Properties

Label 475.2.a.f.1.3
Level $475$
Weight $2$
Character 475.1
Self dual yes
Analytic conductor $3.793$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,2,Mod(1,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 475.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(3.79289409601\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 475.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.48119 q^{2} -0.806063 q^{3} +0.193937 q^{4} -1.19394 q^{6} -3.35026 q^{7} -2.67513 q^{8} -2.35026 q^{9} +O(q^{10})\) \(q+1.48119 q^{2} -0.806063 q^{3} +0.193937 q^{4} -1.19394 q^{6} -3.35026 q^{7} -2.67513 q^{8} -2.35026 q^{9} +0.962389 q^{11} -0.156325 q^{12} -6.15633 q^{13} -4.96239 q^{14} -4.35026 q^{16} +6.31265 q^{17} -3.48119 q^{18} -1.00000 q^{19} +2.70052 q^{21} +1.42548 q^{22} +4.96239 q^{23} +2.15633 q^{24} -9.11871 q^{26} +4.31265 q^{27} -0.649738 q^{28} -3.61213 q^{29} -5.92478 q^{31} -1.09332 q^{32} -0.775746 q^{33} +9.35026 q^{34} -0.455802 q^{36} -10.1563 q^{37} -1.48119 q^{38} +4.96239 q^{39} +6.31265 q^{41} +4.00000 q^{42} +4.12601 q^{43} +0.186642 q^{44} +7.35026 q^{46} -3.35026 q^{47} +3.50659 q^{48} +4.22425 q^{49} -5.08840 q^{51} -1.19394 q^{52} -1.84367 q^{53} +6.38787 q^{54} +8.96239 q^{56} +0.806063 q^{57} -5.35026 q^{58} -6.38787 q^{59} -11.2750 q^{61} -8.77575 q^{62} +7.87399 q^{63} +7.08110 q^{64} -1.14903 q^{66} +6.73084 q^{67} +1.22425 q^{68} -4.00000 q^{69} -0.775746 q^{71} +6.28726 q^{72} -0.387873 q^{73} -15.0435 q^{74} -0.193937 q^{76} -3.22425 q^{77} +7.35026 q^{78} -0.836381 q^{79} +3.57452 q^{81} +9.35026 q^{82} +7.03761 q^{83} +0.523730 q^{84} +6.11142 q^{86} +2.91160 q^{87} -2.57452 q^{88} +7.08840 q^{89} +20.6253 q^{91} +0.962389 q^{92} +4.77575 q^{93} -4.96239 q^{94} +0.881286 q^{96} -10.9927 q^{97} +6.25694 q^{98} -2.26187 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} - 2 q^{3} + q^{4} - 4 q^{6} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} - 2 q^{3} + q^{4} - 4 q^{6} - 3 q^{8} + 3 q^{9} - 8 q^{11} + 10 q^{12} - 8 q^{13} - 4 q^{14} - 3 q^{16} - 2 q^{17} - 5 q^{18} - 3 q^{19} - 12 q^{21} + 16 q^{22} + 4 q^{23} - 4 q^{24} - 6 q^{26} - 8 q^{27} - 12 q^{28} - 10 q^{29} + 4 q^{31} + 3 q^{32} - 4 q^{33} + 18 q^{34} - 11 q^{36} - 20 q^{37} + q^{38} + 4 q^{39} - 2 q^{41} + 12 q^{42} + 4 q^{43} - 12 q^{44} + 12 q^{46} - 10 q^{48} + 11 q^{49} + 4 q^{51} - 4 q^{52} - 16 q^{53} + 20 q^{54} + 16 q^{56} + 2 q^{57} - 6 q^{58} - 20 q^{59} - 2 q^{61} - 28 q^{62} + 32 q^{63} - 11 q^{64} + 20 q^{66} - 2 q^{67} + 2 q^{68} - 12 q^{69} - 4 q^{71} + 13 q^{72} - 2 q^{73} - 2 q^{74} - q^{76} - 8 q^{77} + 12 q^{78} - q^{81} + 18 q^{82} + 32 q^{83} + 20 q^{84} - 16 q^{86} + 28 q^{87} + 4 q^{88} + 2 q^{89} + 20 q^{91} - 8 q^{92} + 16 q^{93} - 4 q^{94} + 24 q^{96} - 20 q^{97} + 15 q^{98} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.48119 1.04736 0.523681 0.851914i \(-0.324558\pi\)
0.523681 + 0.851914i \(0.324558\pi\)
\(3\) −0.806063 −0.465381 −0.232690 0.972551i \(-0.574753\pi\)
−0.232690 + 0.972551i \(0.574753\pi\)
\(4\) 0.193937 0.0969683
\(5\) 0 0
\(6\) −1.19394 −0.487423
\(7\) −3.35026 −1.26628 −0.633140 0.774037i \(-0.718234\pi\)
−0.633140 + 0.774037i \(0.718234\pi\)
\(8\) −2.67513 −0.945802
\(9\) −2.35026 −0.783421
\(10\) 0 0
\(11\) 0.962389 0.290171 0.145086 0.989419i \(-0.453654\pi\)
0.145086 + 0.989419i \(0.453654\pi\)
\(12\) −0.156325 −0.0451272
\(13\) −6.15633 −1.70746 −0.853729 0.520718i \(-0.825664\pi\)
−0.853729 + 0.520718i \(0.825664\pi\)
\(14\) −4.96239 −1.32625
\(15\) 0 0
\(16\) −4.35026 −1.08757
\(17\) 6.31265 1.53104 0.765521 0.643411i \(-0.222481\pi\)
0.765521 + 0.643411i \(0.222481\pi\)
\(18\) −3.48119 −0.820525
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 2.70052 0.589303
\(22\) 1.42548 0.303914
\(23\) 4.96239 1.03473 0.517365 0.855765i \(-0.326913\pi\)
0.517365 + 0.855765i \(0.326913\pi\)
\(24\) 2.15633 0.440158
\(25\) 0 0
\(26\) −9.11871 −1.78833
\(27\) 4.31265 0.829970
\(28\) −0.649738 −0.122789
\(29\) −3.61213 −0.670755 −0.335378 0.942084i \(-0.608864\pi\)
−0.335378 + 0.942084i \(0.608864\pi\)
\(30\) 0 0
\(31\) −5.92478 −1.06412 −0.532061 0.846706i \(-0.678582\pi\)
−0.532061 + 0.846706i \(0.678582\pi\)
\(32\) −1.09332 −0.193274
\(33\) −0.775746 −0.135040
\(34\) 9.35026 1.60356
\(35\) 0 0
\(36\) −0.455802 −0.0759669
\(37\) −10.1563 −1.66969 −0.834845 0.550485i \(-0.814443\pi\)
−0.834845 + 0.550485i \(0.814443\pi\)
\(38\) −1.48119 −0.240281
\(39\) 4.96239 0.794618
\(40\) 0 0
\(41\) 6.31265 0.985870 0.492935 0.870066i \(-0.335924\pi\)
0.492935 + 0.870066i \(0.335924\pi\)
\(42\) 4.00000 0.617213
\(43\) 4.12601 0.629210 0.314605 0.949223i \(-0.398128\pi\)
0.314605 + 0.949223i \(0.398128\pi\)
\(44\) 0.186642 0.0281374
\(45\) 0 0
\(46\) 7.35026 1.08374
\(47\) −3.35026 −0.488686 −0.244343 0.969689i \(-0.578572\pi\)
−0.244343 + 0.969689i \(0.578572\pi\)
\(48\) 3.50659 0.506132
\(49\) 4.22425 0.603465
\(50\) 0 0
\(51\) −5.08840 −0.712518
