Properties

Label 4725.2.a.bu.1.2
Level $4725$
Weight $2$
Character 4725.1
Self dual yes
Analytic conductor $37.729$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4725,2,Mod(1,4725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4725 = 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7293149551\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.874032\) of defining polynomial
Character \(\chi\) \(=\) 4725.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.874032 q^{2} -1.23607 q^{4} -1.00000 q^{7} +2.82843 q^{8} -0.333851 q^{11} -3.47214 q^{13} +0.874032 q^{14} +5.11667 q^{17} -5.23607 q^{19} +0.291796 q^{22} -8.81913 q^{23} +3.03476 q^{26} +1.23607 q^{28} +3.70246 q^{29} -3.00000 q^{31} -5.65685 q^{32} -4.47214 q^{34} +6.70820 q^{37} +4.57649 q^{38} -5.11667 q^{41} +5.76393 q^{43} +0.412662 q^{44} +7.70820 q^{46} +10.5672 q^{47} +1.00000 q^{49} +4.29180 q^{52} -11.2349 q^{53} -2.82843 q^{56} -3.23607 q^{58} +5.32300 q^{59} +3.70820 q^{61} +2.62210 q^{62} +4.94427 q^{64} +5.76393 q^{67} -6.32456 q^{68} -7.40492 q^{71} -9.18034 q^{73} -5.86319 q^{74} +6.47214 q^{76} +0.333851 q^{77} -2.23607 q^{79} +4.47214 q^{82} +3.16228 q^{83} -5.03786 q^{86} -0.944272 q^{88} -15.5563 q^{89} +3.47214 q^{91} +10.9010 q^{92} -9.23607 q^{94} -0.763932 q^{97} -0.874032 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 4 q^{7} + 4 q^{13} - 12 q^{19} + 28 q^{22} - 4 q^{28} - 12 q^{31} + 32 q^{43} + 4 q^{46} + 4 q^{49} + 44 q^{52} - 4 q^{58} - 12 q^{61} - 16 q^{64} + 32 q^{67} + 8 q^{73} + 8 q^{76} + 32 q^{88}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.874032 −0.618034 −0.309017 0.951057i \(-0.600000\pi\)
−0.309017 + 0.951057i \(0.600000\pi\)
\(3\) 0 0
\(4\) −1.23607 −0.618034
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 2.82843 1.00000
\(9\) 0 0
\(10\) 0 0
\(11\) −0.333851 −0.100660 −0.0503299 0.998733i \(-0.516027\pi\)
−0.0503299 + 0.998733i \(0.516027\pi\)
\(12\) 0 0
\(13\) −3.47214 −0.962997 −0.481499 0.876447i \(-0.659907\pi\)
−0.481499 + 0.876447i \(0.659907\pi\)
\(14\) 0.874032 0.233595
\(15\) 0 0
\(16\) 0 0
\(17\) 5.11667 1.24098 0.620488 0.784216i \(-0.286935\pi\)
0.620488 + 0.784216i \(0.286935\pi\)
\(18\) 0 0
\(19\) −5.23607 −1.20124 −0.600618 0.799536i \(-0.705079\pi\)
−0.600618 + 0.799536i \(0.705079\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0.291796 0.0622111
\(23\) −8.81913 −1.83892 −0.919458 0.393188i \(-0.871372\pi\)
−0.919458 + 0.393188i \(0.871372\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 3.03476 0.595165
\(27\) 0 0
\(28\) 1.23607 0.233595
\(29\) 3.70246 0.687529 0.343765 0.939056i \(-0.388298\pi\)
0.343765 + 0.939056i \(0.388298\pi\)
\(30\) 0 0
\(31\) −3.00000 −0.538816 −0.269408 0.963026i \(-0.586828\pi\)
