Properties

Label 4732.2.g.a.337.2
Level $4732$
Weight $2$
Character 4732.337
Analytic conductor $37.785$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(337,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4732.337
Dual form 4732.2.g.a.337.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{3} +1.00000i q^{5} +1.00000i q^{7} +1.00000 q^{9} +O(q^{10})\) \(q-2.00000 q^{3} +1.00000i q^{5} +1.00000i q^{7} +1.00000 q^{9} +4.00000i q^{11} -2.00000i q^{15} +2.00000 q^{17} -1.00000i q^{19} -2.00000i q^{21} +7.00000 q^{23} +4.00000 q^{25} +4.00000 q^{27} -5.00000 q^{29} -9.00000i q^{31} -8.00000i q^{33} -1.00000 q^{35} +2.00000i q^{37} +2.00000i q^{41} -1.00000 q^{43} +1.00000i q^{45} -9.00000i q^{47} -1.00000 q^{49} -4.00000 q^{51} +3.00000 q^{53} -4.00000 q^{55} +2.00000i q^{57} +14.0000 q^{61} +1.00000i q^{63} +10.0000i q^{67} -14.0000 q^{69} -14.0000i q^{71} -3.00000i q^{73} -8.00000 q^{75} -4.00000 q^{77} +5.00000 q^{79} -11.0000 q^{81} +5.00000i q^{83} +2.00000i q^{85} +10.0000 q^{87} +9.00000i q^{89} +18.0000i q^{93} +1.00000 q^{95} -1.00000i q^{97} +4.00000i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 4 q^{3} + 2 q^{9} + 4 q^{17} + 14 q^{23} + 8 q^{25} + 8 q^{27} - 10 q^{29} - 2 q^{35} - 2 q^{43} - 2 q^{49} - 8 q^{51} + 6 q^{53} - 8 q^{55} + 28 q^{61} - 28 q^{69} - 16 q^{75} - 8 q^{77} + 10 q^{79} - 22 q^{81} + 20 q^{87} + 2 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4732\mathbb{Z}\right)^\times\).

\(n\) \(2367\) \(2705\) \(4565\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.00000 −1.15470 −0.577350 0.816497i \(-0.695913\pi\)
−0.577350 + 0.816497i \(0.695913\pi\)
\(4\) 0 0
\(5\) 1.00000i 0.447214i 0.974679 + 0.223607i \(0.0717831\pi\)
−0.974679 + 0.223607i \(0.928217\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 4.00000i 1.20605i 0.797724 + 0.603023i \(0.206037\pi\)
−0.797724 + 0.603023i \(0.793963\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) − 2.00000i − 0.516398i
\(16\) 0 0
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) 0 0
\(19\) − 1.00000i − 0.229416i −0.993399 0.114708i \(-0.963407\pi\)
0.993399 0.114708i \(-0.0365932\pi\)
\(20\) 0 0
\(21\) − 2.00000i − 0.436436i
\(22\) 0 0
\(23\) 7.00000 1.45960 0.729800 0.683660i \(-0.239613\pi\)
0.729800 + 0.683660i \(0.239613\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 4.00000 0.769800
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) − 9.00000i − 1.61645i −0.588875 0.808224i \(-0.700429\pi\)
0.588875 0.808224i \(-0.299571\pi\)
\(32\) 0 0
\(33\) − 8.00000i − 1.39262i
\(34\) 0 0
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) 2.00000i 0.328798i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.986394 + 0.164399i \(0.947432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000i 0.312348i 0.987730 + 0.156174i \(0.0499160\pi\)
−0.987730 + 0.156174i \(0.950084\pi\)
\(42\) 0 0
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 0 0
\(45\) 1.00000i 0.149071i
\(46\) 0 0
\(47\) − 9.00000i − 1.31278i −0.754420 0.656392i \(-0.772082\pi\)
0.754420 0.656392i \(-0.227918\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 0 0
\(51\) −4.00000 −0.560112
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) −4.00000 −0.539360
\(56\) 0 0
\(57\) 2.00000i 0.264906i
\(58\) 0 0
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 14.0000 1.79252 0.896258 0.443533i \(-0.146275\pi\)
0.896258 + 0.443533i \(0.146275\pi\)
\(62\) 0 0
\(63\) 1.00000i 0.125988i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.0000i 1.22169i 0.791748 + 0.610847i \(0.209171\pi\)
−0.791748 + 0.610847i \(0.790829\pi\)
\(68\) 0 0
\(69\) −14.0000 −1.68540
\(70\) 0 0
\(71\) − 14.0000i − 1.66149i −0.556650 0.830747i \(-0.687914\pi\)
0.556650 0.830747i \(-0.312086\pi\)
\(72\) 0 0
\(73\) − 3.00000i − 0.351123i −0.984468 0.175562i \(-0.943826\pi\)
0.984468 0.175562i \(-0.0561742\pi\)
\(74\) 0 0
\(75\) −8.00000 −0.923760
\(76\) 0 0
\(77\) −4.00000 −0.455842
\(78\) 0 0
\(79\) 5.00000 0.562544 0.281272 0.959628i \(-0.409244\pi\)
