Defining parameters
Level: | \( N \) | \(=\) | \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4732.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(1456\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(4732, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 770 | 76 | 694 |
Cusp forms | 686 | 76 | 610 |
Eisenstein series | 84 | 0 | 84 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(4732, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(4732, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(4732, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(676, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1183, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2366, [\chi])\)\(^{\oplus 2}\)