Properties

Label 4732.2.a.h
Level $4732$
Weight $2$
Character orbit 4732.a
Self dual yes
Analytic conductor $37.785$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4732,2,Mod(1,4732)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4732, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4732.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4732 = 2^{2} \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4732.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7852102365\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{21}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 5 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 364)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{21})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} + ( - \beta + 2) q^{5} - q^{7} + (\beta + 2) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \beta q^{3} + ( - \beta + 2) q^{5} - q^{7} + (\beta + 2) q^{9} + ( - \beta + 2) q^{11} + ( - \beta + 5) q^{15} + 3 q^{17} + (3 \beta - 2) q^{19} + \beta q^{21} + 6 q^{23} + ( - 3 \beta + 4) q^{25} - 5 q^{27} + ( - \beta - 4) q^{29} + q^{31} + ( - \beta + 5) q^{33} + (\beta - 2) q^{35} + 4 q^{37} + ( - 2 \beta - 2) q^{41} + ( - 3 \beta - 1) q^{43} + ( - \beta - 1) q^{45} + ( - 4 \beta + 5) q^{47} + q^{49} - 3 \beta q^{51} + (2 \beta - 7) q^{53} + ( - 3 \beta + 9) q^{55} + ( - \beta - 15) q^{57} + 9 q^{59} + 2 q^{61} + ( - \beta - 2) q^{63} + 7 q^{67} - 6 \beta q^{69} + (2 \beta - 4) q^{71} - 14 q^{73} + ( - \beta + 15) q^{75} + (\beta - 2) q^{77} - 4 q^{79} + (2 \beta - 6) q^{81} + 9 q^{83} + ( - 3 \beta + 6) q^{85} + (5 \beta + 5) q^{87} - 3 \beta q^{89} - \beta q^{93} + (5 \beta - 19) q^{95} + ( - 3 \beta + 13) q^{97} + ( - \beta - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{3} + 3 q^{5} - 2 q^{7} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{3} + 3 q^{5} - 2 q^{7} + 5 q^{9} + 3 q^{11} + 9 q^{15} + 6 q^{17} - q^{19} + q^{21} + 12 q^{23} + 5 q^{25} - 10 q^{27} - 9 q^{29} + 2 q^{31} + 9 q^{33} - 3 q^{35} + 8 q^{37} - 6 q^{41} - 5 q^{43} - 3 q^{45} + 6 q^{47} + 2 q^{49} - 3 q^{51} - 12 q^{53} + 15 q^{55} - 31 q^{57} + 18 q^{59} + 4 q^{61} - 5 q^{63} + 14 q^{67} - 6 q^{69} - 6 q^{71} - 28 q^{73} + 29 q^{75} - 3 q^{77} - 8 q^{79} - 10 q^{81} + 18 q^{83} + 9 q^{85} + 15 q^{87} - 3 q^{89} - q^{93} - 33 q^{95} + 23 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.79129
−1.79129
0 −2.79129 0 −0.791288 0 −1.00000 0 4.79129 0
1.2 0 1.79129 0 3.79129 0 −1.00000 0 0.208712 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4732.2.a.h 2
13.b even 2 1 4732.2.a.g 2
13.d odd 4 2 4732.2.g.e 4
13.e even 6 2 364.2.k.d 4
39.h odd 6 2 3276.2.z.e 4
52.i odd 6 2 1456.2.s.k 4
91.k even 6 2 2548.2.i.k 4
91.l odd 6 2 2548.2.i.i 4
91.p odd 6 2 2548.2.l.l 4
91.t odd 6 2 2548.2.k.e 4
91.u even 6 2 2548.2.l.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.k.d 4 13.e even 6 2
1456.2.s.k 4 52.i odd 6 2
2548.2.i.i 4 91.l odd 6 2
2548.2.i.k 4 91.k even 6 2
2548.2.k.e 4 91.t odd 6 2
2548.2.l.j 4 91.u even 6 2
2548.2.l.l 4 91.p odd 6 2
3276.2.z.e 4 39.h odd 6 2
4732.2.a.g 2 13.b even 2 1
4732.2.a.h 2 1.a even 1 1 trivial
4732.2.g.e 4 13.d odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4732))\):

\( T_{3}^{2} + T_{3} - 5 \) Copy content Toggle raw display
\( T_{5}^{2} - 3T_{5} - 3 \) Copy content Toggle raw display
\( T_{11}^{2} - 3T_{11} - 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + T - 5 \) Copy content Toggle raw display
$5$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 3T - 3 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + T - 47 \) Copy content Toggle raw display
$23$ \( (T - 6)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 9T + 15 \) Copy content Toggle raw display
$31$ \( (T - 1)^{2} \) Copy content Toggle raw display
$37$ \( (T - 4)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 6T - 12 \) Copy content Toggle raw display
$43$ \( T^{2} + 5T - 41 \) Copy content Toggle raw display
$47$ \( T^{2} - 6T - 75 \) Copy content Toggle raw display
$53$ \( T^{2} + 12T + 15 \) Copy content Toggle raw display
$59$ \( (T - 9)^{2} \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( (T - 7)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 6T - 12 \) Copy content Toggle raw display
$73$ \( (T + 14)^{2} \) Copy content Toggle raw display
$79$ \( (T + 4)^{2} \) Copy content Toggle raw display
$83$ \( (T - 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 3T - 45 \) Copy content Toggle raw display
$97$ \( T^{2} - 23T + 85 \) Copy content Toggle raw display
show more
show less