0.281272 + 0.959628i \(0.409244\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) 0 0
\(83\) 5.00000i 0.548821i 0.961613 + 0.274411i \(0.0884828\pi\)
−0.961613 + 0.274411i \(0.911517\pi\)
\(84\) 0 0
\(85\) 2.00000i 0.216930i
\(86\) 0 0
\(87\) 10.0000 1.07211
\(88\) 0 0
\(89\) 9.00000i 0.953998i 0.878904 + 0.476999i \(0.158275\pi\)
−0.878904 + 0.476999i \(0.841725\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 18.0000i 1.86651i
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) − 1.00000i − 0.101535i −0.998711 0.0507673i \(-0.983833\pi\)
0.998711 0.0507673i \(-0.0161667\pi\)
\(98\) 0 0
\(99\) 4.00000i 0.402015i
\(100\) 0 0
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 2.00000 0.195180
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) − 4.00000i − 0.383131i −0.981480 0.191565i \(-0.938644\pi\)
0.981480 0.191565i \(-0.0613564\pi\)
\(110\) 0 0
\(111\) − 4.00000i − 0.379663i
\(112\) 0 0
\(113\) 1.00000 0.0940721 0.0470360 0.998893i \(-0.485022\pi\)
0.0470360 + 0.998893i \(0.485022\pi\)
\(114\) 0 0
\(115\) 7.00000i 0.652753i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.00000i 0.183340i
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 0 0
\(123\) − 4.00000i − 0.360668i
\(124\) 0 0
\(125\) 9.00000i 0.804984i
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 2.00000 0.176090
\(130\) 0 0
\(131\) −12.0000 −1.04844 −0.524222 0.851581i \(-0.675644\pi\)
−0.524222 + 0.851581i \(0.675644\pi\)
\(132\) 0 0
\(133\) 1.00000 0.0867110
\(134\) 0 0
\(135\) 4.00000i 0.344265i
\(136\) 0 0
\(137\) 14.0000i 1.19610i 0.801459 + 0.598050i \(0.204058\pi\)
−0.801459 + 0.598050i \(0.795942\pi\)
\(138\) 0 0
\(139\) 16.0000 1.35710 0.678551 0.734553i \(-0.262608\pi\)
0.678551 + 0.734553i \(0.262608\pi\)
\(140\) 0 0
\(141\) 18.0000i 1.51587i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 5.00000i − 0.415227i
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) 12.0000i 0.983078i 0.870855 + 0.491539i \(0.163566\pi\)
−0.870855 + 0.491539i \(0.836434\pi\)
\(150\) 0 0
\(151\) − 14.0000i − 1.13930i −0.821886 0.569652i \(-0.807078\pi\)
0.821886 0.569652i \(-0.192922\pi\)
\(152\) 0 0
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 9.00000 0.722897
\(156\) 0 0
\(157\) 10.0000 0.798087 0.399043 0.916932i \(-0.369342\pi\)
0.399043 + 0.916932i \(0.369342\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 0 0
\(161\) 7.00000i 0.551677i
\(162\) 0 0
\(163\) − 24.0000i − 1.87983i −0.341415 0.939913i \(-0.610906\pi\)
0.341415 0.939913i \(-0.389094\pi\)
\(164\) 0 0
\(165\) 8.00000 0.622799
\(166\) 0 0
\(167\) − 3.00000i − 0.232147i −0.993241 0.116073i \(-0.962969\pi\)
0.993241 0.116073i \(-0.0370308\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 1.00000i − 0.0764719i
\(172\) 0 0
\(173\) −2.00000 −0.152057 −0.0760286 0.997106i \(-0.524224\pi\)
−0.0760286 + 0.997106i \(0.524224\pi\)
\(174\) 0 0
\(175\) 4.00000i 0.302372i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.00000 −0.672692 −0.336346 0.941739i \(-0.609191\pi\)
−0.336346 + 0.941739i \(0.609191\pi\)
\(180\) 0 0
\(181\) 20.0000 1.48659 0.743294 0.668965i \(-0.233262\pi\)
0.743294 + 0.668965i \(0.233262\pi\)
\(182\) 0 0
\(183\) −28.0000 −2.06982
\(184\) 0 0
\(185\) −2.00000 −0.147043
\(186\) 0 0
\(187\) 8.00000i 0.585018i
\(188\) 0 0
\(189\) 4.00000i 0.290957i
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 0 0
\(193\) − 2.00000i − 0.143963i −0.997406 0.0719816i \(-0.977068\pi\)
0.997406 0.0719816i \(-0.0229323\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 0 0
\(199\) 14.0000 0.992434 0.496217 0.868199i \(-0.334722\pi\)
0.496217 + 0.868199i \(0.334722\pi\)
\(200\) 0 0
\(201\) − 20.0000i − 1.41069i
\(202\) 0 0
\(203\) − 5.00000i − 0.350931i
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) 7.00000 0.486534
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) −23.0000 −1.58339 −0.791693 0.610920i \(-0.790800\pi\)
−0.791693 + 0.610920i \(0.790800\pi\)
\(212\) 0 0
\(213\) 28.0000i 1.91853i
\(214\) 0 0
\(215\) − 1.00000i − 0.0681994i
\(216\) 0 0
\(217\) 9.00000 0.610960
\(218\) 0 0
