Properties

Label 475.1.c.b.151.2
Level $475$
Weight $1$
Character 475.151
Analytic conductor $0.237$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -95
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [475,1,Mod(151,475)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(475, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("475.151");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 475 = 5^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 475.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.237055881001\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 95)
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.2.475.1
Artin image: $\SD_{16}$
Artin field: Galois closure of 8.2.107171875.1

Embedding invariants

Embedding label 151.2
Root \(-1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 475.151
Dual form 475.1.c.b.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421i q^{2} +1.41421i q^{3} -1.00000 q^{4} -2.00000 q^{6} -1.00000 q^{9} +O(q^{10})\) \(q+1.41421i q^{2} +1.41421i q^{3} -1.00000 q^{4} -2.00000 q^{6} -1.00000 q^{9} -1.41421i q^{12} -1.41421i q^{13} -1.00000 q^{16} -1.41421i q^{18} +1.00000 q^{19} +2.00000 q^{26} -1.41421i q^{32} +1.00000 q^{36} -1.41421i q^{37} +1.41421i q^{38} +2.00000 q^{39} -1.41421i q^{48} -1.00000 q^{49} +1.41421i q^{52} +1.41421i q^{53} +1.41421i q^{57} +1.00000 q^{64} +1.41421i q^{67} +2.00000 q^{74} -1.00000 q^{76} +2.82843i q^{78} -1.00000 q^{81} +2.00000 q^{96} -1.41421i q^{97} -1.41421i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{6} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{4} - 4 q^{6} - 2 q^{9} - 2 q^{16} + 2 q^{19} + 4 q^{26} + 2 q^{36} + 4 q^{39} - 2 q^{49} + 2 q^{64} + 4 q^{74} - 2 q^{76} - 2 q^{81} + 4 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/475\mathbb{Z}\right)^\times\).

\(n\) \(77\) \(401\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) −1.00000 −1.00000
\(5\) 0 0
\(6\) −2.00000 −2.00000
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 0 0
\(9\) −1.00000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) − 1.41421i − 1.41421i
\(13\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −1.00000 −1.00000
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) − 1.41421i − 1.41421i
\(19\) 1.00000 1.00000
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 2.00000 2.00000
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) − 1.41421i − 1.41421i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 1.00000
\(37\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(38\) 1.41421i 1.41421i
\(39\) 2.00000 2.00000
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) − 1.41421i − 1.41421i
\(49\) −1.00000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 1.41421i 1.41421i
\(53\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 1.41421i 1.41421i
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 1.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 2.00000 2.00000
\(75\) 0 0
\(76\) −1.00000 −1.00000
\(77\) 0 0
\(78\) 2.82843i 2.82843i
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) −1.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 2.00000 2.00000
\(97\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(98\) − 1.41421i − 1.41421i
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −2.00000 −2.00000
\(107\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 2.00000 2.00000
\(112\) 0 0
\(113\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(114\) −2.00000 −2.00000
\(115\) 0 0
\(116\) 0 0
\(117\) 1.41421i 1.41421i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1.00000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.00000 −2.00000
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) − 1.41421i − 1.41421i
\(148\) 1.41421i 1.41421i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −2.00000 −2.00000
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) −2.00000 −2.00000
\(160\) 0 0
\(161\) 0 0
\(162\) − 1.41421i − 1.41421i
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(168\) 0 0
\(169\) −1.00000 −1.00000
\(170\) 0 0
\(171\) −1.00000 −1.00000
