Newspace parameters
Level: | \( N \) | \(=\) | \( 475 = 5^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 475.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(3.79289409601\) |
Analytic rank: | \(1\) |
Dimension: | \(3\) |
Coefficient field: | 3.3.148.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{3} - x^{2} - 3x + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 95) |
Fricke sign: | \(1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{3} - x^{2} - 3x + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} - \nu - 2 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} + \beta _1 + 2 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
−2.17009 | 1.70928 | 2.70928 | 0 | −3.70928 | −1.07838 | −1.53919 | −0.0783777 | 0 | |||||||||||||||||||||||||||
1.2 | −0.311108 | −2.90321 | −1.90321 | 0 | 0.903212 | 4.42864 | 1.21432 | 5.42864 | 0 | ||||||||||||||||||||||||||||
1.3 | 1.48119 | −0.806063 | 0.193937 | 0 | −1.19394 | −3.35026 | −2.67513 | −2.35026 | 0 | ||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(5\) | \(1\) |
\(19\) | \(1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 475.2.a.f | 3 | |
3.b | odd | 2 | 1 | 4275.2.a.bk | 3 | ||
4.b | odd | 2 | 1 | 7600.2.a.bx | 3 | ||
5.b | even | 2 | 1 | 95.2.a.a | ✓ | 3 | |
5.c | odd | 4 | 2 | 475.2.b.d | 6 | ||
15.d | odd | 2 | 1 | 855.2.a.i | 3 | ||
19.b | odd | 2 | 1 | 9025.2.a.bb | 3 | ||
20.d | odd | 2 | 1 | 1520.2.a.p | 3 | ||
35.c | odd | 2 | 1 | 4655.2.a.u | 3 | ||
40.e | odd | 2 | 1 | 6080.2.a.by | 3 | ||
40.f | even | 2 | 1 | 6080.2.a.bo | 3 | ||
95.d | odd | 2 | 1 | 1805.2.a.f | 3 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
95.2.a.a | ✓ | 3 | 5.b | even | 2 | 1 | |
475.2.a.f | 3 | 1.a | even | 1 | 1 | trivial | |
475.2.b.d | 6 | 5.c | odd | 4 | 2 | ||
855.2.a.i | 3 | 15.d | odd | 2 | 1 | ||
1520.2.a.p | 3 | 20.d | odd | 2 | 1 | ||
1805.2.a.f | 3 | 95.d | odd | 2 | 1 | ||
4275.2.a.bk | 3 | 3.b | odd | 2 | 1 | ||
4655.2.a.u | 3 | 35.c | odd | 2 | 1 | ||
6080.2.a.bo | 3 | 40.f | even | 2 | 1 | ||
6080.2.a.by | 3 | 40.e | odd | 2 | 1 | ||
7600.2.a.bx | 3 | 4.b | odd | 2 | 1 | ||
9025.2.a.bb | 3 | 19.b | odd | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{3} + T_{2}^{2} - 3T_{2} - 1 \)
acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(475))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{3} + T^{2} - 3T - 1 \)
$3$
\( T^{3} + 2 T^{2} - 4 T - 4 \)
$5$
\( T^{3} \)
$7$
\( T^{3} - 16T - 16 \)
$11$
\( T^{3} + 8 T^{2} + 8 T - 16 \)
$13$
\( T^{3} + 8 T^{2} + 12 T + 4 \)
$17$
\( T^{3} + 2 T^{2} - 36 T - 104 \)
$19$
\( (T + 1)^{3} \)
$23$
\( T^{3} - 4 T^{2} - 8 T + 16 \)
$29$
\( T^{3} + 10 T^{2} + 12 T - 40 \)
$31$
\( T^{3} - 4 T^{2} - 48 T + 64 \)
$37$
\( T^{3} + 20 T^{2} + 124 T + 244 \)
$41$
\( T^{3} + 2 T^{2} - 36 T - 104 \)
$43$
\( T^{3} - 4 T^{2} - 144 T + 592 \)
$47$
\( T^{3} - 16T - 16 \)
$53$
\( T^{3} + 16 T^{2} + 76 T + 92 \)
$59$
\( T^{3} + 20 T^{2} + 112 T + 160 \)
$61$
\( T^{3} + 2 T^{2} - 84 T + 232 \)
$67$
\( T^{3} + 2 T^{2} - 76 T + 116 \)
$71$
\( T^{3} + 4 T^{2} - 80 T - 64 \)
$73$
\( T^{3} + 2 T^{2} - 20 T - 8 \)
$79$
\( T^{3} - 192T - 160 \)
$83$
\( T^{3} - 32 T^{2} + 328 T - 1072 \)
$89$
\( T^{3} - 2 T^{2} - 132 T + 680 \)
$97$
\( T^{3} + 20 T^{2} - 60 T - 1748 \)
show more
show less