\(219\) 6.00000i 0.405442i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 21.0000i 1.40626i 0.711059 + 0.703132i \(0.248216\pi\)
−0.711059 + 0.703132i \(0.751784\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) − 8.00000i − 0.530979i −0.964114 0.265489i \(-0.914466\pi\)
0.964114 0.265489i \(-0.0855335\pi\)
\(228\) 0 0
\(229\) 2.00000i 0.132164i 0.997814 + 0.0660819i \(0.0210498\pi\)
−0.997814 + 0.0660819i \(0.978950\pi\)
\(230\) 0 0
\(231\) 8.00000 0.526361
\(232\) 0 0
\(233\) 25.0000 1.63780 0.818902 0.573933i \(-0.194583\pi\)
0.818902 + 0.573933i \(0.194583\pi\)
\(234\) 0 0
\(235\) 9.00000 0.587095
\(236\) 0 0
\(237\) −10.0000 −0.649570
\(238\) 0 0
\(239\) 12.0000i 0.776215i 0.921614 + 0.388108i \(0.126871\pi\)
−0.921614 + 0.388108i \(0.873129\pi\)
\(240\) 0 0
\(241\) 25.0000i 1.61039i 0.593009 + 0.805196i \(0.297940\pi\)
−0.593009 + 0.805196i \(0.702060\pi\)
\(242\) 0 0
\(243\) 10.0000 0.641500
\(244\) 0 0
\(245\) − 1.00000i − 0.0638877i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) − 10.0000i − 0.633724i
\(250\) 0 0
\(251\) 16.0000 1.00991 0.504956 0.863145i \(-0.331509\pi\)
0.504956 + 0.863145i \(0.331509\pi\)
\(252\) 0 0
\(253\) 28.0000i 1.76034i
\(254\) 0 0
\(255\) − 4.00000i − 0.250490i
\(256\) 0 0
\(257\) 12.0000 0.748539 0.374270 0.927320i \(-0.377893\pi\)
0.374270 + 0.927320i \(0.377893\pi\)
\(258\) 0 0
\(259\) −2.00000 −0.124274
\(260\) 0 0
\(261\) −5.00000 −0.309492
\(262\) 0 0
\(263\) 19.0000 1.17159 0.585795 0.810459i \(-0.300782\pi\)
0.585795 + 0.810459i \(0.300782\pi\)
\(264\) 0 0
\(265\) 3.00000i 0.184289i
\(266\) 0 0
\(267\) − 18.0000i − 1.10158i
\(268\) 0 0
\(269\) 24.0000 1.46331 0.731653 0.681677i \(-0.238749\pi\)
0.731653 + 0.681677i \(0.238749\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 16.0000i 0.964836i
\(276\) 0 0
\(277\) 23.0000 1.38194 0.690968 0.722885i \(-0.257185\pi\)
0.690968 + 0.722885i \(0.257185\pi\)
\(278\) 0 0
\(279\) − 9.00000i − 0.538816i
\(280\) 0 0
\(281\) 8.00000i 0.477240i 0.971113 + 0.238620i \(0.0766950\pi\)
−0.971113 + 0.238620i \(0.923305\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) −2.00000 −0.118056
\(288\) 0 0
\(289\) −13.0000 −0.764706
\(290\) 0 0
\(291\) 2.00000i 0.117242i
\(292\) 0 0
\(293\) − 5.00000i − 0.292103i −0.989277 0.146052i \(-0.953343\pi\)
0.989277 0.146052i \(-0.0466565\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 16.0000i 0.928414i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) − 1.00000i − 0.0576390i
\(302\) 0 0
\(303\) −24.0000 −1.37876
\(304\) 0 0
\(305\) 14.0000i 0.801638i
\(306\) 0 0
\(307\) 27.0000i 1.54097i 0.637457 + 0.770486i \(0.279986\pi\)
−0.637457 + 0.770486i \(0.720014\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −12.0000 −0.678280 −0.339140 0.940736i \(-0.610136\pi\)
−0.339140 + 0.940736i \(0.610136\pi\)
\(314\) 0 0
\(315\) −1.00000 −0.0563436
\(316\) 0 0
\(317\) 20.0000i 1.12331i 0.827371 + 0.561656i \(0.189836\pi\)
−0.827371 + 0.561656i \(0.810164\pi\)
\(318\) 0 0
\(319\) − 20.0000i − 1.11979i
\(320\) 0 0
\(321\) 24.0000 1.33955
\(322\) 0 0
\(323\) − 2.00000i − 0.111283i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.00000i 0.442401i
\(328\) 0 0
\(329\) 9.00000 0.496186
\(330\) 0 0
\(331\) 30.0000i 1.64895i 0.565899 + 0.824475i \(0.308529\pi\)
−0.565899 + 0.824475i \(0.691471\pi\)
\(332\) 0 0
\(333\) 2.00000i 0.109599i
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) −21.0000 −1.14394 −0.571971 0.820274i \(-0.693821\pi\)
−0.571971 + 0.820274i \(0.693821\pi\)
\(338\) 0 0
\(339\) −2.00000 −0.108625
\(340\) 0 0
\(341\) 36.0000 1.94951
\(342\) 0 0
\(343\) − 1.00000i − 0.0539949i
\(344\) 0 0
\(345\) − 14.0000i − 0.753735i
\(346\) 0 0
\(347\) 16.0000 0.858925 0.429463 0.903085i \(-0.358703\pi\)
0.429463 + 0.903085i \(0.358703\pi\)
\(348\) 0 0
\(349\) − 35.0000i − 1.87351i −0.349990 0.936754i \(-0.613815\pi\)
0.349990 0.936754i \(-0.386185\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 2.00000i − 0.106449i −0.998583 0.0532246i \(-0.983050\pi\)
0.998583 0.0532246i \(-0.0169499\pi\)
\(354\) 0 0
\(355\) 14.0000 0.743043