\(52\) −1.19394 −0.165569
\(53\) −1.84367 −0.253248 −0.126624 0.991951i \(-0.540414\pi\)
−0.126624 + 0.991951i \(0.540414\pi\)
\(54\) 6.38787 0.869279
\(55\) 0 0
\(56\) 8.96239 1.19765
\(57\) 0.806063 0.106766
\(58\) −5.35026 −0.702524
\(59\) −6.38787 −0.831630 −0.415815 0.909449i \(-0.636504\pi\)
−0.415815 + 0.909449i \(0.636504\pi\)
\(60\) 0 0
\(61\) −11.2750 −1.44362 −0.721810 0.692091i \(-0.756690\pi\)
−0.721810 + 0.692091i \(0.756690\pi\)
\(62\) −8.77575 −1.11452
\(63\) 7.87399 0.992030
\(64\) 7.08110 0.885138
\(65\) 0 0
\(66\) −1.14903 −0.141436
\(67\) 6.73084 0.822303 0.411152 0.911567i \(-0.365127\pi\)
0.411152 + 0.911567i \(0.365127\pi\)
\(68\) 1.22425 0.148463
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) −0.775746 −0.0920641 −0.0460321 0.998940i \(-0.514658\pi\)
−0.0460321 + 0.998940i \(0.514658\pi\)
\(72\) 6.28726 0.740960
\(73\) −0.387873 −0.0453971 −0.0226986 0.999742i \(-0.507226\pi\)
−0.0226986 + 0.999742i \(0.507226\pi\)
\(74\) −15.0435 −1.74877
\(75\) 0 0
\(76\) −0.193937 −0.0222460
\(77\) −3.22425 −0.367438
\(78\) 7.35026 0.832253
\(79\) −0.836381 −0.0941002 −0.0470501 0.998893i \(-0.514982\pi\)
−0.0470501 + 0.998893i \(0.514982\pi\)
\(80\) 0 0
\(81\) 3.57452 0.397168
\(82\) 9.35026 1.03256
\(83\) 7.03761 0.772478 0.386239 0.922399i \(-0.373774\pi\)
0.386239 + 0.922399i \(0.373774\pi\)
\(84\) 0.523730 0.0571437
\(85\) 0 0
\(86\) 6.11142 0.659011
\(87\) 2.91160 0.312157
\(88\) −2.57452 −0.274444
\(89\) 7.08840 0.751369 0.375684 0.926748i \(-0.377408\pi\)
0.375684 + 0.926748i \(0.377408\pi\)
\(90\) 0 0
\(91\) 20.6253 2.16212
\(92\) 0.962389 0.100336
\(93\) 4.77575 0.495222
\(94\) −4.96239 −0.511831
\(95\) 0 0
\(96\) 0.881286 0.0899459
\(97\) −10.9927 −1.11614 −0.558070 0.829794i \(-0.688458\pi\)
−0.558070 + 0.829794i \(0.688458\pi\)
\(98\) 6.25694 0.632046
\(99\) −2.26187 −0.227326
\(100\) 0 0
\(101\) −2.64974 −0.263659 −0.131829 0.991272i \(-0.542085\pi\)
−0.131829 + 0.991272i \(0.542085\pi\)
\(102\) −7.53690 −0.746265
\(103\) 10.7308 1.05734 0.528671 0.848827i \(-0.322691\pi\)
0.528671 + 0.848827i \(0.322691\pi\)
\(104\) 16.4690 1.61492
\(105\) 0 0
\(106\) −2.73084 −0.265243
\(107\) −4.80606 −0.464620 −0.232310 0.972642i \(-0.574628\pi\)
−0.232310 + 0.972642i \(0.574628\pi\)
\(108\) 0.836381 0.0804808
\(109\) −2.77575 −0.265868 −0.132934 0.991125i \(-0.542440\pi\)
−0.132934 + 0.991125i \(0.542440\pi\)
\(110\) 0 0
\(111\) 8.18664 0.777042
\(112\) 14.5745 1.37716
\(113\) −6.99271 −0.657818 −0.328909 0.944362i \(-0.606681\pi\)
−0.328909 + 0.944362i \(0.606681\pi\)
\(114\) 1.19394 0.111822
\(115\) 0 0
\(116\) −0.700523 −0.0650420
\(117\) 14.4690 1.33766
\(118\) −9.46168 −0.871018
\(119\) −21.1490 −1.93873
\(120\) 0 0
\(121\) −10.0738 −0.915801
\(122\) −16.7005 −1.51199
\(123\) −5.08840 −0.458805
\(124\) −1.14903 −0.103186
\(125\) 0 0
\(126\) 11.6629 1.03901
\(127\) −13.4314 −1.19184 −0.595920 0.803043i \(-0.703213\pi\)
−0.595920 + 0.803043i \(0.703213\pi\)
\(128\) 12.6751 1.12033
\(129\) −3.32582 −0.292822
\(130\) 0 0
\(131\) 20.6253 1.80204 0.901020 0.433777i \(-0.142819\pi\)
0.901020 + 0.433777i \(0.142819\pi\)
\(132\) −0.150446 −0.0130946
\(133\) 3.35026 0.290505
\(134\) 9.96968 0.861249
\(135\) 0 0
\(136\) −16.8872 −1.44806
\(137\) −20.2374 −1.72900 −0.864500 0.502633i \(-0.832365\pi\)
−0.864500 + 0.502633i \(0.832365\pi\)
\(138\) −5.92478 −0.504351
\(139\) −17.5877 −1.49177 −0.745884 0.666076i \(-0.767973\pi\)
−0.745884 + 0.666076i \(0.767973\pi\)
\(140\) 0 0
\(141\) 2.70052 0.227425
\(142\) −1.14903 −0.0964245
\(143\) −5.92478 −0.495455
\(144\) 10.2243 0.852021
\(145\) 0 0
\(146\) −0.574515 −0.0475472
\(147\) −3.40502 −0.280841
\(148\) −1.96968 −0.161907
\(149\) −7.42548 −0.608319 −0.304160 0.952621i \(-0.598376\pi\)
−0.304160 + 0.952621i \(0.598376\pi\)
\(150\) 0 0
\(151\) −1.61213 −0.131193 −0.0655965 0.997846i \(-0.520895\pi\)
−0.0655965 + 0.997846i \(0.520895\pi\)
\(152\) 2.67513 0.216982
\(153\) −14.8364 −1.19945
\(154\) −4.77575 −0.384841
\(155\) 0 0
\(156\) 0.962389 0.0770528
\(157\) −4.38787 −0.350190 −0.175095 0.984552i \(-0.556023\pi\)
−0.175095 + 0.984552i \(0.556023\pi\)
\(158\) −1.23884 −0.0985570
\(159\) 1.48612 0.117857
\(160\) 0 0
\(161\) −16.6253 −1.31026
\(162\) 5.29455 0.415979
\(163\) 0.649738 0.0508914 0.0254457 0.999676i \(-0.491900\pi\)
0.0254457 + 0.999676i \(0.491900\pi\)
\(164\) 1.22425 0.0955982
\(165\) 0 0
\(166\) 10.4241 0.809065
\(167\) 15.3561 1.18829 0.594147 0.804357i \(-0.297490\pi\)
0.594147 + 0.804357i \(0.297490\pi\)
\(168\) −7.22425 −0.557363
\(169\) 24.9003 1.91541
\(170\) 0 0
\(171\) 2.35026 0.179729
\(172\) 0.800184 0.0610134
\(173\) −3.24472 −0.246692 −0.123346 0.992364i \(-0.539362\pi\)
−0.123346 + 0.992364i \(0.539362\pi\)
\(174\) 4.31265 0.326941
\(175\) 0 0
\(176\) −4.18664 −0.315580
\(177\) 5.14903 0.387025
\(178\) 10.4993 0.786955
\(179\) 15.0132 1.12214 0.561069 0.827769i \(-0.310390\pi\)