\(172\) 0 0
\(173\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(192\) 1.41421i 1.41421i
\(193\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(194\) 2.00000 2.00000
\(195\) 0 0
\(196\) 1.00000 1.00000
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(200\) 0 0
\(201\) −2.00000 −2.00000
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 2.00000 2.00000
\(207\) 0 0
\(208\) 1.41421i 1.41421i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) − 1.41421i − 1.41421i
\(213\) 0 0
\(214\) −2.00000 −2.00000
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 2.82843i 2.82843i
\(223\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 2.00000 2.00000
\(227\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) − 1.41421i − 1.41421i
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) −2.00000 −2.00000
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) − 1.41421i − 1.41421i
\(243\) − 1.41421i − 1.41421i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.41421i − 1.41421i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 2.00000 2.00000
\(255\) 0 0
\(256\) 1.00000 1.00000
\(257\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 2.82843i 2.82843i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) − 1.41421i − 1.41421i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 1.41421i 1.41421i
\(289\) −1.00000 −1.00000
\(290\) 0 0
\(291\) 2.00000 2.00000
\(292\) 0 0
\(293\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 2.00000 2.00000
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −1.00000 −1.00000
\(305\) 0 0
\(306\) 0 0
\(307\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 2.00000 2.00000
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) − 2.82843i − 2.82843i
\(319\) 0 0
\(320\) 0 0
\(321\) −2.00000 −2.00000
\(322\) 0 0
\(323\) 0 0
\(324\) 1.00000 1.00000
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 1.41421i 1.41421i
\(334\) 2.00000 2.00000
\(335\) 0 0
\(336\) 0 0
\(337\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(338\) − 1.41421i − 1.41421i
\(339\) 2.00000 2.00000
\(340\) 0 0
\(341\) 0 0
\(342\) − 1.41421i − 1.41421i
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 2.00000 2.00000
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) − 1.41421i − 1.41421i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 2.00000 2.00000
\(382\) − 2.82843i − 2.82843i
\(383\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −2.00000 −2.00000
\(387\) 0 0
\(388\) 1.41421i 1.41421i
\(389\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 2.82843i 2.82843i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 2.82843i 2.82843i
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) − 2.82843i − 2.82843i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.41421i 1.41421i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −2.00000 −2.00000
\(417\) 0 0
\(418\) 0 0
\(419\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) − 1.41421i − 1.41421i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) −2.00000 −2.00000
\(445\) 0 0
\(446\) −2.00000 −2.00000
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 1.41421i 1.41421i
\(453\) 0 0
\(454\) −2.00000 −2.00000
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) − 1.41421i − 1.41421i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 1.41421i − 1.41421i
\(478\) − 2.82843i − 2.82843i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −2.00000 −2.00000
\(482\) 0 0
\(483\) 0 0
\(484\) 1.00000 1.00000
\(485\) 0 0
\(486\) 2.00000 2.00000
\(487\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 2.00000 2.00000
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 0 0
\(501\) 2.00000 2.00000
\(502\) − 2.82843i − 2.82843i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 1.41421i − 1.41421i
\(508\) 1.41421i 1.41421i
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.41421i 1.41421i
\(513\) 0 0
\(514\) 2.00000 2.00000
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 2.00000 2.00000
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(524\) −2.00000 −2.00000