\(356\) 0 0
\(357\) − 4.00000i − 0.211702i
\(358\) 0 0
\(359\) 30.0000i 1.58334i 0.610949 + 0.791670i \(0.290788\pi\)
−0.610949 + 0.791670i \(0.709212\pi\)
\(360\) 0 0
\(361\) 18.0000 0.947368
\(362\) 0 0
\(363\) 10.0000 0.524864
\(364\) 0 0
\(365\) 3.00000 0.157027
\(366\) 0 0
\(367\) 24.0000 1.25279 0.626395 0.779506i \(-0.284530\pi\)
0.626395 + 0.779506i \(0.284530\pi\)
\(368\) 0 0
\(369\) 2.00000i 0.104116i
\(370\) 0 0
\(371\) 3.00000i 0.155752i
\(372\) 0 0
\(373\) −26.0000 −1.34623 −0.673114 0.739538i \(-0.735044\pi\)
−0.673114 + 0.739538i \(0.735044\pi\)
\(374\) 0 0
\(375\) − 18.0000i − 0.929516i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 28.0000i 1.43826i 0.694874 + 0.719132i \(0.255460\pi\)
−0.694874 + 0.719132i \(0.744540\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) 24.0000i 1.22634i 0.789950 + 0.613171i \(0.210106\pi\)
−0.789950 + 0.613171i \(0.789894\pi\)
\(384\) 0 0
\(385\) − 4.00000i − 0.203859i
\(386\) 0 0
\(387\) −1.00000 −0.0508329
\(388\) 0 0
\(389\) 22.0000 1.11544 0.557722 0.830028i \(-0.311675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(390\) 0 0
\(391\) 14.0000 0.708010
\(392\) 0 0
\(393\) 24.0000 1.21064
\(394\) 0 0
\(395\) 5.00000i 0.251577i
\(396\) 0 0
\(397\) 25.0000i 1.25471i 0.778732 + 0.627357i \(0.215863\pi\)
−0.778732 + 0.627357i \(0.784137\pi\)
\(398\) 0 0
\(399\) −2.00000 −0.100125
\(400\) 0 0
\(401\) 28.0000i 1.39825i 0.714998 + 0.699127i \(0.246428\pi\)
−0.714998 + 0.699127i \(0.753572\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 11.0000i − 0.546594i
\(406\) 0 0
\(407\) −8.00000 −0.396545
\(408\) 0 0
\(409\) − 25.0000i − 1.23617i −0.786111 0.618085i \(-0.787909\pi\)
0.786111 0.618085i \(-0.212091\pi\)
\(410\) 0 0
\(411\) − 28.0000i − 1.38114i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −5.00000 −0.245440
\(416\) 0 0
\(417\) −32.0000 −1.56705
\(418\) 0 0
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i 0.969854 + 0.243685i \(0.0783563\pi\)
−0.969854 + 0.243685i \(0.921644\pi\)
\(422\) 0 0
\(423\) − 9.00000i − 0.437595i
\(424\) 0 0
\(425\) 8.00000 0.388057
\(426\) 0 0
\(427\) 14.0000i 0.677507i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.0000i 0.674356i 0.941441 + 0.337178i \(0.109472\pi\)
−0.941441 + 0.337178i \(0.890528\pi\)
\(432\) 0 0
\(433\) −24.0000 −1.15337 −0.576683 0.816968i \(-0.695653\pi\)
−0.576683 + 0.816968i \(0.695653\pi\)
\(434\) 0 0
\(435\) 10.0000i 0.479463i
\(436\) 0 0
\(437\) − 7.00000i − 0.334855i
\(438\) 0 0
\(439\) −10.0000 −0.477274 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(440\) 0 0
\(441\) −1.00000 −0.0476190
\(442\) 0 0
\(443\) −39.0000 −1.85295 −0.926473 0.376361i \(-0.877175\pi\)
−0.926473 + 0.376361i \(0.877175\pi\)
\(444\) 0 0
\(445\) −9.00000 −0.426641
\(446\) 0 0
\(447\) − 24.0000i − 1.13516i
\(448\) 0 0
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) −8.00000 −0.376705
\(452\) 0 0
\(453\) 28.0000i 1.31555i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 6.00000i − 0.280668i −0.990104 0.140334i \(-0.955182\pi\)
0.990104 0.140334i \(-0.0448177\pi\)
\(458\) 0 0
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) 10.0000i 0.465746i 0.972507 + 0.232873i \(0.0748127\pi\)
−0.972507 + 0.232873i \(0.925187\pi\)
\(462\) 0 0
\(463\) − 24.0000i − 1.11537i −0.830051 0.557687i \(-0.811689\pi\)
0.830051 0.557687i \(-0.188311\pi\)
\(464\) 0 0
\(465\) −18.0000 −0.834730
\(466\) 0 0
\(467\) 8.00000 0.370196 0.185098 0.982720i \(-0.440740\pi\)
0.185098 + 0.982720i \(0.440740\pi\)
\(468\) 0 0
\(469\) −10.0000 −0.461757
\(470\) 0 0
\(471\) −20.0000 −0.921551
\(472\) 0 0
\(473\) − 4.00000i − 0.183920i
\(474\) 0 0
\(475\) − 4.00000i − 0.183533i
\(476\) 0 0
\(477\) 3.00000 0.137361
\(478\) 0 0
\(479\) − 27.0000i − 1.23366i −0.787096 0.616831i \(-0.788416\pi\)
0.787096 0.616831i \(-0.211584\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) − 14.0000i − 0.637022i
\(484\) 0 0
\(485\) 1.00000 0.0454077
\(486\) 0 0
\(487\) − 34.0000i − 1.54069i −0.637629 0.770344i \(-0.720085\pi\)
0.637629 0.770344i \(-0.279915\pi\)
\(488\) 0 0