0.561069 + 0.827769i \(0.310390\pi\)
\(180\) 0 0
\(181\) 9.22425 0.685633 0.342817 0.939402i \(-0.388619\pi\)
0.342817 + 0.939402i \(0.388619\pi\)
\(182\) 30.5501 2.26452
\(183\) 9.08840 0.671834
\(184\) −13.2750 −0.978649
\(185\) 0 0
\(186\) 7.07381 0.518677
\(187\) 6.07522 0.444264
\(188\) −0.649738 −0.0473870
\(189\) −14.4485 −1.05097
\(190\) 0 0
\(191\) −21.7743 −1.57554 −0.787768 0.615972i \(-0.788763\pi\)
−0.787768 + 0.615972i \(0.788763\pi\)
\(192\) −5.70782 −0.411926
\(193\) −12.5442 −0.902951 −0.451476 0.892283i \(-0.649102\pi\)
−0.451476 + 0.892283i \(0.649102\pi\)
\(194\) −16.2823 −1.16900
\(195\) 0 0
\(196\) 0.819237 0.0585169
\(197\) −24.5501 −1.74912 −0.874560 0.484917i \(-0.838850\pi\)
−0.874560 + 0.484917i \(0.838850\pi\)
\(198\) −3.35026 −0.238093
\(199\) 23.0738 1.63566 0.817829 0.575461i \(-0.195177\pi\)
0.817829 + 0.575461i \(0.195177\pi\)
\(200\) 0 0
\(201\) −5.42548 −0.382684
\(202\) −3.92478 −0.276146
\(203\) 12.1016 0.849364
\(204\) −0.986826 −0.0690917
\(205\) 0 0
\(206\) 15.8945 1.10742
\(207\) −11.6629 −0.810628
\(208\) 26.7816 1.85697
\(209\) −0.962389 −0.0665698
\(210\) 0 0
\(211\) −20.9380 −1.44143 −0.720714 0.693233i \(-0.756186\pi\)
−0.720714 + 0.693233i \(0.756186\pi\)
\(212\) −0.357556 −0.0245570
\(213\) 0.625301 0.0428449
\(214\) −7.11871 −0.486625
\(215\) 0 0
\(216\) −11.5369 −0.784987
\(217\) 19.8496 1.34748
\(218\) −4.11142 −0.278460
\(219\) 0.312650 0.0211270
\(220\) 0 0
\(221\) −38.8627 −2.61419
\(222\) 12.1260 0.813844
\(223\) 0.0303172 0.00203019 0.00101509 0.999999i \(-0.499677\pi\)
0.00101509 + 0.999999i \(0.499677\pi\)
\(224\) 3.66291 0.244739
\(225\) 0 0
\(226\) −10.3576 −0.688974
\(227\) −4.80606 −0.318990 −0.159495 0.987199i \(-0.550987\pi\)
−0.159495 + 0.987199i \(0.550987\pi\)
\(228\) 0.156325 0.0103529
\(229\) 1.87399 0.123837 0.0619184 0.998081i \(-0.480278\pi\)
0.0619184 + 0.998081i \(0.480278\pi\)
\(230\) 0 0
\(231\) 2.59895 0.170999
\(232\) 9.66291 0.634401
\(233\) 11.1490 0.730397 0.365199 0.930930i \(-0.381001\pi\)
0.365199 + 0.930930i \(0.381001\pi\)
\(234\) 21.4314 1.40101
\(235\) 0 0
\(236\) −1.23884 −0.0806418
\(237\) 0.674176 0.0437924
\(238\) −31.3258 −2.03055
\(239\) 9.29948 0.601533 0.300767 0.953698i \(-0.402757\pi\)
0.300767 + 0.953698i \(0.402757\pi\)
\(240\) 0 0
\(241\) −2.31265 −0.148971 −0.0744855 0.997222i \(-0.523731\pi\)
−0.0744855 + 0.997222i \(0.523731\pi\)
\(242\) −14.9213 −0.959175
\(243\) −15.8192 −1.01480
\(244\) −2.18664 −0.139985
\(245\) 0 0
\(246\) −7.53690 −0.480535
\(247\) 6.15633 0.391718
\(248\) 15.8496 1.00645
\(249\) −5.67276 −0.359497
\(250\) 0 0
\(251\) 24.1016 1.52128 0.760639 0.649175i \(-0.224886\pi\)
0.760639 + 0.649175i \(0.224886\pi\)
\(252\) 1.52705 0.0961954
\(253\) 4.77575 0.300249
\(254\) −19.8945 −1.24829
\(255\) 0 0
\(256\) 4.61213 0.288258
\(257\) 13.3199 0.830875 0.415438 0.909622i \(-0.363628\pi\)
0.415438 + 0.909622i \(0.363628\pi\)
\(258\) −4.92619 −0.306691
\(259\) 34.0263 2.11429
\(260\) 0 0
\(261\) 8.48944 0.525483
\(262\) 30.5501 1.88739
\(263\) −12.9624 −0.799295 −0.399648 0.916669i \(-0.630867\pi\)
−0.399648 + 0.916669i \(0.630867\pi\)
\(264\) 2.07522 0.127721
\(265\) 0 0
\(266\) 4.96239 0.304264
\(267\) −5.71370 −0.349673
\(268\) 1.30536 0.0797373
\(269\) −11.4010 −0.695134 −0.347567 0.937655i \(-0.612992\pi\)
−0.347567 + 0.937655i \(0.612992\pi\)
\(270\) 0 0
\(271\) 16.8119 1.02125 0.510626 0.859803i \(-0.329414\pi\)
0.510626 + 0.859803i \(0.329414\pi\)
\(272\) −27.4617 −1.66511
\(273\) −16.6253 −1.00621
\(274\) −29.9756 −1.81089
\(275\) 0 0
\(276\) −0.775746 −0.0466944
\(277\) 29.7889 1.78984 0.894921 0.446224i \(-0.147231\pi\)
0.894921 + 0.446224i \(0.147231\pi\)
\(278\) −26.0508 −1.56242
\(279\) 13.9248 0.833655
\(280\) 0 0
\(281\) −11.6121 −0.692721 −0.346361 0.938101i \(-0.612583\pi\)
−0.346361 + 0.938101i \(0.612583\pi\)
\(282\) 4.00000 0.238197
\(283\) −2.26187 −0.134454 −0.0672270 0.997738i \(-0.521415\pi\)
−0.0672270 + 0.997738i \(0.521415\pi\)
\(284\) −0.150446 −0.00892730
\(285\) 0 0
\(286\) −8.77575 −0.518921
\(287\) −21.1490 −1.24839
\(288\) 2.56959 0.151415
\(289\) 22.8496 1.34409
\(290\) 0 0
\(291\) 8.86082 0.519430
\(292\) −0.0752228 −0.00440208
\(293\) −1.84367 −0.107709 −0.0538543 0.998549i \(-0.517151\pi\)
−0.0538543 + 0.998549i \(0.517151\pi\)
\(294\) −5.04349 −0.294142
\(295\) 0 0
\(296\) 27.1695 1.57920
\(297\) 4.15045 0.240833
\(298\) −10.9986 −0.637131
\(299\) −30.5501 −1.76676
\(300\) 0 0
\(301\) −13.8232 −0.796756
\(302\) −2.38787 −0.137407
\(303\) 2.13586 0.122702
\(304\) 4.35026 0.249505
\(305\) 0 0
\(306\) −21.9756 −1.25626
\(307\) −26.2071 −1.49572 −0.747859 0.663857i \(-0.768918\pi\)
−0.747859 + 0.663857i \(0.768918\pi\)
\(308\) −0.625301 −0.0356298
\(309\) −8.64974 −0.492066
\(310\) 0 0
\(311\) 6.51388 0.369368 0.184684 0.982798i \(-0.440874\pi\)
0.184684 + 0.982798i \(0.440874\pi\)
\(312\) −13.2750 −0.751551
\(313\) −16.0752 −0.908625 −0.454313 0.890842i \(-0.650115\pi\)
