Newspace parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(0\) |
Dimension: | \(6\) |
Coefficient field: | 6.6.66064384.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{6} - 9x^{4} + 13x^{2} - 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 95) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{6} - 9x^{4} + 13x^{2} - 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{4} - 8\nu^{2} + 5 ) / 2 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{5} - 8\nu^{3} + 7\nu ) / 2 \)
|
\(\beta_{5}\) | \(=\) |
\( -\nu^{5} + 9\nu^{3} - 13\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + 3 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{5} + 2\beta_{4} + 6\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( 2\beta_{3} + 8\beta_{2} + 19 \)
|
\(\nu^{5}\) | \(=\) |
\( 8\beta_{5} + 18\beta_{4} + 41\beta_1 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.41987 | 0.537080 | 3.85577 | 0 | −1.29966 | −3.18676 | −4.49073 | −2.71155 | 0 | ||||||||||||||||||||||||||||||||||||
1.2 | −1.82254 | −2.31446 | 1.32164 | 0 | 4.21819 | −1.45033 | 1.23634 | 2.35673 | 0 | |||||||||||||||||||||||||||||||||||||
1.3 | −0.906968 | 3.21789 | −1.17741 | 0 | −2.91852 | 2.59637 | 2.88181 | 7.35482 | 0 | |||||||||||||||||||||||||||||||||||||
1.4 | 0.906968 | −3.21789 | −1.17741 | 0 | −2.91852 | −2.59637 | −2.88181 | 7.35482 | 0 | |||||||||||||||||||||||||||||||||||||
1.5 | 1.82254 | 2.31446 | 1.32164 | 0 | 4.21819 | 1.45033 | −1.23634 | 2.35673 | 0 | |||||||||||||||||||||||||||||||||||||
1.6 | 2.41987 | −0.537080 | 3.85577 | 0 | −1.29966 | 3.18676 | 4.49073 | −2.71155 | 0 | |||||||||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(-1\) |
\(19\) | \(1\) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.a.j | 6 | |
3.b | odd | 2 | 1 | 4275.2.a.br | 6 | ||
4.b | odd | 2 | 1 | 7600.2.a.ck | 6 | ||
5.b | even | 2 | 1 | inner | 475.2.a.j | 6 | |
5.c | odd | 4 | 2 | 95.2.b.b | ✓ | 6 | |
15.d | odd | 2 | 1 | 4275.2.a.br | 6 | ||
15.e | even | 4 | 2 | 855.2.c.d | 6 | ||
19.b | odd | 2 | 1 | 9025.2.a.bx | 6 | ||
20.d | odd | 2 | 1 | 7600.2.a.ck | 6 | ||
20.e | even | 4 | 2 | 1520.2.d.h | 6 | ||
95.d | odd | 2 | 1 | 9025.2.a.bx | 6 | ||
95.g | even | 4 | 2 | 1805.2.b.e | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.b.b | ✓ | 6 | 5.c | odd | 4 | 2 | |
475.2.a.j | 6 | 1.a | even | 1 | 1 | trivial | |
475.2.a.j | 6 | 5.b | even | 2 | 1 | inner | |
855.2.c.d | 6 | 15.e | even | 4 | 2 | ||
1520.2.d.h | 6 | 20.e | even | 4 | 2 | ||
1805.2.b.e | 6 | 95.g | even | 4 | 2 | ||
4275.2.a.br | 6 | 3.b | odd | 2 | 1 | ||
4275.2.a.br | 6 | 15.d | odd | 2 | 1 | ||
7600.2.a.ck | 6 | 4.b | odd | 2 | 1 | ||
7600.2.a.ck | 6 | 20.d | odd | 2 | 1 | ||
9025.2.a.bx | 6 | 19.b | odd | 2 | 1 | ||
9025.2.a.bx | 6 | 95.d | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{6} - 10T_{2}^{4} + 27T_{2}^{2} - 16 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(475))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{6} - 10 T^{4} + 27 T^{2} - 16 \)
$3$
\( T^{6} - 16 T^{4} + 60 T^{2} - 16 \)
$5$
\( T^{6} \)
$7$
\( T^{6} - 19 T^{4} + 104 T^{2} + \cdots - 144 \)
$11$
\( (T^{3} - T^{2} - 16 T + 12)^{2} \)
$13$
\( T^{6} - 28 T^{4} + 236 T^{2} + \cdots - 576 \)
$17$
\( T^{6} - 59 T^{4} + 1008 T^{2} + \cdots - 5184 \)
$19$
\( (T + 1)^{6} \)
$23$
\( T^{6} - 36 T^{4} + 208 T^{2} + \cdots - 64 \)
$29$
\( (T - 6)^{6} \)
$31$
\( (T^{3} - 56 T + 128)^{2} \)
$37$
\( T^{6} - 56 T^{4} + 764 T^{2} + \cdots - 1296 \)
$41$
\( (T^{3} - 6 T^{2} - 44 T - 24)^{2} \)
$43$
\( T^{6} - 19 T^{4} + 104 T^{2} + \cdots - 144 \)
$47$
\( T^{6} - 187 T^{4} + 7464 T^{2} + \cdots - 85264 \)
$53$
\( T^{6} - 156 T^{4} + 2476 T^{2} + \cdots - 64 \)
$59$
\( (T^{3} - 10 T^{2} + 8 T + 48)^{2} \)
$61$
\( (T^{3} + 7 T^{2} - 104 T - 776)^{2} \)
$67$
\( T^{6} - 340 T^{4} + 28556 T^{2} + \cdots - 484416 \)
$71$
\( (T^{3} - 26 T^{2} + 200 T - 432)^{2} \)
$73$
\( T^{6} - 131 T^{4} + 1616 T^{2} + \cdots - 5184 \)
$79$
\( (T^{3} + 12 T^{2} - 8 T - 32)^{2} \)
$83$
\( T^{6} - 228 T^{4} + 11728 T^{2} + \cdots - 141376 \)
$89$
\( (T^{3} - 12 T^{2} - 284 T + 3456)^{2} \)
$97$
\( T^{6} - 28 T^{4} + 236 T^{2} + \cdots - 576 \)
show more
show less