Properties

Label 4732.2.g.i
Level $4732$
Weight $2$
Character orbit 4732.g
Analytic conductor $37.785$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(337,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 \beta_1 q^{5} + \beta_{5} q^{7} - 3 q^{9} + ( - 2 \beta_{5} - 4 \beta_{3} + 3 \beta_1) q^{11} - 2 \beta_{2} q^{17} + (2 \beta_{5} - 2 \beta_{3} + 2 \beta_1) q^{19} + ( - 2 \beta_{4} + \beta_{2} - 2) q^{23}+ \cdots + (6 \beta_{5} + 12 \beta_{3} - 9 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 18 q^{9} - 4 q^{17} - 14 q^{23} - 10 q^{25} - 14 q^{29} - 4 q^{35} + 2 q^{43} - 6 q^{49} + 38 q^{53} - 20 q^{55} + 44 q^{61} - 2 q^{77} + 6 q^{79} + 54 q^{81} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 5x^{4} + 6x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 3\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} + 3\nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( \nu^{5} + 4\nu^{3} + 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 3\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 3\beta_{2} + 5 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 4\beta_{3} + 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4732\mathbb{Z}\right)^\times\).

\(n\) \(2367\) \(2705\) \(4565\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
1.80194i
1.24698i
0.445042i
0.445042i
1.24698i
1.80194i
0 0 0 3.60388i 0 1.00000i 0 −3.00000 0
337.2 0 0 0 2.49396i 0 1.00000i 0 −3.00000 0
337.3 0 0 0 0.890084i 0 1.00000i 0 −3.00000 0
337.4 0 0 0 0.890084i 0 1.00000i 0 −3.00000 0
337.5 0 0 0 2.49396i 0 1.00000i 0 −3.00000 0
337.6 0 0 0 3.60388i 0 1.00000i 0 −3.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 337.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4732.2.g.i 6
13.b even 2 1 inner 4732.2.g.i 6
13.d odd 4 1 4732.2.a.m 3
13.d odd 4 1 4732.2.a.n yes 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4732.2.a.m 3 13.d odd 4 1
4732.2.a.n yes 3 13.d odd 4 1
4732.2.g.i 6 1.a even 1 1 trivial
4732.2.g.i 6 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4732, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{5}^{6} + 20T_{5}^{4} + 96T_{5}^{2} + 64 \) Copy content Toggle raw display
\( T_{17}^{3} + 2T_{17}^{2} - 8T_{17} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 20 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{6} + 61 T^{4} + \cdots + 1849 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( (T^{3} + 2 T^{2} - 8 T - 8)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + 52 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( (T^{3} + 7 T^{2} - 7)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} + 7 T^{2} - 14 T - 7)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 68 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{6} + 69 T^{4} + \cdots + 169 \) Copy content Toggle raw display
$41$ \( T^{6} + 24 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$43$ \( (T^{3} - T^{2} - 2 T + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + 168 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$53$ \( (T^{3} - 19 T^{2} + \cdots + 83)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + 196 T^{4} + \cdots + 153664 \) Copy content Toggle raw display
$61$ \( (T^{3} - 22 T^{2} + \cdots + 232)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 41 T^{4} + \cdots + 1681 \) Copy content Toggle raw display
$71$ \( T^{6} + 161 T^{4} + \cdots + 82369 \) Copy content Toggle raw display
$73$ \( T^{6} + 56 T^{4} + \cdots + 3136 \) Copy content Toggle raw display
$79$ \( (T^{3} - 3 T^{2} + \cdots + 433)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 20 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$89$ \( T^{6} + 360 T^{4} + \cdots + 1236544 \) Copy content Toggle raw display
$97$ \( T^{6} + 332 T^{4} + \cdots + 817216 \) Copy content Toggle raw display
show more
show less