−0.454313 + 0.890842i \(0.650115\pi\)
\(314\) −6.49929 −0.366776
\(315\) 0 0
\(316\) −0.162205 −0.00912473
\(317\) 5.69323 0.319764 0.159882 0.987136i \(-0.448889\pi\)
0.159882 + 0.987136i \(0.448889\pi\)
\(318\) 2.20123 0.123439
\(319\) −3.47627 −0.194634
\(320\) 0 0
\(321\) 3.87399 0.216225
\(322\) −24.6253 −1.37231
\(323\) −6.31265 −0.351245
\(324\) 0.693229 0.0385127
\(325\) 0 0
\(326\) 0.962389 0.0533018
\(327\) 2.23743 0.123730
\(328\) −16.8872 −0.932438
\(329\) 11.2243 0.618813
\(330\) 0 0
\(331\) −12.3127 −0.676764 −0.338382 0.941009i \(-0.609880\pi\)
−0.338382 + 0.941009i \(0.609880\pi\)
\(332\) 1.36485 0.0749059
\(333\) 23.8700 1.30807
\(334\) 22.7454 1.24457
\(335\) 0 0
\(336\) −11.7480 −0.640905
\(337\) −3.76845 −0.205281 −0.102640 0.994719i \(-0.532729\pi\)
−0.102640 + 0.994719i \(0.532729\pi\)
\(338\) 36.8822 2.00613
\(339\) 5.63656 0.306136
\(340\) 0 0
\(341\) −5.70194 −0.308777
\(342\) 3.48119 0.188241
\(343\) 9.29948 0.502125
\(344\) −11.0376 −0.595108
\(345\) 0 0
\(346\) −4.80606 −0.258376
\(347\) 22.3634 1.20053 0.600266 0.799800i \(-0.295061\pi\)
0.600266 + 0.799800i \(0.295061\pi\)
\(348\) 0.564666 0.0302693
\(349\) −10.0000 −0.535288 −0.267644 0.963518i \(-0.586245\pi\)
−0.267644 + 0.963518i \(0.586245\pi\)
\(350\) 0 0
\(351\) −26.5501 −1.41714
\(352\) −1.05220 −0.0560824
\(353\) −5.53690 −0.294700 −0.147350 0.989084i \(-0.547074\pi\)
−0.147350 + 0.989084i \(0.547074\pi\)
\(354\) 7.62672 0.405355
\(355\) 0 0
\(356\) 1.37470 0.0728589
\(357\) 17.0475 0.902247
\(358\) 22.2374 1.17528
\(359\) −10.3634 −0.546961 −0.273481 0.961878i \(-0.588175\pi\)
−0.273481 + 0.961878i \(0.588175\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 13.6629 0.718107
\(363\) 8.12013 0.426196
\(364\) 4.00000 0.209657
\(365\) 0 0
\(366\) 13.4617 0.703653
\(367\) −3.35026 −0.174882 −0.0874411 0.996170i \(-0.527869\pi\)
−0.0874411 + 0.996170i \(0.527869\pi\)
\(368\) −21.5877 −1.12534
\(369\) −14.8364 −0.772351
\(370\) 0 0
\(371\) 6.17679 0.320683
\(372\) 0.926192 0.0480208
\(373\) 12.6048 0.652653 0.326327 0.945257i \(-0.394189\pi\)
0.326327 + 0.945257i \(0.394189\pi\)
\(374\) 8.99859 0.465306
\(375\) 0 0
\(376\) 8.96239 0.462200
\(377\) 22.2374 1.14529
\(378\) −21.4010 −1.10075
\(379\) −37.2506 −1.91343 −0.956717 0.291018i \(-0.906006\pi\)
−0.956717 + 0.291018i \(0.906006\pi\)
\(380\) 0 0
\(381\) 10.8265 0.554660
\(382\) −32.2520 −1.65016
\(383\) −30.8324 −1.57546 −0.787731 0.616019i \(-0.788744\pi\)
−0.787731 + 0.616019i \(0.788744\pi\)
\(384\) −10.2170 −0.521382
\(385\) 0 0
\(386\) −18.5804 −0.945717
\(387\) −9.69720 −0.492936
\(388\) −2.13189 −0.108230
\(389\) −1.37470 −0.0697000 −0.0348500 0.999393i \(-0.511095\pi\)
−0.0348500 + 0.999393i \(0.511095\pi\)
\(390\) 0 0
\(391\) 31.3258 1.58422
\(392\) −11.3004 −0.570758
\(393\) −16.6253 −0.838635
\(394\) −36.3634 −1.83196
\(395\) 0 0
\(396\) −0.438658 −0.0220434
\(397\) 9.38646 0.471093 0.235546 0.971863i \(-0.424312\pi\)
0.235546 + 0.971863i \(0.424312\pi\)
\(398\) 34.1768 1.71313
\(399\) −2.70052 −0.135195
\(400\) 0 0
\(401\) 14.1016 0.704199 0.352099 0.935963i \(-0.385468\pi\)
0.352099 + 0.935963i \(0.385468\pi\)
\(402\) −8.03620 −0.400809
\(403\) 36.4749 1.81694
\(404\) −0.513881 −0.0255665
\(405\) 0 0
\(406\) 17.9248 0.889592
\(407\) −9.77433 −0.484496
\(408\) 13.6121 0.673901
\(409\) 35.1490 1.73801 0.869004 0.494805i \(-0.164761\pi\)
0.869004 + 0.494805i \(0.164761\pi\)
\(410\) 0 0
\(411\) 16.3127 0.804644
\(412\) 2.08110 0.102529
\(413\) 21.4010 1.05308
\(414\) −17.2750 −0.849022
\(415\) 0 0
\(416\) 6.73084 0.330007
\(417\) 14.1768 0.694241
\(418\) −1.42548 −0.0697227
\(419\) 9.02776 0.441035 0.220518 0.975383i \(-0.429225\pi\)
0.220518 + 0.975383i \(0.429225\pi\)
\(420\) 0 0
\(421\) 15.2097 0.741274 0.370637 0.928778i \(-0.379139\pi\)
0.370637 + 0.928778i \(0.379139\pi\)
\(422\) −31.0132 −1.50970
\(423\) 7.87399 0.382847
\(424\) 4.93207 0.239523
\(425\) 0 0
\(426\) 0.926192 0.0448741
\(427\) 37.7743 1.82803
\(428\) −0.932071 −0.0450534
\(429\) 4.77575 0.230575
\(430\) 0 0
\(431\) 16.3127 0.785753 0.392876 0.919591i \(-0.371480\pi\)
0.392876 + 0.919591i \(0.371480\pi\)
\(432\) −18.7612 −0.902647
\(433\) −11.1432 −0.535506 −0.267753 0.963488i \(-0.586281\pi\)
−0.267753 + 0.963488i \(0.586281\pi\)
\(434\) 29.4010 1.41130
\(435\) 0 0
\(436\) −0.538319 −0.0257808
\(437\) −4.96239 −0.237383
\(438\) 0.463096 0.0221276
\(439\) 27.3865 1.30708 0.653542 0.756890i \(-0.273282\pi\)
0.653542 + 0.756890i \(0.273282\pi\)
\(440\) 0 0
\(441\) −9.92810 −0.472767
\(442\) −57.5633 −2.73800
\(443\) −19.5125 −0.927065 −0.463533 0.886080i \(-0.653418\pi\)
−0.463533 + 0.886080i \(0.653418\pi\)
\(444\) 1.58769 0.0753484
\(445\) 0 0
\(446\) 0.0449056 0.00212634
\(447\) 5.98541 0.283100
\(448\) −23.7235 −1.12083
\(449\) −22.1016 −1.04304 −0.521519 0.853240i \(-0.674634\pi\)
−0.521519 + 0.853240i \(0.674634\pi\)
\(450\) 0 0
\(451\) 6.07522 0.286071
