Defining parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(100\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(475, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 56 | 28 | 28 |
Cusp forms | 44 | 28 | 16 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(475, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
475.2.b.a | $2$ | $3.793$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+2iq^{3}+2q^{4}-iq^{7}-q^{9}+3q^{11}+\cdots\) |
475.2.b.b | $6$ | $3.793$ | 6.0.1827904.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(-\beta _{4}+\beta _{5})q^{2}+(\beta _{1}+\beta _{4})q^{3}+(-1+\cdots)q^{4}+\cdots\) |
475.2.b.c | $6$ | $3.793$ | 6.0.153664.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{3}-\beta _{5})q^{2}+(\beta _{1}-\beta _{3})q^{3}+(-3+\cdots)q^{4}+\cdots\) |
475.2.b.d | $6$ | $3.793$ | 6.0.350464.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{2}+(\beta _{2}-\beta _{4})q^{3}+\beta _{1}q^{4}+(-1+\cdots)q^{6}+\cdots\) |
475.2.b.e | $8$ | $3.793$ | 8.0.2058981376.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{6}q^{2}+\beta _{1}q^{3}+(-2-\beta _{3})q^{4}+(-\beta _{2}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(475, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(475, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(95, [\chi])\)\(^{\oplus 2}\)