−0.269408 + 0.963026i \(0.586828\pi\)
\(32\) −5.65685 −1.00000
\(33\) 0 0
\(34\) −4.47214 −0.766965
\(35\) 0 0
\(36\) 0 0
\(37\) 6.70820 1.10282 0.551411 0.834234i \(-0.314090\pi\)
0.551411 + 0.834234i \(0.314090\pi\)
\(38\) 4.57649 0.742405
\(39\) 0 0
\(40\) 0 0
\(41\) −5.11667 −0.799090 −0.399545 0.916714i \(-0.630832\pi\)
−0.399545 + 0.916714i \(0.630832\pi\)
\(42\) 0 0
\(43\) 5.76393 0.878991 0.439496 0.898245i \(-0.355157\pi\)
0.439496 + 0.898245i \(0.355157\pi\)
\(44\) 0.412662 0.0622111
\(45\) 0 0
\(46\) 7.70820 1.13651
\(47\) 10.5672 1.54138 0.770692 0.637208i \(-0.219911\pi\)
0.770692 + 0.637208i \(0.219911\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 4.29180 0.595165
\(53\) −11.2349 −1.54323 −0.771616 0.636089i \(-0.780551\pi\)
−0.771616 + 0.636089i \(0.780551\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.82843 −0.377964
\(57\) 0 0
\(58\) −3.23607 −0.424917
\(59\) 5.32300 0.692996 0.346498 0.938051i \(-0.387371\pi\)
0.346498 + 0.938051i \(0.387371\pi\)
\(60\) 0 0
\(61\) 3.70820 0.474787 0.237393 0.971414i \(-0.423707\pi\)
0.237393 + 0.971414i \(0.423707\pi\)
\(62\) 2.62210 0.333007
\(63\) 0 0
\(64\) 4.94427 0.618034
\(65\) 0 0
\(66\) 0 0
\(67\) 5.76393 0.704176 0.352088 0.935967i \(-0.385472\pi\)
0.352088 + 0.935967i \(0.385472\pi\)
\(68\) −6.32456 −0.766965
\(69\) 0 0
\(70\) 0 0
\(71\) −7.40492 −0.878802 −0.439401 0.898291i \(-0.644809\pi\)
−0.439401 + 0.898291i \(0.644809\pi\)
\(72\) 0 0
\(73\) −9.18034 −1.07448 −0.537239 0.843430i \(-0.680533\pi\)
−0.537239 + 0.843430i \(0.680533\pi\)
\(74\) −5.86319 −0.681581
\(75\) 0 0
\(76\) 6.47214 0.742405
\(77\) 0.333851 0.0380458
\(78\) 0 0
\(79\) −2.23607 −0.251577 −0.125789 0.992057i \(-0.540146\pi\)
−0.125789 + 0.992057i \(0.540146\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 4.47214 0.493865
\(83\) 3.16228 0.347105 0.173553 0.984825i \(-0.444475\pi\)
0.173553 + 0.984825i \(0.444475\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.03786 −0.543247
\(87\) 0 0
\(88\) −0.944272 −0.100660
\(89\) −15.5563 −1.64897 −0.824485 0.565884i \(-0.808535\pi\)
−0.824485 + 0.565884i \(0.808535\pi\)
\(90\) 0 0
\(91\) 3.47214 0.363979
\(92\) 10.9010 1.13651
\(93\) 0 0
\(94\) −9.23607 −0.952628
\(95\) 0 0
\(96\) 0 0
\(97\) −0.763932 −0.0775655 −0.0387828 0.999248i \(-0.512348\pi\)
−0.0387828 + 0.999248i \(0.512348\pi\)
\(98\) −0.874032 −0.0882906
\(99\) 0 0
\(100\) 0 0
\(101\) −7.73877 −0.770036 −0.385018 0.922909i \(-0.625805\pi\)
−0.385018 + 0.922909i \(0.625805\pi\)
\(102\) 0 0
\(103\) 13.1803 1.29870 0.649349 0.760491i \(-0.275042\pi\)
0.649349 + 0.760491i \(0.275042\pi\)
\(104\) −9.82068 −0.962997
\(105\) 0 0
\(106\) 9.81966 0.953770