\(452\) −1.35614 −0.0637875
\(453\) 1.29948 0.0610547
\(454\) −7.11871 −0.334098
\(455\) 0 0
\(456\) −2.15633 −0.100979
\(457\) 17.8496 0.834967 0.417483 0.908685i \(-0.362912\pi\)
0.417483 + 0.908685i \(0.362912\pi\)
\(458\) 2.77575 0.129702
\(459\) 27.2243 1.27072
\(460\) 0 0
\(461\) −35.2506 −1.64178 −0.820892 0.571083i \(-0.806523\pi\)
−0.820892 + 0.571083i \(0.806523\pi\)
\(462\) 3.84955 0.179097
\(463\) 26.3634 1.22521 0.612606 0.790388i \(-0.290121\pi\)
0.612606 + 0.790388i \(0.290121\pi\)
\(464\) 15.7137 0.729490
\(465\) 0 0
\(466\) 16.5139 0.764991
\(467\) 6.78560 0.314000 0.157000 0.987599i \(-0.449818\pi\)
0.157000 + 0.987599i \(0.449818\pi\)
\(468\) 2.80606 0.129710
\(469\) −22.5501 −1.04127
\(470\) 0 0
\(471\) 3.53690 0.162972
\(472\) 17.0884 0.786557
\(473\) 3.97082 0.182579
\(474\) 0.998585 0.0458665
\(475\) 0 0
\(476\) −4.10157 −0.187995
\(477\) 4.33312 0.198400
\(478\) 13.7743 0.630023
\(479\) 12.7104 0.580752 0.290376 0.956913i \(-0.406220\pi\)
0.290376 + 0.956913i \(0.406220\pi\)
\(480\) 0 0
\(481\) 62.5256 2.85092
\(482\) −3.42548 −0.156027
\(483\) 13.4010 0.609769
\(484\) −1.95368 −0.0888036
\(485\) 0 0
\(486\) −23.4314 −1.06287
\(487\) 15.7586 0.714090 0.357045 0.934087i \(-0.383784\pi\)
0.357045 + 0.934087i \(0.383784\pi\)
\(488\) 30.1622 1.36538
\(489\) −0.523730 −0.0236839
\(490\) 0 0
\(491\) −14.5501 −0.656636 −0.328318 0.944567i \(-0.606482\pi\)
−0.328318 + 0.944567i \(0.606482\pi\)
\(492\) −0.986826 −0.0444896
\(493\) −22.8021 −1.02695
\(494\) 9.11871 0.410270
\(495\) 0 0
\(496\) 25.7743 1.15730
\(497\) 2.59895 0.116579
\(498\) −8.40246 −0.376523
\(499\) −5.48612 −0.245592 −0.122796 0.992432i \(-0.539186\pi\)
−0.122796 + 0.992432i \(0.539186\pi\)
\(500\) 0 0
\(501\) −12.3780 −0.553009
\(502\) 35.6991 1.59333
\(503\) 36.6615 1.63466 0.817328 0.576173i \(-0.195455\pi\)
0.817328 + 0.576173i \(0.195455\pi\)
\(504\) −21.0640 −0.938263
\(505\) 0 0
\(506\) 7.07381 0.314469
\(507\) −20.0713 −0.891396
\(508\) −2.60483 −0.115571
\(509\) 39.1900 1.73706 0.868532 0.495632i \(-0.165064\pi\)
0.868532 + 0.495632i \(0.165064\pi\)
\(510\) 0 0
\(511\) 1.29948 0.0574855
\(512\) −18.5188 −0.818423
\(513\) −4.31265 −0.190408
\(514\) 19.7294 0.870228
\(515\) 0 0
\(516\) −0.644999 −0.0283945
\(517\) −3.22425 −0.141803
\(518\) 50.3996 2.21443
\(519\) 2.61545 0.114806
\(520\) 0 0
\(521\) −17.7283 −0.776690 −0.388345 0.921514i \(-0.626953\pi\)
−0.388345 + 0.921514i \(0.626953\pi\)
\(522\) 12.5745 0.550372
\(523\) 40.7572 1.78219 0.891094 0.453819i \(-0.149939\pi\)
0.891094 + 0.453819i \(0.149939\pi\)
\(524\) 4.00000 0.174741
\(525\) 0 0
\(526\) −19.1998 −0.837152
\(527\) −37.4010 −1.62922
\(528\) 3.37470 0.146865
\(529\) 1.62530 0.0706652
\(530\) 0 0
\(531\) 15.0132 0.651516
\(532\) 0.649738 0.0281697
\(533\) −38.8627 −1.68333
\(534\) −8.46310 −0.366234
\(535\) 0 0
\(536\) −18.0059 −0.777736
\(537\) −12.1016 −0.522221
\(538\) −16.8872 −0.728057
\(539\) 4.06537 0.175108
\(540\) 0 0
\(541\) 23.9003 1.02756 0.513778 0.857923i \(-0.328246\pi\)
0.513778 + 0.857923i \(0.328246\pi\)
\(542\) 24.9018 1.06962
\(543\) −7.43533 −0.319081
\(544\) −6.90175 −0.295910
\(545\) 0 0
\(546\) −24.6253 −1.05387
\(547\) −8.55405 −0.365745 −0.182872 0.983137i \(-0.558539\pi\)
−0.182872 + 0.983137i \(0.558539\pi\)
\(548\) −3.92478 −0.167658
\(549\) 26.4993 1.13096
\(550\) 0 0
\(551\) 3.61213 0.153882
\(552\) 10.7005 0.455445
\(553\) 2.80209 0.119157
\(554\) 44.1232 1.87461
\(555\) 0 0
\(556\) −3.41090 −0.144654
\(557\) 4.23743 0.179546 0.0897728 0.995962i \(-0.471386\pi\)
0.0897728 + 0.995962i \(0.471386\pi\)
\(558\) 20.6253 0.873139
\(559\) −25.4010 −1.07435
\(560\) 0 0
\(561\) −4.89701 −0.206752
\(562\) −17.1998 −0.725530
\(563\) −16.4934 −0.695114 −0.347557 0.937659i \(-0.612989\pi\)
−0.347557 + 0.937659i \(0.612989\pi\)
\(564\) 0.523730 0.0220530
\(565\) 0 0
\(566\) −3.35026 −0.140822
\(567\) −11.9756 −0.502926
\(568\) 2.07522 0.0870744
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 0 0
\(571\) −26.2619 −1.09902 −0.549512 0.835486i \(-0.685186\pi\)
−0.549512 + 0.835486i \(0.685186\pi\)
\(572\) −1.14903 −0.0480434
\(573\) 17.5515 0.733224
\(574\) −31.3258 −1.30751
\(575\) 0 0
\(576\) −16.6424 −0.693435
\(577\) −30.1016 −1.25314 −0.626572 0.779363i \(-0.715543\pi\)
−0.626572 + 0.779363i \(0.715543\pi\)
\(578\) 33.8446 1.40775
\(579\) 10.1114 0.420216
\(580\) 0 0
\(581\) −23.5778 −0.978174
\(582\) 13.1246 0.544032
\(583\) −1.77433 −0.0734853
\(584\) 1.03761 0.0429367
\(585\) 0 0
\(586\) −2.73084 −0.112810
\(587\) 35.1392 1.45035 0.725175 0.688565i \(-0.241759\pi\)
0.725175 + 0.688565i \(0.241759\pi\)
\(588\) −0.660357 −0.0272327
\(589\) 5.92478 0.244126
\(590\) 0 0
\(591\) 19.7889 0.814007
\(592\) 44.1827 1.81590
\(593\) −34.3244 −1.40953 −0.704767 0.709439i \(-0.748949\pi\)
−0.704767 + 0.709439i \(0.748949\pi\)
\(594\) 6.14762 0.252240
\(595\) 0 0
\(596\) −1.44007 −0.0589877
\(597\) −18.5990 −0.761204
