Properties

Label 4732.2.g.g
Level $4732$
Weight $2$
Character orbit 4732.g
Analytic conductor $37.785$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(337,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{3} + ( - \beta_{2} + \beta_1) q^{5} - \beta_{2} q^{7} + \beta_{3} q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{3} + ( - \beta_{2} + \beta_1) q^{5} - \beta_{2} q^{7} + \beta_{3} q^{9} + (5 \beta_{2} + \beta_1) q^{11} + (2 \beta_{2} - \beta_1) q^{15} + (2 \beta_{3} - 3) q^{17} + ( - 5 \beta_{2} + \beta_1) q^{19} + ( - \beta_{2} - \beta_1) q^{21} - 2 q^{23} + (3 \beta_{3} - 2) q^{25} + ( - 2 \beta_{3} + 3) q^{27} + ( - \beta_{3} + 2) q^{29} + (3 \beta_{2} - 2 \beta_1) q^{31} + (8 \beta_{2} + 5 \beta_1) q^{33} + (\beta_{3} - 2) q^{35} + (4 \beta_{2} + 4 \beta_1) q^{37} + (4 \beta_{2} - 2 \beta_1) q^{41} + (3 \beta_{3} - 1) q^{43} + (2 \beta_{2} - \beta_1) q^{45} + (9 \beta_{2} + 2 \beta_1) q^{47} - q^{49} + ( - \beta_{3} + 6) q^{51} + (6 \beta_{3} - 3) q^{53} + ( - 3 \beta_{3} + 5) q^{55} + ( - 2 \beta_{2} - 5 \beta_1) q^{57} + ( - 3 \beta_{2} - 2 \beta_1) q^{59} + (4 \beta_{3} - 2) q^{61} + ( - \beta_{2} - \beta_1) q^{63} - 13 \beta_{2} q^{67} - 2 \beta_{3} q^{69} + (2 \beta_{2} + 6 \beta_1) q^{71} + (6 \beta_{2} + 4 \beta_1) q^{73} + (\beta_{3} + 9) q^{75} + (\beta_{3} + 4) q^{77} + 8 q^{79} + ( - 2 \beta_{3} - 6) q^{81} + (7 \beta_{2} - 2 \beta_1) q^{83} + (7 \beta_{2} - 5 \beta_1) q^{85} + (\beta_{3} - 3) q^{87} + (9 \beta_{2} - 3 \beta_1) q^{89} + ( - 3 \beta_{2} + 3 \beta_1) q^{93} + (7 \beta_{3} - 15) q^{95} + (10 \beta_{2} - 3 \beta_1) q^{97} + (8 \beta_{2} + 5 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{3} + 2 q^{9} - 8 q^{17} - 8 q^{23} - 2 q^{25} + 8 q^{27} + 6 q^{29} - 6 q^{35} + 2 q^{43} - 4 q^{49} + 22 q^{51} + 14 q^{55} - 4 q^{69} + 38 q^{75} + 18 q^{77} + 32 q^{79} - 28 q^{81} - 10 q^{87} - 46 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} - 4\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4732\mathbb{Z}\right)^\times\).

\(n\) \(2367\) \(2705\) \(4565\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
2.30278i
2.30278i
1.30278i
1.30278i
0 −1.30278 0 3.30278i 0 1.00000i 0 −1.30278 0
337.2 0 −1.30278 0 3.30278i 0 1.00000i 0 −1.30278 0
337.3 0 2.30278 0 0.302776i 0 1.00000i 0 2.30278 0
337.4 0 2.30278 0 0.302776i 0 1.00000i 0 2.30278 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4732.2.g.g 4
13.b even 2 1 inner 4732.2.g.g 4
13.d odd 4 1 4732.2.a.j 2
13.d odd 4 1 4732.2.a.k 2
13.f odd 12 2 364.2.k.c 4
39.k even 12 2 3276.2.z.d 4
52.l even 12 2 1456.2.s.m 4
91.w even 12 2 2548.2.l.i 4
91.x odd 12 2 2548.2.i.j 4
91.ba even 12 2 2548.2.i.l 4
91.bc even 12 2 2548.2.k.f 4
91.bd odd 12 2 2548.2.l.k 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.k.c 4 13.f odd 12 2
1456.2.s.m 4 52.l even 12 2
2548.2.i.j 4 91.x odd 12 2
2548.2.i.l 4 91.ba even 12 2
2548.2.k.f 4 91.bc even 12 2
2548.2.l.i 4 91.w even 12 2
2548.2.l.k 4 91.bd odd 12 2
3276.2.z.d 4 39.k even 12 2
4732.2.a.j 2 13.d odd 4 1
4732.2.a.k 2 13.d odd 4 1
4732.2.g.g 4 1.a even 1 1 trivial
4732.2.g.g 4 13.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4732, [\chi])\):

\( T_{3}^{2} - T_{3} - 3 \) Copy content Toggle raw display
\( T_{5}^{4} + 11T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{17}^{2} + 4T_{17} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} - T - 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 11T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 47T^{2} + 289 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + 4 T - 9)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 67T^{2} + 729 \) Copy content Toggle raw display
$23$ \( (T + 2)^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} - 3 T - 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + 58T^{2} + 9 \) Copy content Toggle raw display
$37$ \( T^{4} + 112T^{2} + 2304 \) Copy content Toggle raw display
$41$ \( T^{4} + 76T^{2} + 144 \) Copy content Toggle raw display
$43$ \( (T^{2} - T - 29)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 154T^{2} + 2601 \) Copy content Toggle raw display
$53$ \( (T^{2} - 117)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 34T^{2} + 81 \) Copy content Toggle raw display
$61$ \( (T^{2} - 52)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 169)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + 236 T^{2} + 13456 \) Copy content Toggle raw display
$73$ \( T^{4} + 136T^{2} + 1296 \) Copy content Toggle raw display
$79$ \( (T - 8)^{4} \) Copy content Toggle raw display
$83$ \( T^{4} + 154T^{2} + 2601 \) Copy content Toggle raw display
$89$ \( T^{4} + 279T^{2} + 6561 \) Copy content Toggle raw display
$97$ \( T^{4} + 323 T^{2} + 10609 \) Copy content Toggle raw display
show more
show less