\(107\) −12.1877 −1.17823 −0.589117 0.808048i \(-0.700524\pi\)
−0.589117 + 0.808048i \(0.700524\pi\)
\(108\) 0 0
\(109\) −5.00000 −0.478913 −0.239457 0.970907i \(-0.576969\pi\)
−0.239457 + 0.970907i \(0.576969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 17.5107 1.64727 0.823636 0.567119i \(-0.191942\pi\)
0.823636 + 0.567119i \(0.191942\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.57649 −0.424917
\(117\) 0 0
\(118\) −4.65248 −0.428295
\(119\) −5.11667 −0.469045
\(120\) 0 0
\(121\) −10.8885 −0.989868
\(122\) −3.24109 −0.293434
\(123\) 0 0
\(124\) 3.70820 0.333007
\(125\) 0 0
\(126\) 0 0
\(127\) 16.9443 1.50356 0.751780 0.659413i \(-0.229195\pi\)
0.751780 + 0.659413i \(0.229195\pi\)
\(128\) 6.99226 0.618034
\(129\) 0 0
\(130\) 0 0
\(131\) 4.37016 0.381823 0.190911 0.981607i \(-0.438856\pi\)
0.190911 + 0.981607i \(0.438856\pi\)
\(132\) 0 0
\(133\) 5.23607 0.454025
\(134\) −5.03786 −0.435205
\(135\) 0 0
\(136\) 14.4721 1.24098
\(137\) −8.61280 −0.735841 −0.367921 0.929857i \(-0.619930\pi\)
−0.367921 + 0.929857i \(0.619930\pi\)
\(138\) 0 0
\(139\) −17.6525 −1.49726 −0.748632 0.662986i \(-0.769289\pi\)
−0.748632 + 0.662986i \(0.769289\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.47214 0.543130
\(143\) 1.15917 0.0969350
\(144\) 0 0
\(145\) 0 0
\(146\) 8.02391 0.664064
\(147\) 0 0
\(148\) −8.29180 −0.681581
\(149\) 0.333851 0.0273501 0.0136751 0.999906i \(-0.495647\pi\)
0.0136751 + 0.999906i \(0.495647\pi\)
\(150\) 0 0
\(151\) 17.2361 1.40265 0.701326 0.712841i \(-0.252592\pi\)
0.701326 + 0.712841i \(0.252592\pi\)
\(152\) −14.8098 −1.20124
\(153\) 0 0
\(154\) −0.291796 −0.0235136
\(155\) 0 0
\(156\) 0 0
\(157\) 15.7639 1.25810 0.629049 0.777365i \(-0.283444\pi\)
0.629049 + 0.777365i \(0.283444\pi\)
\(158\) 1.95440 0.155483
\(159\) 0 0
\(160\) 0 0
\(161\) 8.81913 0.695045
\(162\) 0 0
\(163\) 19.4721 1.52518 0.762588 0.646885i \(-0.223929\pi\)
0.762588 + 0.646885i \(0.223929\pi\)
\(164\) 6.32456 0.493865
\(165\) 0 0
\(166\) −2.76393 −0.214523
\(167\) 10.6947 0.827582 0.413791 0.910372i \(-0.364204\pi\)
0.413791 + 0.910372i \(0.364204\pi\)
\(168\) 0 0
\(169\) −0.944272 −0.0726363
\(170\) 0 0
\(171\) 0 0
\(172\) −7.12461 −0.543247
\(173\) −17.6383 −1.34101 −0.670506 0.741904i \(-0.733923\pi\)
−0.670506 + 0.741904i \(0.733923\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 13.5967 1.01912
\(179\) 21.6746 1.62003 0.810017 0.586407i \(-0.199458\pi\)
0.810017 + 0.586407i \(0.199458\pi\)
\(180\) 0 0
\(181\) 5.94427 0.441834 0.220917 0.975293i \(-0.429095\pi\)
0.220917 + 0.975293i \(0.429095\pi\)
\(182\) −3.03476 −0.224951
\(183\) 0 0
\(184\) −24.9443 −1.83892
\(185\) 0 0
\(186\) 0 0
\(187\) −1.70820 −0.124916
\(188\) −13.0618 −0.952628
\(189\) 0 0
\(190\) 0 0