\(489\) 48.0000i 2.17064i
\(490\) 0 0
\(491\) 8.00000 0.361035 0.180517 0.983572i \(-0.442223\pi\)
0.180517 + 0.983572i \(0.442223\pi\)
\(492\) 0 0
\(493\) −10.0000 −0.450377
\(494\) 0 0
\(495\) −4.00000 −0.179787
\(496\) 0 0
\(497\) 14.0000 0.627986
\(498\) 0 0
\(499\) − 2.00000i − 0.0895323i −0.998997 0.0447661i \(-0.985746\pi\)
0.998997 0.0447661i \(-0.0142543\pi\)
\(500\) 0 0
\(501\) 6.00000i 0.268060i
\(502\) 0 0
\(503\) −34.0000 −1.51599 −0.757993 0.652263i \(-0.773820\pi\)
−0.757993 + 0.652263i \(0.773820\pi\)
\(504\) 0 0
\(505\) 12.0000i 0.533993i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 9.00000i 0.398918i 0.979906 + 0.199459i \(0.0639185\pi\)
−0.979906 + 0.199459i \(0.936082\pi\)
\(510\) 0 0
\(511\) 3.00000 0.132712
\(512\) 0 0
\(513\) − 4.00000i − 0.176604i
\(514\) 0 0
\(515\) − 4.00000i − 0.176261i
\(516\) 0 0
\(517\) 36.0000 1.58328
\(518\) 0 0
\(519\) 4.00000 0.175581
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −18.0000 −0.787085 −0.393543 0.919306i \(-0.628751\pi\)
−0.393543 + 0.919306i \(0.628751\pi\)
\(524\) 0 0
\(525\) − 8.00000i − 0.349149i
\(526\) 0 0
\(527\) − 18.0000i − 0.784092i
\(528\) 0 0
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 12.0000i − 0.518805i
\(536\) 0 0
\(537\) 18.0000 0.776757
\(538\) 0 0
\(539\) − 4.00000i − 0.172292i
\(540\) 0 0
\(541\) 38.0000i 1.63375i 0.576816 + 0.816874i \(0.304295\pi\)
−0.576816 + 0.816874i \(0.695705\pi\)
\(542\) 0 0
\(543\) −40.0000 −1.71656
\(544\) 0 0
\(545\) 4.00000 0.171341
\(546\) 0 0
\(547\) 23.0000 0.983409 0.491704 0.870762i \(-0.336374\pi\)
0.491704 + 0.870762i \(0.336374\pi\)
\(548\) 0 0
\(549\) 14.0000 0.597505
\(550\) 0 0
\(551\) 5.00000i 0.213007i
\(552\) 0 0
\(553\) 5.00000i 0.212622i
\(554\) 0 0
\(555\) 4.00000 0.169791
\(556\) 0 0
\(557\) − 4.00000i − 0.169485i −0.996403 0.0847427i \(-0.972993\pi\)
0.996403 0.0847427i \(-0.0270068\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 16.0000i − 0.675521i
\(562\) 0 0
\(563\) 40.0000 1.68580 0.842900 0.538071i \(-0.180847\pi\)
0.842900 + 0.538071i \(0.180847\pi\)
\(564\) 0 0
\(565\) 1.00000i 0.0420703i
\(566\) 0 0
\(567\) − 11.0000i − 0.461957i
\(568\) 0 0
\(569\) 37.0000 1.55112 0.775560 0.631273i \(-0.217467\pi\)
0.775560 + 0.631273i \(0.217467\pi\)
\(570\) 0 0
\(571\) 7.00000 0.292941 0.146470 0.989215i \(-0.453209\pi\)
0.146470 + 0.989215i \(0.453209\pi\)
\(572\) 0 0
\(573\) 48.0000 2.00523
\(574\) 0 0
\(575\) 28.0000 1.16768
\(576\) 0 0
\(577\) − 18.0000i − 0.749350i −0.927156 0.374675i \(-0.877754\pi\)
0.927156 0.374675i \(-0.122246\pi\)
\(578\) 0 0
\(579\) 4.00000i 0.166234i
\(580\) 0 0
\(581\) −5.00000 −0.207435
\(582\) 0 0
\(583\) 12.0000i 0.496989i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 15.0000i − 0.619116i −0.950881 0.309558i \(-0.899819\pi\)
0.950881 0.309558i \(-0.100181\pi\)
\(588\) 0 0
\(589\) −9.00000 −0.370839
\(590\) 0 0
\(591\) − 12.0000i − 0.493614i
\(592\) 0 0
\(593\) − 41.0000i − 1.68367i −0.539736 0.841834i \(-0.681476\pi\)
0.539736 0.841834i \(-0.318524\pi\)
\(594\) 0 0
\(595\) −2.00000 −0.0819920
\(596\) 0 0
\(597\) −28.0000 −1.14596
\(598\) 0 0
\(599\) 21.0000 0.858037 0.429018 0.903296i \(-0.358860\pi\)
0.429018 + 0.903296i \(0.358860\pi\)
\(600\) 0 0
\(601\) 2.00000 0.0815817 0.0407909 0.999168i \(-0.487012\pi\)
0.0407909 + 0.999168i \(0.487012\pi\)
\(602\) 0 0
\(603\) 10.0000i 0.407231i
\(604\) 0 0
\(605\) − 5.00000i − 0.203279i
\(606\) 0 0
\(607\) −40.0000 −1.62355 −0.811775 0.583970i \(-0.801498\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0 0
\(609\) 10.0000i 0.405220i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 16.0000i − 0.646234i −0.946359 0.323117i \(-0.895269\pi\)
0.946359 0.323117i \(-0.104731\pi\)
\(614\) 0 0
\(615\) 4.00000 0.161296
\(616\) 0 0
\(617\) 34.0000i 1.36879i 0.729112 + 0.684394i \(0.239933\pi\)
−0.729112 + 0.684394i \(0.760067\pi\)
\(618\) 0 0
\(619\) − 20.0000i − 0.803868i −0.915669 0.401934i \(-0.868338\pi\)
0.915669 0.401934i \(-0.131662\pi\)
\(620\) 0 0
\(621\) 28.0000 1.12360
\(622\) 0 0
\(623\) −9.00000 −0.360577
