Properties

Label 4730.2.a.j
Level 4730
Weight 2
Character orbit 4730.a
Self dual yes
Analytic conductor 37.769
Analytic rank 0
Dimension 1
CM no
Inner twists 1

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) = \( 4730 = 2 \cdot 5 \cdot 11 \cdot 43 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 4730.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(37.7692401561\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + 5q^{7} + q^{8} - 2q^{9} + O(q^{10}) \) \( q + q^{2} + q^{3} + q^{4} + q^{5} + q^{6} + 5q^{7} + q^{8} - 2q^{9} + q^{10} + q^{11} + q^{12} + 4q^{13} + 5q^{14} + q^{15} + q^{16} + q^{17} - 2q^{18} + 7q^{19} + q^{20} + 5q^{21} + q^{22} + 8q^{23} + q^{24} + q^{25} + 4q^{26} - 5q^{27} + 5q^{28} - 5q^{29} + q^{30} - 11q^{31} + q^{32} + q^{33} + q^{34} + 5q^{35} - 2q^{36} - 7q^{37} + 7q^{38} + 4q^{39} + q^{40} - 12q^{41} + 5q^{42} - q^{43} + q^{44} - 2q^{45} + 8q^{46} + 6q^{47} + q^{48} + 18q^{49} + q^{50} + q^{51} + 4q^{52} - 13q^{53} - 5q^{54} + q^{55} + 5q^{56} + 7q^{57} - 5q^{58} - 8q^{59} + q^{60} + 5q^{61} - 11q^{62} - 10q^{63} + q^{64} + 4q^{65} + q^{66} - 12q^{67} + q^{68} + 8q^{69} + 5q^{70} + q^{71} - 2q^{72} - 10q^{73} - 7q^{74} + q^{75} + 7q^{76} + 5q^{77} + 4q^{78} + 8q^{79} + q^{80} + q^{81} - 12q^{82} + 4q^{83} + 5q^{84} + q^{85} - q^{86} - 5q^{87} + q^{88} - 9q^{89} - 2q^{90} + 20q^{91} + 8q^{92} - 11q^{93} + 6q^{94} + 7q^{95} + q^{96} - 8q^{97} + 18q^{98} - 2q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 1.00000 1.00000 1.00000 1.00000 5.00000 1.00000 −2.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4730.2.a.j 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4730.2.a.j 1 1.a even 1 1 trivial

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(5\) \(-1\)
\(11\) \(-1\)
\(43\) \(1\)

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4730))\):

\( T_{3} - 1 \)
\( T_{7} - 5 \)
\( T_{13} - 4 \)