\(191\) −7.19859 −0.520872 −0.260436 0.965491i \(-0.583866\pi\)
−0.260436 + 0.965491i \(0.583866\pi\)
\(192\) 0 0
\(193\) 5.41641 0.389882 0.194941 0.980815i \(-0.437549\pi\)
0.194941 + 0.980815i \(0.437549\pi\)
\(194\) 0.667701 0.0479381
\(195\) 0 0
\(196\) −1.23607 −0.0882906
\(197\) 16.5579 1.17970 0.589851 0.807512i \(-0.299187\pi\)
0.589851 + 0.807512i \(0.299187\pi\)
\(198\) 0 0
\(199\) 13.1803 0.934330 0.467165 0.884170i \(-0.345275\pi\)
0.467165 + 0.884170i \(0.345275\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 6.76393 0.475909
\(203\) −3.70246 −0.259862
\(204\) 0 0
\(205\) 0 0
\(206\) −11.5200 −0.802639
\(207\) 0 0
\(208\) 0 0
\(209\) 1.74806 0.120916
\(210\) 0 0
\(211\) −3.00000 −0.206529 −0.103264 0.994654i \(-0.532929\pi\)
−0.103264 + 0.994654i \(0.532929\pi\)
\(212\) 13.8871 0.953770
\(213\) 0 0
\(214\) 10.6525 0.728188
\(215\) 0 0
\(216\) 0 0
\(217\) 3.00000 0.203653
\(218\) 4.37016 0.295985
\(219\) 0 0
\(220\) 0 0
\(221\) −17.7658 −1.19506
\(222\) 0 0
\(223\) 23.1803 1.55227 0.776135 0.630567i \(-0.217177\pi\)
0.776135 + 0.630567i \(0.217177\pi\)
\(224\) 5.65685 0.377964
\(225\) 0 0
\(226\) −15.3050 −1.01807
\(227\) 6.78593 0.450398 0.225199 0.974313i \(-0.427697\pi\)
0.225199 + 0.974313i \(0.427697\pi\)
\(228\) 0 0
\(229\) −10.5279 −0.695701 −0.347850 0.937550i \(-0.613088\pi\)
−0.347850 + 0.937550i \(0.613088\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 10.4721 0.687529
\(233\) −7.73877 −0.506984 −0.253492 0.967338i \(-0.581579\pi\)
−0.253492 + 0.967338i \(0.581579\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.57959 −0.428295
\(237\) 0 0
\(238\) 4.47214 0.289886
\(239\) −0.333851 −0.0215950 −0.0107975 0.999942i \(-0.503437\pi\)
−0.0107975 + 0.999942i \(0.503437\pi\)
\(240\) 0 0
\(241\) 17.3607 1.11830 0.559150 0.829067i \(-0.311128\pi\)
0.559150 + 0.829067i \(0.311128\pi\)
\(242\) 9.51694 0.611772
\(243\) 0 0
\(244\) −4.58359 −0.293434
\(245\) 0 0
\(246\) 0 0
\(247\) 18.1803 1.15679
\(248\) −8.48528 −0.538816
\(249\) 0 0
\(250\) 0 0
\(251\) 18.6398 1.17653 0.588267 0.808667i \(-0.299810\pi\)
0.588267 + 0.808667i \(0.299810\pi\)
\(252\) 0 0
\(253\) 2.94427 0.185105
\(254\) −14.8098 −0.929252
\(255\) 0 0
\(256\) −16.0000 −1.00000
\(257\) −10.6947 −0.667118 −0.333559 0.942729i \(-0.608250\pi\)
−0.333559 + 0.942729i \(0.608250\pi\)
\(258\) 0 0
\(259\) −6.70820 −0.416828
\(260\) 0 0
\(261\) 0 0
\(262\) −3.81966 −0.235979
\(263\) 21.3407 1.31593 0.657963 0.753051i \(-0.271418\pi\)
0.657963 + 0.753051i \(0.271418\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.57649 −0.280603
\(267\) 0 0
\(268\) −7.12461 −0.435205
\(269\) −24.9157 −1.51913 −0.759567 0.650429i \(-0.774589\pi\)
−0.759567 + 0.650429i \(0.774589\pi\)