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) −8.00000 −0.319489
\(628\) 0 0
\(629\) 4.00000i 0.159490i
\(630\) 0 0
\(631\) 2.00000i 0.0796187i 0.999207 + 0.0398094i \(0.0126751\pi\)
−0.999207 + 0.0398094i \(0.987325\pi\)
\(632\) 0 0
\(633\) 46.0000 1.82834
\(634\) 0 0
\(635\) 8.00000i 0.317470i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 14.0000i − 0.553831i
\(640\) 0 0
\(641\) −41.0000 −1.61940 −0.809701 0.586842i \(-0.800371\pi\)
−0.809701 + 0.586842i \(0.800371\pi\)
\(642\) 0 0
\(643\) − 28.0000i − 1.10421i −0.833774 0.552106i \(-0.813824\pi\)
0.833774 0.552106i \(-0.186176\pi\)
\(644\) 0 0
\(645\) 2.00000i 0.0787499i
\(646\) 0 0
\(647\) −12.0000 −0.471769 −0.235884 0.971781i \(-0.575799\pi\)
−0.235884 + 0.971781i \(0.575799\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −18.0000 −0.705476
\(652\) 0 0
\(653\) −6.00000 −0.234798 −0.117399 0.993085i \(-0.537456\pi\)
−0.117399 + 0.993085i \(0.537456\pi\)
\(654\) 0 0
\(655\) − 12.0000i − 0.468879i
\(656\) 0 0
\(657\) − 3.00000i − 0.117041i
\(658\) 0 0
\(659\) −45.0000 −1.75295 −0.876476 0.481446i \(-0.840112\pi\)
−0.876476 + 0.481446i \(0.840112\pi\)
\(660\) 0 0
\(661\) − 31.0000i − 1.20576i −0.797832 0.602880i \(-0.794020\pi\)
0.797832 0.602880i \(-0.205980\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.00000i 0.0387783i
\(666\) 0 0
\(667\) −35.0000 −1.35521
\(668\) 0 0
\(669\) − 42.0000i − 1.62381i
\(670\) 0 0
\(671\) 56.0000i 2.16186i
\(672\) 0 0
\(673\) −21.0000 −0.809491 −0.404745 0.914429i \(-0.632640\pi\)
−0.404745 + 0.914429i \(0.632640\pi\)
\(674\) 0 0
\(675\) 16.0000 0.615840
\(676\) 0 0
\(677\) 16.0000 0.614930 0.307465 0.951559i \(-0.400519\pi\)
0.307465 + 0.951559i \(0.400519\pi\)
\(678\) 0 0
\(679\) 1.00000 0.0383765
\(680\) 0 0
\(681\) 16.0000i 0.613121i
\(682\) 0 0
\(683\) − 4.00000i − 0.153056i −0.997067 0.0765279i \(-0.975617\pi\)
0.997067 0.0765279i \(-0.0243834\pi\)
\(684\) 0 0
\(685\) −14.0000 −0.534913
\(686\) 0 0
\(687\) − 4.00000i − 0.152610i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) − 35.0000i − 1.33146i −0.746191 0.665731i \(-0.768120\pi\)
0.746191 0.665731i \(-0.231880\pi\)
\(692\) 0 0
\(693\) −4.00000 −0.151947
\(694\) 0 0
\(695\) 16.0000i 0.606915i
\(696\) 0 0
\(697\) 4.00000i 0.151511i
\(698\) 0 0
\(699\) −50.0000 −1.89117
\(700\) 0 0
\(701\) −45.0000 −1.69963 −0.849813 0.527084i \(-0.823285\pi\)
−0.849813 + 0.527084i \(0.823285\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) −18.0000 −0.677919
\(706\) 0 0
\(707\) 12.0000i 0.451306i
\(708\) 0 0
\(709\) 12.0000i 0.450669i 0.974281 + 0.225335i \(0.0723476\pi\)
−0.974281 + 0.225335i \(0.927652\pi\)
\(710\) 0 0
\(711\) 5.00000 0.187515
\(712\) 0 0
\(713\) − 63.0000i − 2.35937i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 24.0000i − 0.896296i
\(718\) 0 0
\(719\) 40.0000 1.49175 0.745874 0.666087i \(-0.232032\pi\)
0.745874 + 0.666087i \(0.232032\pi\)
\(720\) 0 0
\(721\) − 4.00000i − 0.148968i
\(722\) 0 0
\(723\) − 50.0000i − 1.85952i
\(724\) 0 0
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) 42.0000 1.55769 0.778847 0.627214i \(-0.215805\pi\)
0.778847 + 0.627214i \(0.215805\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −2.00000 −0.0739727
\(732\) 0 0
\(733\) − 21.0000i − 0.775653i −0.921732 0.387826i \(-0.873226\pi\)
0.921732 0.387826i \(-0.126774\pi\)
\(734\) 0 0
\(735\) 2.00000i 0.0737711i
\(736\) 0 0
\(737\) −40.0000 −1.47342
\(738\) 0 0
\(739\) 8.00000i 0.294285i 0.989115 + 0.147142i \(0.0470076\pi\)
−0.989115 + 0.147142i \(0.952992\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 8.00000i − 0.293492i −0.989174 0.146746i \(-0.953120\pi\)
0.989174 0.146746i \(-0.0468799\pi\)
\(744\) 0 0
\(745\) −12.0000 −0.439646
\(746\) 0 0
\(747\) 5.00000i 0.182940i
\(748\) 0 0
\(749\) − 12.0000i − 0.438470i
\(750\) 0 0
\(751\) −25.0000 −0.912263 −0.456131 0.889912i \(-0.650765\pi\)
−0.456131 + 0.889912i \(0.650765\pi\)
\(752\) 0 0
\(753\) −32.0000 −1.16614
\(754\) 0 0
\(755\) 14.0000 0.509512
\(756\) 0 0
\(757\) −47.0000 −1.70824 −0.854122 0.520073i \(-0.825905\pi\)