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −1.00000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) − 2.82843i − 2.82843i
\(574\) 0 0
\(575\) 0 0
\(576\) −1.00000 −1.00000
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) − 1.41421i − 1.41421i
\(579\) −2.00000 −2.00000
\(580\) 0 0
\(581\) 0 0
\(582\) 2.82843i 2.82843i
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −2.00000 −2.00000
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 1.41421i 1.41421i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 1.41421i 1.41421i
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2.82843i 2.82843i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 0 0
\(603\) − 1.41421i − 1.41421i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) − 1.41421i − 1.41421i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) −2.00000 −2.00000
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 2.82843i 2.82843i
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −2.00000 −2.00000
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −2.00000 −2.00000
\(635\) 0 0
\(636\) 2.00000 2.00000
\(637\) 1.41421i 1.41421i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) − 2.82843i − 2.82843i
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −2.00000 −2.00000
\(667\) 0 0
\(668\) 1.41421i 1.41421i
\(669\) −2.00000 −2.00000
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(674\) −2.00000 −2.00000
\(675\) 0 0
\(676\) 1.00000 1.00000
\(677\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(678\) 2.82843i 2.82843i
\(679\) 0 0
\(680\) 0 0
\(681\) −2.00000 −2.00000
\(682\) 0 0
\(683\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(684\) 1.00000 1.00000
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.00000 2.00000
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 1.41421i 1.41421i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 2.82843i 2.82843i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) − 1.41421i − 1.41421i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 2.82843i − 2.82843i
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.41421i 1.41421i
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 2.00000 2.00000
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(740\) 0 0
\(741\) 2.00000 2.00000
\(742\) 0 0
\(743\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −2.00000 −2.00000
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) − 2.82843i − 2.82843i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 2.82843i 2.82843i
\(763\) 0 0
\(764\) 2.00000 2.00000
\(765\) 0 0
\(766\) 2.00000 2.00000
\(767\) 0 0
\(768\) 1.41421i 1.41421i
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 2.00000 2.00000
\(772\) − 1.41421i − 1.41421i
\(773\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) − 2.82843i − 2.82843i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 1.00000 1.00000
\(785\) 0 0
\(786\) −4.00000 −4.00000
\(787\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −2.00000 −2.00000
\(797\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 2.00000 2.00000
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 1.41421i − 1.41421i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) − 2.82843i − 2.82843i
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 1.00000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) − 1.41421i − 1.41421i
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(858\) 0 0
\(859\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 2.00000 2.00000
\(867\) − 1.41421i − 1.41421i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 2.00000 2.00000
\(872\) 0 0
\(873\) 1.41421i 1.41421i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(878\) 0 0
\(879\) −2.00000 −2.00000
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 1.41421i 1.41421i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) − 1.41421i − 1.41421i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(908\) − 1.41421i − 1.41421i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) − 1.41421i − 1.41421i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −2.00000 −2.00000 −1.00000 \(\pi\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −2.00000 −2.00000