\(270\) 0 0
\(271\) 7.29180 0.442945 0.221473 0.975167i \(-0.428914\pi\)
0.221473 + 0.975167i \(0.428914\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 7.52786 0.454775
\(275\) 0 0
\(276\) 0 0
\(277\) 15.3607 0.922934 0.461467 0.887157i \(-0.347323\pi\)
0.461467 + 0.887157i \(0.347323\pi\)
\(278\) 15.4288 0.925360
\(279\) 0 0
\(280\) 0 0
\(281\) −7.73877 −0.461656 −0.230828 0.972995i \(-0.574144\pi\)
−0.230828 + 0.972995i \(0.574144\pi\)
\(282\) 0 0
\(283\) 8.70820 0.517649 0.258824 0.965924i \(-0.416665\pi\)
0.258824 + 0.965924i \(0.416665\pi\)
\(284\) 9.15298 0.543130
\(285\) 0 0
\(286\) −1.01316 −0.0599091
\(287\) 5.11667 0.302028
\(288\) 0 0
\(289\) 9.18034 0.540020
\(290\) 0 0
\(291\) 0 0
\(292\) 11.3475 0.664064
\(293\) −8.02391 −0.468762 −0.234381 0.972145i \(-0.575306\pi\)
−0.234381 + 0.972145i \(0.575306\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 18.9737 1.10282
\(297\) 0 0
\(298\) −0.291796 −0.0169033
\(299\) 30.6212 1.77087
\(300\) 0 0
\(301\) −5.76393 −0.332228
\(302\) −15.0649 −0.866886
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 24.7082 1.41017 0.705086 0.709122i \(-0.250908\pi\)
0.705086 + 0.709122i \(0.250908\pi\)
\(308\) −0.412662 −0.0235136
\(309\) 0 0
\(310\) 0 0
\(311\) 24.0903 1.36604 0.683019 0.730401i \(-0.260667\pi\)
0.683019 + 0.730401i \(0.260667\pi\)
\(312\) 0 0
\(313\) 20.2361 1.14381 0.571905 0.820320i \(-0.306205\pi\)
0.571905 + 0.820320i \(0.306205\pi\)
\(314\) −13.7782 −0.777548
\(315\) 0 0
\(316\) 2.76393 0.155483
\(317\) −3.03476 −0.170449 −0.0852245 0.996362i \(-0.527161\pi\)
−0.0852245 + 0.996362i \(0.527161\pi\)
\(318\) 0 0
\(319\) −1.23607 −0.0692065
\(320\) 0 0
\(321\) 0 0
\(322\) −7.70820 −0.429561
\(323\) −26.7912 −1.49070
\(324\) 0 0
\(325\) 0 0
\(326\) −17.0193 −0.942610
\(327\) 0 0
\(328\) −14.4721 −0.799090
\(329\) −10.5672 −0.582588
\(330\) 0 0
\(331\) 11.2918 0.620653 0.310327 0.950630i \(-0.399562\pi\)
0.310327 + 0.950630i \(0.399562\pi\)
\(332\) −3.90879 −0.214523
\(333\) 0 0
\(334\) −9.34752 −0.511474
\(335\) 0 0
\(336\) 0 0
\(337\) 35.0689 1.91032 0.955162 0.296084i \(-0.0956808\pi\)
0.955162 + 0.296084i \(0.0956808\pi\)
\(338\) 0.825324 0.0448917
\(339\) 0 0
\(340\) 0 0
\(341\) 1.00155 0.0542371
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 16.3029 0.878991
\(345\) 0 0
\(346\) 15.4164 0.828791
\(347\) −1.41421 −0.0759190 −0.0379595 0.999279i \(-0.512086\pi\)
−0.0379595 + 0.999279i \(0.512086\pi\)
\(348\) 0 0
\(349\) −9.76393 −0.522651 −0.261326 0.965251i \(-0.584160\pi\)
−0.261326 + 0.965251i \(0.584160\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.88854 0.100660
\(353\) 21.8021 1.16041 0.580204 0.814471i \(-0.302973\pi\)
