d 1 95.g even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(475, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( 4 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 1 + T^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( 16 + T^{2} \)
$17$ \( 9 + T^{2} \)
$19$ \( ( 1 + T )^{2} \)
$23$ \( T^{2} \)
$29$ \( ( 6 + T )^{2} \)
$31$ \( ( 4 + T )^{2} \)
$37$ \( 4 + T^{2} \)
$41$ \( ( 6 + T )^{2} \)
$43$ \( 1 + T^{2} \)
$47$ \( 9 + T^{2} \)
$53$ \( 144 + T^{2} \)
$59$ \( ( -6 + T )^{2} \)
$61$ \( ( 1 + T )^{2} \)
$67$ \( 16 + T^{2} \)
$71$ \( ( -6 + T )^{2} \)
$73$ \( 49 + T^{2} \)
$79$ \( ( 8 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( 12 + T )^{2} \)
$97$ \( 64 + T^{2} \)
show more
show less