\(922\) 2.82843i 2.82843i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1.41421i 1.41421i
\(928\) 0 0
\(929\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(930\) 0 0
\(931\) −1.00000 −1.00000
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −2.00000 −2.00000
\(952\) 0 0
\(953\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(954\) 2.00000 2.00000
\(955\) 0 0
\(956\) 2.00000 2.00000
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) − 2.82843i − 2.82843i
\(963\) − 1.41421i − 1.41421i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 1.41421i 1.41421i
\(973\) 0 0
\(974\) −2.00000 −2.00000
\(975\) 0 0
\(976\) 0 0
\(977\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) − 2.82843i − 2.82843i
\(983\) − 1.41421i − 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 1.41421i 1.41421i
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 475.1.c.b.151.2 2
5.2 odd 4 95.1.d.b.94.1 2
5.3 odd 4 95.1.d.b.94.2 yes 2
5.4 even 2 inner 475.1.c.b.151.1 2
15.2 even 4 855.1.g.c.379.2 2
15.8 even 4 855.1.g.c.379.1 2
19.18 odd 2 inner 475.1.c.b.151.1 2
20.3 even 4 1520.1.m.b.1329.2 2
20.7 even 4 1520.1.m.b.1329.1 2
95.2 even 36 1805.1.o.b.984.1 12
95.3 even 36 1805.1.o.b.694.1 12
95.7 odd 12 1805.1.h.b.654.2 4
95.8 even 12 1805.1.h.b.69.2 4
95.12 even 12 1805.1.h.b.654.1 4
95.13 even 36 1805.1.o.b.1199.1 12
95.17 odd 36 1805.1.o.b.984.2 12
95.18 even 4 95.1.d.b.94.1 2
95.22 even 36 1805.1.o.b.694.2 12
95.23 odd 36 1805.1.o.b.1029.2 12
95.27 even 12 1805.1.h.b.69.1 4
95.28 odd 36 1805.1.o.b.299.1 12
95.32 even 36 1805.1.o.b.1199.2 12
95.33 even 36 1805.1.o.b.849.1 12
95.37 even 4 95.1.d.b.94.2 yes 2
95.42 odd 36 1805.1.o.b.1029.1 12
95.43 odd 36 1805.1.o.b.849.2 12
95.47 odd 36 1805.1.o.b.299.2 12
95.48 even 36 1805.1.o.b.299.2 12
95.52 even 36 1805.1.o.b.849.2 12
95.53 even 36 1805.1.o.b.1029.1 12
95.62 odd 36 1805.1.o.b.849.1 12
95.63 odd 36 1805.1.o.b.1199.2 12
95.67 even 36 1805.1.o.b.299.1 12
95.68 odd 12 1805.1.h.b.69.1 4
95.72 even 36 1805.1.o.b.1029.2 12
95.73 odd 36 1805.1.o.b.694.2 12
95.78 even 36 1805.1.o.b.984.2 12
95.82 odd 36 1805.1.o.b.1199.1 12
95.83 odd 12 1805.1.h.b.654.1 4
95.87 odd 12 1805.1.h.b.69.2 4
95.88 even 12 1805.1.h.b.654.2 4
95.92 odd 36 1805.1.o.b.694.1 12
95.93 odd 36 1805.1.o.b.984.1 12
95.94 odd 2 CM 475.1.c.b.151.2 2
285.113 odd 4 855.1.g.c.379.2 2
285.227 odd 4 855.1.g.c.379.1 2
380.227 odd 4 1520.1.m.b.1329.2 2
380.303 odd 4 1520.1.m.b.1329.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
95.1.d.b.94.1 2 5.2 odd 4
95.1.d.b.94.1 2 95.18 even 4
95.1.d.b.94.2 yes 2 5.3 odd 4
95.1.d.b.94.2 yes 2 95.37 even 4
475.1.c.b.151.1 2 5.4 even 2 inner
475.1.c.b.151.1 2 19.18 odd 2 inner
475.1.c.b.151.2 2 1.1 even 1 trivial
475.1.c.b.151.2 2 95.94 odd 2 CM
855.1.g.c.379.1 2 15.8 even 4
855.1.g.c.379.1 2 285.227 odd 4
855.1.g.c.379.2 2 15.2 even 4
855.1.g.c.379.2 2 285.113 odd 4
1520.1.m.b.1329.1 2 20.7 even 4
1520.1.m.b.1329.1 2 380.303 odd 4
1520.1.m.b.1329.2 2 20.3 even 4
1520.1.m.b.1329.2 2 380.227 odd 4
1805.1.h.b.69.1 4 95.27 even 12
1805.1.h.b.69.1 4 95.68 odd 12
1805.1.h.b.69.2 4 95.8 even 12
1805.1.h.b.69.2 4 95.87 odd 12
1805.1.h.b.654.1 4 95.12 even 12
1805.1.h.b.654.1 4 95.83 odd 12
1805.1.h.b.654.2 4 95.7 odd 12
1805.1.h.b.654.2 4 95.88 even 12
1805.1.o.b.299.1 12 95.28 odd 36
1805.1.o.b.299.1 12 95.67 even 36
1805.1.o.b.299.2 12 95.47 odd 36
1805.1.o.b.299.2 12 95.48 even 36
1805.1.o.b.694.1 12 95.3 even 36
1805.1.o.b.694.1 12 95.92 odd 36
1805.1.o.b.694.2 12 95.22 even 36
1805.1.o.b.694.2 12 95.73 odd 36
1805.1.o.b.849.1 12 95.33 even 36
1805.1.o.b.849.1 12 95.62 odd 36
1805.1.o.b.849.2 12 95.43 odd 36
1805.1.o.b.849.2 12 95.52 even 36
1805.1.o.b.984.1 12 95.2 even 36
1805.1.o.b.984.1 12 95.93 odd 36
1805.1.o.b.984.2 12 95.17 odd 36
1805.1.o.b.984.2 12 95.78 even 36
1805.1.o.b.1029.1 12 95.42 odd 36
1805.1.o.b.1029.1 12 95.53 even 36
1805.1.o.b.1029.2 12 95.23 odd 36
1805.1.o.b.1029.2 12 95.72 even 36
1805.1.o.b.1199.1 12 95.13 even 36
1805.1.o.b.1199.1 12 95.82 odd 36
1805.1.o.b.1199.2 12 95.32 even 36
1805.1.o.b.1199.2 12 95.63 odd 36