0.580204 + 0.814471i \(0.302973\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 19.2287 1.01912
\(357\) 0 0
\(358\) −18.9443 −1.00124
\(359\) 7.32611 0.386657 0.193329 0.981134i \(-0.438072\pi\)
0.193329 + 0.981134i \(0.438072\pi\)
\(360\) 0 0
\(361\) 8.41641 0.442969
\(362\) −5.19548 −0.273069
\(363\) 0 0
\(364\) −4.29180 −0.224951
\(365\) 0 0
\(366\) 0 0
\(367\) −12.1246 −0.632900 −0.316450 0.948609i \(-0.602491\pi\)
−0.316450 + 0.948609i \(0.602491\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.2349 0.583287
\(372\) 0 0
\(373\) −17.4164 −0.901787 −0.450894 0.892578i \(-0.648895\pi\)
−0.450894 + 0.892578i \(0.648895\pi\)
\(374\) 1.49302 0.0772025
\(375\) 0 0
\(376\) 29.8885 1.54138
\(377\) −12.8554 −0.662089
\(378\) 0 0
\(379\) 25.4721 1.30842 0.654208 0.756315i \(-0.273002\pi\)
0.654208 + 0.756315i \(0.273002\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 6.29180 0.321916
\(383\) −0.285142 −0.0145701 −0.00728505 0.999973i \(-0.502319\pi\)
−0.00728505 + 0.999973i \(0.502319\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4.73411 −0.240960
\(387\) 0 0
\(388\) 0.944272 0.0479381
\(389\) 27.0463 1.37130 0.685651 0.727931i \(-0.259518\pi\)
0.685651 + 0.727931i \(0.259518\pi\)
\(390\) 0 0
\(391\) −45.1246 −2.28205
\(392\) 2.82843 0.142857
\(393\) 0 0
\(394\) −14.4721 −0.729096
\(395\) 0 0
\(396\) 0 0
\(397\) −25.3607 −1.27282 −0.636408 0.771353i \(-0.719581\pi\)
−0.636408 + 0.771353i \(0.719581\pi\)
\(398\) −11.5200 −0.577447
\(399\) 0 0
\(400\) 0 0
\(401\) 14.6823 0.733200 0.366600 0.930379i \(-0.380522\pi\)
0.366600 + 0.930379i \(0.380522\pi\)
\(402\) 0 0
\(403\) 10.4164 0.518878
\(404\) 9.56564 0.475909
\(405\) 0 0
\(406\) 3.23607 0.160603
\(407\) −2.23954 −0.111010
\(408\) 0 0
\(409\) 25.9443 1.28286 0.641431 0.767181i \(-0.278341\pi\)
0.641431 + 0.767181i \(0.278341\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −16.2918 −0.802639
\(413\) −5.32300 −0.261928
\(414\) 0 0
\(415\) 0 0
\(416\) 19.6414 0.962997
\(417\) 0 0
\(418\) −1.52786 −0.0747303
\(419\) −8.69161 −0.424613 −0.212307 0.977203i \(-0.568098\pi\)
−0.212307 + 0.977203i \(0.568098\pi\)
\(420\) 0 0
\(421\) 6.41641 0.312717 0.156358 0.987700i \(-0.450025\pi\)
0.156358 + 0.987700i \(0.450025\pi\)
\(422\) 2.62210 0.127642
\(423\) 0 0
\(424\) −31.7771 −1.54323
\(425\) 0 0
\(426\) 0 0
\(427\) −3.70820 −0.179453
\(428\) 15.0649 0.728188
\(429\) 0 0
\(430\) 0 0
\(431\) 7.81758 0.376560 0.188280 0.982115i \(-0.439709\pi\)
0.188280 + 0.982115i \(0.439709\pi\)
\(432\) 0 0
\(433\) 8.34752 0.401156 0.200578 0.979678i \(-0.435718\pi\)
0.200578 + 0.979678i \(0.435718\pi\)
\(434\) −2.62210 −0.125865
\(435\) 0 0
\(436\) 6.18034 0.295985
\(437\) 46.1776 2.20897
\(438\) 0 0