−0.854122 + 0.520073i \(0.825905\pi\)
\(758\) 0 0
\(759\) − 56.0000i − 2.03267i
\(760\) 0 0
\(761\) 35.0000i 1.26875i 0.773026 + 0.634375i \(0.218742\pi\)
−0.773026 + 0.634375i \(0.781258\pi\)
\(762\) 0 0
\(763\) 4.00000 0.144810
\(764\) 0 0
\(765\) 2.00000i 0.0723102i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 37.0000i 1.33425i 0.744944 + 0.667127i \(0.232476\pi\)
−0.744944 + 0.667127i \(0.767524\pi\)
\(770\) 0 0
\(771\) −24.0000 −0.864339
\(772\) 0 0
\(773\) 38.0000i 1.36677i 0.730061 + 0.683383i \(0.239492\pi\)
−0.730061 + 0.683383i \(0.760508\pi\)
\(774\) 0 0
\(775\) − 36.0000i − 1.29316i
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) 2.00000 0.0716574
\(780\) 0 0
\(781\) 56.0000 2.00384
\(782\) 0 0
\(783\) −20.0000 −0.714742
\(784\) 0 0
\(785\) 10.0000i 0.356915i
\(786\) 0 0
\(787\) 37.0000i 1.31891i 0.751745 + 0.659454i \(0.229212\pi\)
−0.751745 + 0.659454i \(0.770788\pi\)
\(788\) 0 0
\(789\) −38.0000 −1.35284
\(790\) 0 0
\(791\) 1.00000i 0.0355559i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) − 6.00000i − 0.212798i
\(796\) 0 0
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) − 18.0000i − 0.636794i
\(800\) 0 0
\(801\) 9.00000i 0.317999i
\(802\) 0 0
\(803\) 12.0000 0.423471
\(804\) 0 0
\(805\) −7.00000 −0.246718
\(806\) 0 0
\(807\) −48.0000 −1.68968
\(808\) 0 0
\(809\) 45.0000 1.58212 0.791058 0.611741i \(-0.209531\pi\)
0.791058 + 0.611741i \(0.209531\pi\)
\(810\) 0 0
\(811\) − 28.0000i − 0.983213i −0.870817 0.491606i \(-0.836410\pi\)
0.870817 0.491606i \(-0.163590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 24.0000 0.840683
\(816\) 0 0
\(817\) 1.00000i 0.0349856i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 34.0000i 1.18661i 0.804978 + 0.593304i \(0.202177\pi\)
−0.804978 + 0.593304i \(0.797823\pi\)
\(822\) 0 0
\(823\) −16.0000 −0.557725 −0.278862 0.960331i \(-0.589957\pi\)
−0.278862 + 0.960331i \(0.589957\pi\)
\(824\) 0 0
\(825\) − 32.0000i − 1.11410i
\(826\) 0 0
\(827\) − 40.0000i − 1.39094i −0.718557 0.695468i \(-0.755197\pi\)
0.718557 0.695468i \(-0.244803\pi\)
\(828\) 0 0
\(829\) −24.0000 −0.833554 −0.416777 0.909009i \(-0.636840\pi\)
−0.416777 + 0.909009i \(0.636840\pi\)
\(830\) 0 0
\(831\) −46.0000 −1.59572
\(832\) 0 0
\(833\) −2.00000 −0.0692959
\(834\) 0 0
\(835\) 3.00000 0.103819
\(836\) 0 0
\(837\) − 36.0000i − 1.24434i
\(838\) 0 0
\(839\) 12.0000i 0.414286i 0.978311 + 0.207143i \(0.0664165\pi\)
−0.978311 + 0.207143i \(0.933583\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) − 16.0000i − 0.551069i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 5.00000i − 0.171802i
\(848\) 0 0
\(849\) −8.00000 −0.274559
\(850\) 0 0
\(851\) 14.0000i 0.479914i
\(852\) 0 0
\(853\) − 37.0000i − 1.26686i −0.773802 0.633428i \(-0.781647\pi\)
0.773802 0.633428i \(-0.218353\pi\)
\(854\) 0 0
\(855\) 1.00000 0.0341993
\(856\) 0 0
\(857\) −30.0000 −1.02478 −0.512390 0.858753i \(-0.671240\pi\)
−0.512390 + 0.858753i \(0.671240\pi\)
\(858\) 0 0
\(859\) 22.0000 0.750630 0.375315 0.926897i \(-0.377534\pi\)
0.375315 + 0.926897i \(0.377534\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 0 0
\(863\) − 48.0000i − 1.63394i −0.576681 0.816970i \(-0.695652\pi\)
0.576681 0.816970i \(-0.304348\pi\)
\(864\) 0 0
\(865\) − 2.00000i − 0.0680020i
\(866\) 0 0
\(867\) 26.0000 0.883006
\(868\) 0 0
\(869\) 20.0000i 0.678454i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 1.00000i − 0.0338449i
\(874\) 0 0
\(875\) −9.00000 −0.304256
\(876\) 0 0
\(877\) 14.0000i 0.472746i 0.971662 + 0.236373i \(0.0759588\pi\)
−0.971662 + 0.236373i \(0.924041\pi\)
\(878\) 0 0
\(879\) 10.0000i 0.337292i
\(880\) 0 0
\(881\) 2.00000 0.0673817 0.0336909 0.999432i \(-0.489274\pi\)
0.0336909 + 0.999432i \(0.489274\pi\)
\(882\) 0 0
\(883\) 16.0000 0.538443 0.269221 0.963078i \(-0.413234\pi\)
0.269221 + 0.963078i \(0.413234\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32.0000 1.07445 0.537227 0.843437i \(-0.319472\pi\)
0.537227 + 0.843437i \(0.319472\pi\)
\(888\) 0 0
\(889\) 8.00000i 0.268311i
\(890\) 0 0
\(891\) − 44.0000i − 1.47406i
