Properties

Label 4732.2.a.o
Level $4732$
Weight $2$
Character orbit 4732.a
Self dual yes
Analytic conductor $37.785$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.25492.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 8x^{2} - 2x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + ( - \beta_{2} - 1) q^{5} - q^{7} + (\beta_{3} + \beta_{2} + 1) q^{9} + (\beta_{3} + \beta_{2} - \beta_1) q^{11} + ( - \beta_{3} - \beta_{2} - \beta_1) q^{15} + ( - 2 \beta_{3} + \beta_1) q^{17}+ \cdots + (\beta_{3} - \beta_{2} - \beta_1 + 6) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{5} - 4 q^{7} + 4 q^{9} - 2 q^{17} - 3 q^{19} + 3 q^{23} - q^{25} + 6 q^{27} - q^{29} - 13 q^{31} - 10 q^{33} + 3 q^{35} + 10 q^{41} + 3 q^{43} - 13 q^{45} + 3 q^{47} + 4 q^{49} + 4 q^{51} + 11 q^{53}+ \cdots + 26 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 8x^{2} - 2x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 6\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu^{2} + 6\nu - 6 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} + 6\beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.40538
−1.29363
0.927719
2.77129
0 −2.40538 0 −0.257562 0 −1.00000 0 2.78585 0
1.2 0 −1.29363 0 −2.79846 0 −1.00000 0 −1.32653 0
1.3 0 0.927719 0 2.38393 0 −1.00000 0 −2.13934 0
1.4 0 2.77129 0 −2.32791 0 −1.00000 0 4.68002 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4732.2.a.o 4
13.b even 2 1 4732.2.a.p 4
13.d odd 4 2 364.2.g.a 8
39.f even 4 2 3276.2.e.f 8
52.f even 4 2 1456.2.k.d 8
91.i even 4 2 2548.2.g.g 8
91.z odd 12 4 2548.2.y.f 16
91.bb even 12 4 2548.2.y.e 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.g.a 8 13.d odd 4 2
1456.2.k.d 8 52.f even 4 2
2548.2.g.g 8 91.i even 4 2
2548.2.y.e 16 91.bb even 12 4
2548.2.y.f 16 91.z odd 12 4
3276.2.e.f 8 39.f even 4 2
4732.2.a.o 4 1.a even 1 1 trivial
4732.2.a.p 4 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4732))\):

\( T_{3}^{4} - 8T_{3}^{2} - 2T_{3} + 8 \) Copy content Toggle raw display
\( T_{5}^{4} + 3T_{5}^{3} - 5T_{5}^{2} - 17T_{5} - 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 18T_{11}^{2} - 2T_{11} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 8 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$5$ \( T^{4} + 3 T^{3} + \cdots - 4 \) Copy content Toggle raw display
$7$ \( (T + 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 18 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 2 T^{3} + \cdots + 44 \) Copy content Toggle raw display
$19$ \( T^{4} + 3 T^{3} + \cdots - 176 \) Copy content Toggle raw display
$23$ \( T^{4} - 3 T^{3} + \cdots - 36 \) Copy content Toggle raw display
$29$ \( T^{4} + T^{3} + \cdots + 1182 \) Copy content Toggle raw display
$31$ \( T^{4} + 13 T^{3} + \cdots - 568 \) Copy content Toggle raw display
$37$ \( T^{4} - 106 T^{2} + \cdots - 144 \) Copy content Toggle raw display
$41$ \( T^{4} - 10 T^{3} + \cdots - 352 \) Copy content Toggle raw display
$43$ \( T^{4} - 3 T^{3} + \cdots + 232 \) Copy content Toggle raw display
$47$ \( T^{4} - 3 T^{3} + \cdots + 2008 \) Copy content Toggle raw display
$53$ \( T^{4} - 11 T^{3} + \cdots - 54 \) Copy content Toggle raw display
$59$ \( T^{4} + 22 T^{3} + \cdots + 384 \) Copy content Toggle raw display
$61$ \( T^{4} - 4 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$67$ \( T^{4} - 12 T^{3} + \cdots - 3456 \) Copy content Toggle raw display
$71$ \( T^{4} + 26 T^{3} + \cdots - 1488 \) Copy content Toggle raw display
$73$ \( T^{4} - 13 T^{3} + \cdots + 1556 \) Copy content Toggle raw display
$79$ \( T^{4} + 13 T^{3} + \cdots - 36 \) Copy content Toggle raw display
$83$ \( T^{4} + 19 T^{3} + \cdots - 8688 \) Copy content Toggle raw display
$89$ \( T^{4} + 7 T^{3} + \cdots + 7572 \) Copy content Toggle raw display
$97$ \( T^{4} + 19 T^{3} + \cdots - 8668 \) Copy content Toggle raw display
show more
show less