\(598\) −45.2506 −1.85043
\(599\) 14.6107 0.596978 0.298489 0.954413i \(-0.403517\pi\)
0.298489 + 0.954413i \(0.403517\pi\)
\(600\) 0 0
\(601\) 23.5633 0.961165 0.480583 0.876949i \(-0.340425\pi\)
0.480583 + 0.876949i \(0.340425\pi\)
\(602\) −20.4749 −0.834493
\(603\) −15.8192 −0.644209
\(604\) −0.312650 −0.0127216
\(605\) 0 0
\(606\) 3.16362 0.128513
\(607\) 8.80606 0.357427 0.178714 0.983901i \(-0.442806\pi\)
0.178714 + 0.983901i \(0.442806\pi\)
\(608\) 1.09332 0.0443400
\(609\) −9.75463 −0.395278
\(610\) 0 0
\(611\) 20.6253 0.834410
\(612\) −2.87732 −0.116309
\(613\) −10.4142 −0.420626 −0.210313 0.977634i \(-0.567448\pi\)
−0.210313 + 0.977634i \(0.567448\pi\)
\(614\) −38.8178 −1.56656
\(615\) 0 0
\(616\) 8.62530 0.347523
\(617\) 17.2849 0.695863 0.347932 0.937520i \(-0.386884\pi\)
0.347932 + 0.937520i \(0.386884\pi\)
\(618\) −12.8119 −0.515372
\(619\) −10.6351 −0.427463 −0.213731 0.976892i \(-0.568562\pi\)
−0.213731 + 0.976892i \(0.568562\pi\)
\(620\) 0 0
\(621\) 21.4010 0.858794
\(622\) 9.64832 0.386863
\(623\) −23.7480 −0.951443
\(624\) −21.5877 −0.864199
\(625\) 0 0
\(626\) −23.8105 −0.951660
\(627\) 0.775746 0.0309803
\(628\) −0.850969 −0.0339574
\(629\) −64.1133 −2.55637
\(630\) 0 0
\(631\) −16.5599 −0.659240 −0.329620 0.944114i \(-0.606921\pi\)
−0.329620 + 0.944114i \(0.606921\pi\)
\(632\) 2.23743 0.0890001
\(633\) 16.8773 0.670813
\(634\) 8.43278 0.334908
\(635\) 0 0
\(636\) 0.288213 0.0114284
\(637\) −26.0059 −1.03039
\(638\) −5.14903 −0.203852
\(639\) 1.82321 0.0721249
\(640\) 0 0
\(641\) −16.7612 −0.662026 −0.331013 0.943626i \(-0.607390\pi\)
−0.331013 + 0.943626i \(0.607390\pi\)
\(642\) 5.73813 0.226466
\(643\) −5.73813 −0.226290 −0.113145 0.993578i \(-0.536092\pi\)
−0.113145 + 0.993578i \(0.536092\pi\)
\(644\) −3.22425 −0.127053
\(645\) 0 0
\(646\) −9.35026 −0.367881
\(647\) 37.2144 1.46305 0.731525 0.681815i \(-0.238809\pi\)
0.731525 + 0.681815i \(0.238809\pi\)
\(648\) −9.56230 −0.375642
\(649\) −6.14762 −0.241315
\(650\) 0 0
\(651\) −16.0000 −0.627089
\(652\) 0.126008 0.00493485
\(653\) −11.7626 −0.460305 −0.230153 0.973155i \(-0.573923\pi\)
−0.230153 + 0.973155i \(0.573923\pi\)
\(654\) 3.31406 0.129590
\(655\) 0 0
\(656\) −27.4617 −1.07220
\(657\) 0.911603 0.0355650
\(658\) 16.6253 0.648122
\(659\) 1.23884 0.0482584 0.0241292 0.999709i \(-0.492319\pi\)
0.0241292 + 0.999709i \(0.492319\pi\)
\(660\) 0 0
\(661\) −9.53690 −0.370943 −0.185471 0.982650i \(-0.559381\pi\)
−0.185471 + 0.982650i \(0.559381\pi\)
\(662\) −18.2374 −0.708818
\(663\) 31.3258 1.21659
\(664\) −18.8265 −0.730611
\(665\) 0 0
\(666\) 35.3561 1.37002
\(667\) −17.9248 −0.694050
\(668\) 2.97812 0.115227
\(669\) −0.0244376 −0.000944811 0
\(670\) 0 0
\(671\) −10.8510 −0.418897
\(672\) −2.95254 −0.113897
\(673\) −39.9307 −1.53921 −0.769607 0.638518i \(-0.779548\pi\)
−0.769607 + 0.638518i \(0.779548\pi\)
\(674\) −5.58181 −0.215003
\(675\) 0 0
\(676\) 4.82909 0.185734
\(677\) 3.05334 0.117349 0.0586747 0.998277i \(-0.481313\pi\)
0.0586747 + 0.998277i \(0.481313\pi\)
\(678\) 8.34885 0.320636
\(679\) 36.8284 1.41335
\(680\) 0 0
\(681\) 3.87399 0.148452
\(682\) −8.44568 −0.323402
\(683\) −29.2692 −1.11995 −0.559977 0.828508i \(-0.689190\pi\)
−0.559977 + 0.828508i \(0.689190\pi\)
\(684\) 0.455802 0.0174280
\(685\) 0 0
\(686\) 13.7743 0.525906
\(687\) −1.51056 −0.0576313
\(688\) −17.9492 −0.684307
\(689\) 11.3503 0.432411
\(690\) 0 0
\(691\) 2.63515 0.100246 0.0501229 0.998743i \(-0.484039\pi\)
0.0501229 + 0.998743i \(0.484039\pi\)
\(692\) −0.629270 −0.0239213
\(693\) 7.57784 0.287858
\(694\) 33.1246 1.25739
\(695\) 0 0
\(696\) −7.78892 −0.295238
\(697\) 39.8496 1.50941
\(698\) −14.8119 −0.560640
\(699\) −8.98683 −0.339913
\(700\) 0 0
\(701\) −25.0494 −0.946102 −0.473051 0.881035i \(-0.656847\pi\)
−0.473051 + 0.881035i \(0.656847\pi\)
\(702\) −39.3258 −1.48426
\(703\) 10.1563 0.383053
\(704\) 6.81477 0.256841
\(705\) 0 0
\(706\) −8.20123 −0.308657
\(707\) 8.87732 0.333866
\(708\) 0.998585 0.0375291
\(709\) −41.6991 −1.56604 −0.783021 0.621995i \(-0.786323\pi\)
−0.783021 + 0.621995i \(0.786323\pi\)
\(710\) 0 0
\(711\) 1.96571 0.0737200
\(712\) −18.9624 −0.710646
\(713\) −29.4010 −1.10108
\(714\) 25.2506 0.944980
\(715\) 0 0
\(716\) 2.91160 0.108812
\(717\) −7.49597 −0.279942
\(718\) −15.3503 −0.572867
\(719\) 30.6351 1.14250 0.571249 0.820777i \(-0.306459\pi\)
0.571249 + 0.820777i \(0.306459\pi\)
\(720\) 0 0
\(721\) −35.9511 −1.33889
\(722\) 1.48119 0.0551243
\(723\) 1.86414 0.0693282
\(724\) 1.78892 0.0664847
\(725\) 0 0
\(726\) 12.0275 0.446382
\(727\) −7.50071 −0.278186 −0.139093 0.990279i \(-0.544419\pi\)
−0.139093 + 0.990279i \(0.544419\pi\)
\(728\) −55.1754 −2.04494
\(729\) 2.02776 0.0751023
\(730\) 0 0
\(731\) 26.0460 0.963348
\(732\) 1.76257 0.0651466
\(733\) −9.84955 −0.363802 −0.181901 0.983317i \(-0.558225\pi\)
−0.181901 + 0.983317i \(0.558225\pi\)
\(734\) −4.96239 −0.183165
\(735\) 0 0
\(736\) −5.42548 −0.199986