\(892\) 0 0
\(893\) −9.00000 −0.301174
\(894\) 0 0
\(895\) − 9.00000i − 0.300837i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 45.0000i 1.50083i
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) 0 0
\(903\) 2.00000i 0.0665558i
\(904\) 0 0
\(905\) 20.0000i 0.664822i
\(906\) 0 0
\(907\) 3.00000 0.0996134 0.0498067 0.998759i \(-0.484139\pi\)
0.0498067 + 0.998759i \(0.484139\pi\)
\(908\) 0 0
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) −21.0000 −0.695761 −0.347881 0.937539i \(-0.613099\pi\)
−0.347881 + 0.937539i \(0.613099\pi\)
\(912\) 0 0
\(913\) −20.0000 −0.661903
\(914\) 0 0
\(915\) − 28.0000i − 0.925651i
\(916\) 0 0
\(917\) − 12.0000i − 0.396275i
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) − 54.0000i − 1.77936i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 8.00000i 0.263038i
\(926\) 0 0
\(927\) −4.00000 −0.131377
\(928\) 0 0
\(929\) − 3.00000i − 0.0984268i −0.998788 0.0492134i \(-0.984329\pi\)
0.998788 0.0492134i \(-0.0156714\pi\)
\(930\) 0 0
\(931\) 1.00000i 0.0327737i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −8.00000 −0.261628
\(936\) 0 0
\(937\) 30.0000 0.980057 0.490029 0.871706i \(-0.336986\pi\)
0.490029 + 0.871706i \(0.336986\pi\)
\(938\) 0 0
\(939\) 24.0000 0.783210
\(940\) 0 0
\(941\) 35.0000i 1.14097i 0.821309 + 0.570484i \(0.193244\pi\)
−0.821309 + 0.570484i \(0.806756\pi\)
\(942\) 0 0
\(943\) 14.0000i 0.455903i
\(944\) 0 0
\(945\) −4.00000 −0.130120
\(946\) 0 0
\(947\) − 10.0000i − 0.324956i −0.986712 0.162478i \(-0.948051\pi\)
0.986712 0.162478i \(-0.0519487\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) − 40.0000i − 1.29709i
\(952\) 0 0
\(953\) 19.0000 0.615470 0.307735 0.951472i \(-0.400429\pi\)
0.307735 + 0.951472i \(0.400429\pi\)
\(954\) 0 0
\(955\) − 24.0000i − 0.776622i
\(956\) 0 0
\(957\) 40.0000i 1.29302i
\(958\) 0 0
\(959\) −14.0000 −0.452084
\(960\) 0 0
\(961\) −50.0000 −1.61290
\(962\) 0 0
\(963\) −12.0000 −0.386695
\(964\) 0 0
\(965\) 2.00000 0.0643823
\(966\) 0 0
\(967\) − 12.0000i − 0.385894i −0.981209 0.192947i \(-0.938195\pi\)
0.981209 0.192947i \(-0.0618045\pi\)
\(968\) 0 0
\(969\) 4.00000i 0.128499i
\(970\) 0 0
\(971\) 30.0000 0.962746 0.481373 0.876516i \(-0.340138\pi\)
0.481373 + 0.876516i \(0.340138\pi\)
\(972\) 0 0
\(973\) 16.0000i 0.512936i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 60.0000i − 1.91957i −0.280736 0.959785i \(-0.590579\pi\)
0.280736 0.959785i \(-0.409421\pi\)
\(978\) 0 0
\(979\) −36.0000 −1.15056
\(980\) 0 0
\(981\) − 4.00000i − 0.127710i
\(982\) 0 0
\(983\) − 11.0000i − 0.350846i −0.984493 0.175423i \(-0.943871\pi\)
0.984493 0.175423i \(-0.0561292\pi\)
\(984\) 0 0
\(985\) −6.00000 −0.191176
\(986\) 0 0
\(987\) −18.0000 −0.572946
\(988\) 0 0
\(989\) −7.00000 −0.222587
\(990\) 0 0
\(991\) 24.0000 0.762385 0.381193 0.924496i \(-0.375513\pi\)
0.381193 + 0.924496i \(0.375513\pi\)
\(992\) 0 0
\(993\) − 60.0000i − 1.90404i
\(994\) 0 0
\(995\) 14.0000i 0.443830i
\(996\) 0 0
\(997\) −32.0000 −1.01345 −0.506725 0.862108i \(-0.669144\pi\)
−0.506725 + 0.862108i \(0.669144\pi\)
\(998\) 0 0
\(999\) 8.00000i 0.253109i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4732.2.g.a.337.2 2
13.5 odd 4 364.2.a.a.1.1 1
13.8 odd 4 4732.2.a.a.1.1 1
13.12 even 2 inner 4732.2.g.a.337.1 2
39.5 even 4 3276.2.a.b.1.1 1
52.31 even 4 1456.2.a.m.1.1 1
65.44 odd 4 9100.2.a.l.1.1 1
91.5 even 12 2548.2.j.c.1145.1 2
91.18 odd 12 2548.2.j.j.1353.1 2
91.31 even 12 2548.2.j.c.1353.1 2
91.44 odd 12 2548.2.j.j.1145.1 2
91.83 even 4 2548.2.a.i.1.1 1
104.5 odd 4 5824.2.a.bb.1.1 1
104.83 even 4 5824.2.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.a.a.1.1 1 13.5 odd 4
1456.2.a.m.1.1 1 52.31 even 4
2548.2.a.i.1.1 1 91.83 even 4
2548.2.j.c.1145.1 2 91.5 even 12
2548.2.j.c.1353.1 2 91.31 even 12
2548.2.j.j.1145.1 2 91.44 odd 12
2548.2.j.j.1353.1 2 91.18 odd 12
3276.2.a.b.1.1 1 39.5 even 4
4732.2.a.a.1.1 1 13.8 odd 4
4732.2.g.a.337.1 2 13.12 even 2 inner
4732.2.g.a.337.2 2 1.1 even 1 trivial
5824.2.a.d.1.1 1 104.83 even 4
5824.2.a.bb.1.1 1 104.5 odd 4
9100.2.a.l.1.1 1 65.44 odd 4