\(439\) −21.0000 −1.00228 −0.501138 0.865368i \(-0.667085\pi\)
−0.501138 + 0.865368i \(0.667085\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 15.5279 0.738585
\(443\) 6.24574 0.296744 0.148372 0.988932i \(-0.452597\pi\)
0.148372 + 0.988932i \(0.452597\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −20.2604 −0.959356
\(447\) 0 0
\(448\) −4.94427 −0.233595
\(449\) 13.0618 0.616423 0.308212 0.951318i \(-0.400270\pi\)
0.308212 + 0.951318i \(0.400270\pi\)
\(450\) 0 0
\(451\) 1.70820 0.0804362
\(452\) −21.6445 −1.01807
\(453\) 0 0
\(454\) −5.93112 −0.278361
\(455\) 0 0
\(456\) 0 0
\(457\) −18.9443 −0.886176 −0.443088 0.896478i \(-0.646117\pi\)
−0.443088 + 0.896478i \(0.646117\pi\)
\(458\) 9.20169 0.429967
\(459\) 0 0
\(460\) 0 0
\(461\) −19.7990 −0.922131 −0.461065 0.887366i \(-0.652533\pi\)
−0.461065 + 0.887366i \(0.652533\pi\)
\(462\) 0 0
\(463\) −28.5967 −1.32900 −0.664502 0.747287i \(-0.731356\pi\)
−0.664502 + 0.747287i \(0.731356\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 6.76393 0.313333
\(467\) −24.5517 −1.13612 −0.568059 0.822988i \(-0.692305\pi\)
−0.568059 + 0.822988i \(0.692305\pi\)
\(468\) 0 0
\(469\) −5.76393 −0.266154
\(470\) 0 0
\(471\) 0 0
\(472\) 15.0557 0.692996
\(473\) −1.92429 −0.0884790
\(474\) 0 0
\(475\) 0 0
\(476\) 6.32456 0.289886
\(477\) 0 0
\(478\) 0.291796 0.0133464
\(479\) −9.69316 −0.442892 −0.221446 0.975173i \(-0.571078\pi\)
−0.221446 + 0.975173i \(0.571078\pi\)
\(480\) 0 0
\(481\) −23.2918 −1.06201
\(482\) −15.1738 −0.691147
\(483\) 0 0
\(484\) 13.4590 0.611772
\(485\) 0 0
\(486\) 0 0
\(487\) 27.1803 1.23166 0.615829 0.787880i \(-0.288821\pi\)
0.615829 + 0.787880i \(0.288821\pi\)
\(488\) 10.4884 0.474787
\(489\) 0 0
\(490\) 0 0
\(491\) 37.2796 1.68241 0.841203 0.540719i \(-0.181848\pi\)
0.841203 + 0.540719i \(0.181848\pi\)
\(492\) 0 0
\(493\) 18.9443 0.853207
\(494\) −15.8902 −0.714934
\(495\) 0 0
\(496\) 0 0
\(497\) 7.40492 0.332156
\(498\) 0 0
\(499\) −12.8885 −0.576970 −0.288485 0.957484i \(-0.593152\pi\)
−0.288485 + 0.957484i \(0.593152\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −16.2918 −0.727138
\(503\) 28.9520 1.29090 0.645452 0.763801i \(-0.276669\pi\)
0.645452 + 0.763801i \(0.276669\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −2.57339 −0.114401
\(507\) 0 0
\(508\) −20.9443 −0.929252
\(509\) 3.95750 0.175413 0.0877065 0.996146i \(-0.472046\pi\)
0.0877065 + 0.996146i \(0.472046\pi\)
\(510\) 0 0
\(511\) 9.18034 0.406114
\(512\) 0 0
\(513\) 0 0
\(514\) 9.34752 0.412302
\(515\) 0 0
\(516\) 0 0
\(517\) −3.52786 −0.155155
\(518\) 5.86319 0.257614
\(519\) 0 0
\(520\) 0 0
\(521\) 15.2712 0.669044 0.334522 0.942388i \(-0.391425\pi\)
0.334522 + 0.942388i \(0.391425\pi\)
\(522\) 0 0