\(737\) 6.47768 0.238609
\(738\) −21.9756 −0.808932
\(739\) −20.0000 −0.735712 −0.367856 0.929883i \(-0.619908\pi\)
−0.367856 + 0.929883i \(0.619908\pi\)
\(740\) 0 0
\(741\) −4.96239 −0.182298
\(742\) 9.14903 0.335871
\(743\) 15.7177 0.576625 0.288313 0.957536i \(-0.406906\pi\)
0.288313 + 0.957536i \(0.406906\pi\)
\(744\) −12.7757 −0.468382
\(745\) 0 0
\(746\) 18.6702 0.683565
\(747\) −16.5402 −0.605175
\(748\) 1.17821 0.0430795
\(749\) 16.1016 0.588339
\(750\) 0 0
\(751\) −43.7400 −1.59610 −0.798048 0.602593i \(-0.794134\pi\)
−0.798048 + 0.602593i \(0.794134\pi\)
\(752\) 14.5745 0.531478
\(753\) −19.4274 −0.707974
\(754\) 32.9380 1.19953
\(755\) 0 0
\(756\) −2.80209 −0.101911
\(757\) 15.7743 0.573328 0.286664 0.958031i \(-0.407454\pi\)
0.286664 + 0.958031i \(0.407454\pi\)
\(758\) −55.1754 −2.00406
\(759\) −3.84955 −0.139730
\(760\) 0 0
\(761\) 43.2262 1.56695 0.783474 0.621425i \(-0.213446\pi\)
0.783474 + 0.621425i \(0.213446\pi\)
\(762\) 16.0362 0.580930
\(763\) 9.29948 0.336664
\(764\) −4.22284 −0.152777
\(765\) 0 0
\(766\) −45.6688 −1.65008
\(767\) 39.3258 1.41997
\(768\) −3.71767 −0.134150
\(769\) −19.1246 −0.689650 −0.344825 0.938667i \(-0.612062\pi\)
−0.344825 + 0.938667i \(0.612062\pi\)
\(770\) 0 0
\(771\) −10.7367 −0.386674
\(772\) −2.43278 −0.0875576
\(773\) −25.8846 −0.931005 −0.465502 0.885047i \(-0.654126\pi\)
−0.465502 + 0.885047i \(0.654126\pi\)
\(774\) −14.3634 −0.516283
\(775\) 0 0
\(776\) 29.4069 1.05565
\(777\) −27.4274 −0.983952
\(778\) −2.03620 −0.0730012
\(779\) −6.31265 −0.226174
\(780\) 0 0
\(781\) −0.746569 −0.0267144
\(782\) 46.3996 1.65925
\(783\) −15.5778 −0.556707
\(784\) −18.3766 −0.656307
\(785\) 0 0
\(786\) −24.6253 −0.878355
\(787\) −19.9814 −0.712261 −0.356131 0.934436i \(-0.615904\pi\)
−0.356131 + 0.934436i \(0.615904\pi\)
\(788\) −4.76116 −0.169609
\(789\) 10.4485 0.371977
\(790\) 0 0
\(791\) 23.4274 0.832982
\(792\) 6.05079 0.215005
\(793\) 69.4128 2.46492
\(794\) 13.9032 0.493405
\(795\) 0 0
\(796\) 4.47486 0.158607
\(797\) −28.6458 −1.01469 −0.507343 0.861744i \(-0.669372\pi\)
−0.507343 + 0.861744i \(0.669372\pi\)
\(798\) −4.00000 −0.141598
\(799\) −21.1490 −0.748199
\(800\) 0 0
\(801\) −16.6596 −0.588638
\(802\) 20.8872 0.737551
\(803\) −0.373285 −0.0131729
\(804\) −1.05220 −0.0371082
\(805\) 0 0
\(806\) 54.0263 1.90300
\(807\) 9.18997 0.323502
\(808\) 7.08840 0.249369
\(809\) −17.2243 −0.605573 −0.302786 0.953058i \(-0.597917\pi\)
−0.302786 + 0.953058i \(0.597917\pi\)
\(810\) 0 0
\(811\) −15.6267 −0.548728 −0.274364 0.961626i \(-0.588467\pi\)
−0.274364 + 0.961626i \(0.588467\pi\)
\(812\) 2.34694 0.0823613
\(813\) −13.5515 −0.475272
\(814\) −14.4777 −0.507443
\(815\) 0 0
\(816\) 22.1359 0.774910
\(817\) −4.12601 −0.144351
\(818\) 52.0625 1.82032
\(819\) −48.4749 −1.69385
\(820\) 0 0
\(821\) 39.2506 1.36986 0.684928 0.728611i \(-0.259834\pi\)
0.684928 + 0.728611i \(0.259834\pi\)
\(822\) 24.1622 0.842754
\(823\) 45.5271 1.58697 0.793487 0.608588i \(-0.208264\pi\)
0.793487 + 0.608588i \(0.208264\pi\)
\(824\) −28.7064 −1.00003
\(825\) 0 0
\(826\) 31.6991 1.10295
\(827\) −17.0698 −0.593576 −0.296788 0.954943i \(-0.595916\pi\)
−0.296788 + 0.954943i \(0.595916\pi\)
\(828\) −2.26187 −0.0786052
\(829\) 1.69911 0.0590125 0.0295062 0.999565i \(-0.490607\pi\)
0.0295062 + 0.999565i \(0.490607\pi\)
\(830\) 0 0
\(831\) −24.0118 −0.832959
\(832\) −43.5936 −1.51134
\(833\) 26.6662 0.923930
\(834\) 20.9986 0.727122
\(835\) 0 0
\(836\) −0.186642 −0.00645516
\(837\) −25.5515 −0.883189
\(838\) 13.3719 0.461924
\(839\) −50.5910 −1.74660 −0.873298 0.487187i \(-0.838023\pi\)
−0.873298 + 0.487187i \(0.838023\pi\)
\(840\) 0 0
\(841\) −15.9525 −0.550088
\(842\) 22.5285 0.776382
\(843\) 9.36011 0.322379
\(844\) −4.06063 −0.139773
\(845\) 0 0
\(846\) 11.6629 0.400979
\(847\) 33.7499 1.15966
\(848\) 8.02047 0.275424
\(849\) 1.82321 0.0625723
\(850\) 0 0
\(851\) −50.3996 −1.72768
\(852\) 0.121269 0.00415460
\(853\) 22.5237 0.771198 0.385599 0.922667i \(-0.373995\pi\)
0.385599 + 0.922667i \(0.373995\pi\)
\(854\) 55.9511 1.91461
\(855\) 0 0
\(856\) 12.8568 0.439438
\(857\) 23.6180 0.806776 0.403388 0.915029i \(-0.367833\pi\)
0.403388 + 0.915029i \(0.367833\pi\)
\(858\) 7.07381 0.241496
\(859\) 15.1754 0.517777 0.258889 0.965907i \(-0.416644\pi\)
0.258889 + 0.965907i \(0.416644\pi\)
\(860\) 0 0
\(861\) 17.0475 0.580976
\(862\) 24.1622 0.822968
\(863\) −30.1055 −1.02480 −0.512402 0.858746i \(-0.671244\pi\)
−0.512402 + 0.858746i \(0.671244\pi\)
\(864\) −4.71511 −0.160411
\(865\) 0 0
\(866\) −16.5052 −0.560869
\(867\) −18.4182 −0.625515
\(868\) 3.84955 0.130662
\(869\) −0.804923 −0.0273051
\(870\) 0 0
\(871\) −41.4372 −1.40405
\(872\) 7.42548 0.251459
\(873\) 25.8357 0.874407
\(874\) −7.35026 −0.248626
\(875\) 0 0
\(876\) 0.0606343 0.00204864
\(877\) 5.53102 0.186769 0.0933847 0.995630i \(-0.470231\pi\)
0.0933847 + 0.995630i \(0.470231\pi\)
\(878\) 40.5647 1.36899
\(879\) 1.48612 0.0501255
\(880\) 0 0
\(881\) 20.8265 0.701664 0.350832 0.936438i \(-0.385899\pi\)
0.350832 + 0.936438i \(0.385899\pi\)
\(882\) −14.7054 −0.495158
\(883\) −43.1509 −1.45214 −0.726072 0.687618i \(-0.758656\pi\)
−0.726072 + 0.687618i \(0.758656\pi\)
\(884\) −7.53690 −0.253494
\(885\) 0 0
\(886\) −28.9018 −0.970973
\(887\) 44.5461 1.49571 0.747856 0.663861i \(-0.231083\pi\)
0.747856 + 0.663861i \(0.231083\pi\)
\(888\) −21.9003 −0.734927
\(889\) 44.9986 1.50920
\(890\) 0 0
\(891\) 3.44007 0.115247
\(892\) 0.00587961 0.000196864 0
\(893\) 3.35026 0.112112
\(894\) 8.86556 0.296509
\(895\) 0 0
\(896\) −42.4650 −1.41866
\(897\) 24.6253 0.822215
\(898\) −32.7367 −1.09244
\(899\) 21.4010 0.713765
\(900\) 0 0
\(901\) −11.6385 −0.387734
\(902\) 8.99859 0.299620
\(903\) 11.1424 0.370795
\(904\) 18.7064 0.622166
\(905\) 0 0
\(906\) 1.92478 0.0639464
\(907\) −53.7558 −1.78493 −0.892466 0.451115i \(-0.851026\pi\)
−0.892466 + 0.451115i \(0.851026\pi\)
\(908\) −0.932071 −0.0309319
\(909\) 6.22758 0.206556
\(910\) 0 0
\(911\) −2.28630 −0.0757486 −0.0378743 0.999283i \(-0.512059\pi\)
−0.0378743 + 0.999283i \(0.512059\pi\)
\(912\) −3.50659 −0.116115
\(913\) 6.77292 0.224151
\(914\) 26.4387 0.874513
\(915\) 0 0
\(916\) 0.363436 0.0120082
\(917\) −69.1002 −2.28189
\(918\) 40.3244 1.33090
\(919\) −34.8510 −1.14963 −0.574814 0.818284i \(-0.694925\pi\)
−0.574814 + 0.818284i \(0.694925\pi\)
\(920\) 0 0
\(921\) 21.1246 0.696079
\(922\) −52.2130 −1.71954
\(923\) 4.77575 0.157196
\(924\) 0.504032 0.0165814
\(925\) 0 0
\(926\) 39.0494 1.28324
\(927\) −25.2203 −0.828343
\(928\) 3.94921 0.129639
\(929\) 41.6991 1.36810 0.684052 0.729434i \(-0.260216\pi\)
0.684052 + 0.729434i \(0.260216\pi\)
\(930\) 0 0
\(931\) −4.22425 −0.138444
\(932\) 2.16220 0.0708254
\(933\) −5.25060 −0.171897
\(934\) 10.0508 0.328872
\(935\) 0 0
\(936\) −38.7064 −1.26516
\(937\) −21.9102 −0.715775 −0.357887 0.933765i \(-0.616503\pi\)
−0.357887 + 0.933765i \(0.616503\pi\)
\(938\) −33.4010 −1.09058
\(939\) 12.9576 0.422857
\(940\) 0 0
\(941\) −3.55149 −0.115775 −0.0578877 0.998323i \(-0.518437\pi\)
−0.0578877 + 0.998323i \(0.518437\pi\)
\(942\) 5.23884 0.170691
\(943\) 31.3258 1.02011
\(944\) 27.7889 0.904452
\(945\) 0 0
\(946\) 5.88156 0.191226
\(947\) −38.3634 −1.24664 −0.623322 0.781965i \(-0.714217\pi\)
−0.623322 + 0.781965i \(0.714217\pi\)
\(948\) 0.130747 0.00424648
\(949\) 2.38787 0.0775136
\(950\) 0 0
\(951\) −4.58910 −0.148812
\(952\) 56.5764 1.83365
\(953\) 22.8714 0.740879 0.370439 0.928857i \(-0.379207\pi\)
0.370439 + 0.928857i \(0.379207\pi\)
\(954\) 6.41819 0.207797
\(955\) 0 0
\(956\) 1.80351 0.0583296
\(957\) 2.80209 0.0905788
\(958\) 18.8265 0.608258
\(959\) 67.8007 2.18940
\(960\) 0 0
\(961\) 4.10299 0.132354
\(962\) 92.6126 2.98595
\(963\) 11.2955 0.363993
\(964\) −0.448507 −0.0144455
\(965\) 0 0
\(966\) 19.8496 0.638649
\(967\) −27.6629 −0.889579 −0.444790 0.895635i \(-0.646722\pi\)
−0.444790 + 0.895635i \(0.646722\pi\)
\(968\) 26.9488 0.866166
\(969\) 5.08840 0.163463
\(970\) 0 0
\(971\) −42.1768 −1.35352 −0.676759 0.736205i \(-0.736616\pi\)
−0.676759 + 0.736205i \(0.736616\pi\)
\(972\) −3.06793 −0.0984039
\(973\) 58.9234 1.88900
\(974\) 23.3416 0.747912
\(975\) 0 0
\(976\) 49.0494 1.57003
\(977\) −0.856849 −0.0274130 −0.0137065 0.999906i \(-0.504363\pi\)
−0.0137065 + 0.999906i \(0.504363\pi\)
\(978\) −0.775746 −0.0248056
\(979\) 6.82179 0.218025
\(980\) 0 0
\(981\) 6.52373 0.208287
\(982\) −21.5515 −0.687736
\(983\) −45.2809 −1.44424 −0.722119 0.691769i \(-0.756831\pi\)
−0.722119 + 0.691769i \(0.756831\pi\)
\(984\) 13.6121 0.433939
\(985\) 0 0
\(986\) −33.7743 −1.07559
\(987\) −9.04746 −0.287984
\(988\) 1.19394 0.0379842
\(989\) 20.4749 0.651063
\(990\) 0 0
\(991\) 47.0132 1.49342 0.746711 0.665148i \(-0.231632\pi\)
0.746711 + 0.665148i \(0.231632\pi\)
\(992\) 6.47768 0.205667
\(993\) 9.92478 0.314953
\(994\) 3.84955 0.122100
\(995\) 0 0
\(996\) −1.10016 −0.0348598
\(997\) −13.6873 −0.433483 −0.216741 0.976229i \(-0.569543\pi\)
−0.216741 + 0.976229i \(0.569543\pi\)
\(998\) −8.12601 −0.257224
\(999\) −43.8007 −1.38579
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.2.a.f.1.3 3
3.2 odd 2 4275.2.a.bk.1.1 3
4.3 odd 2 7600.2.a.bx.1.2 3
5.2 odd 4 475.2.b.d.324.5 6
5.3 odd 4 475.2.b.d.324.2 6
5.4 even 2 95.2.a.a.1.1 3
15.14 odd 2 855.2.a.i.1.3 3
19.18 odd 2 9025.2.a.bb.1.1 3
20.19 odd 2 1520.2.a.p.1.2 3
35.34 odd 2 4655.2.a.u.1.1 3
40.19 odd 2 6080.2.a.by.1.2 3
40.29 even 2 6080.2.a.bo.1.2 3
95.94 odd 2 1805.2.a.f.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.2.a.a.1.1 3 5.4 even 2
475.2.a.f.1.3 3 1.1 even 1 trivial
475.2.b.d.324.2 6 5.3 odd 4
475.2.b.d.324.5 6 5.2 odd 4
855.2.a.i.1.3 3 15.14 odd 2
1520.2.a.p.1.2 3 20.19 odd 2
1805.2.a.f.1.3 3 95.94 odd 2
4275.2.a.bk.1.1 3 3.2 odd 2
4655.2.a.u.1.1 3 35.34 odd 2
6080.2.a.bo.1.2 3 40.29 even 2
6080.2.a.by.1.2 3 40.19 odd 2
7600.2.a.bx.1.2 3 4.3 odd 2
9025.2.a.bb.1.1 3 19.18 odd 2