\(523\) 38.0689 1.66464 0.832318 0.554298i \(-0.187013\pi\)
0.832318 + 0.554298i \(0.187013\pi\)
\(524\) −5.40182 −0.235979
\(525\) 0 0
\(526\) −18.6525 −0.813287
\(527\) −15.3500 −0.668657
\(528\) 0 0
\(529\) 54.7771 2.38161
\(530\) 0 0
\(531\) 0 0
\(532\) −6.47214 −0.280603
\(533\) 17.7658 0.769521
\(534\) 0 0
\(535\) 0 0
\(536\) 16.3029 0.704176
\(537\) 0 0
\(538\) 21.7771 0.938877
\(539\) −0.333851 −0.0143800
\(540\) 0 0
\(541\) −20.6525 −0.887919 −0.443960 0.896047i \(-0.646427\pi\)
−0.443960 + 0.896047i \(0.646427\pi\)
\(542\) −6.37326 −0.273755
\(543\) 0 0
\(544\) −28.9443 −1.24098
\(545\) 0 0
\(546\) 0 0
\(547\) −14.8885 −0.636588 −0.318294 0.947992i \(-0.603110\pi\)
−0.318294 + 0.947992i \(0.603110\pi\)
\(548\) 10.6460 0.454775
\(549\) 0 0
\(550\) 0 0
\(551\) −19.3863 −0.825885
\(552\) 0 0
\(553\) 2.23607 0.0950873
\(554\) −13.4257 −0.570404
\(555\) 0 0
\(556\) 21.8197 0.925360
\(557\) −27.0463 −1.14599 −0.572994 0.819560i \(-0.694218\pi\)
−0.572994 + 0.819560i \(0.694218\pi\)
\(558\) 0 0
\(559\) −20.0132 −0.846466
\(560\) 0 0
\(561\) 0 0
\(562\) 6.76393 0.285319
\(563\) −10.0270 −0.422588 −0.211294 0.977423i \(-0.567768\pi\)
−0.211294 + 0.977423i \(0.567768\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −7.61125 −0.319925
\(567\) 0 0
\(568\) −20.9443 −0.878802
\(569\) 40.2356 1.68676 0.843382 0.537315i \(-0.180561\pi\)
0.843382 + 0.537315i \(0.180561\pi\)
\(570\) 0 0
\(571\) −3.05573 −0.127878 −0.0639391 0.997954i \(-0.520366\pi\)
−0.0639391 + 0.997954i \(0.520366\pi\)
\(572\) −1.43282 −0.0599091
\(573\) 0 0
\(574\) −4.47214 −0.186663
\(575\) 0 0
\(576\) 0 0
\(577\) −15.1246 −0.629646 −0.314823 0.949150i \(-0.601945\pi\)
−0.314823 + 0.949150i \(0.601945\pi\)
\(578\) −8.02391 −0.333751
\(579\) 0 0
\(580\) 0 0
\(581\) −3.16228 −0.131193
\(582\) 0 0
\(583\) 3.75078 0.155341
\(584\) −25.9659 −1.07448
\(585\) 0 0
\(586\) 7.01316 0.289711
\(587\) 37.1521 1.53343 0.766716 0.641987i \(-0.221890\pi\)
0.766716 + 0.641987i \(0.221890\pi\)
\(588\) 0 0
\(589\) 15.7082 0.647245
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −30.8763 −1.26794 −0.633968 0.773359i \(-0.718575\pi\)
−0.633968 + 0.773359i \(0.718575\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −0.412662 −0.0169033
\(597\) 0 0
\(598\) −26.7639 −1.09446
\(599\) −35.1490 −1.43615 −0.718075 0.695966i \(-0.754976\pi\)
−0.718075 + 0.695966i \(0.754976\pi\)
\(600\) 0 0
\(601\) −22.5967 −0.921741 −0.460870 0.887468i \(-0.652463\pi\)
−0.460870 + 0.887468i \(0.652463\pi\)
\(602\) 5.03786 0.205328
\(603\) 0 0
\(604\) −21.3050 −0.866886
\(605\) 0 0
\(606\) 0 0
\(607\) −5.58359 −0.226631 −0.113316 0.993559i \(-0.536147\pi\)
−0.113316 + 0.993559i \(0.536147\pi\)
\(608\) 29.6197 1.20124
\(609\) 0 0
\(610\) 0 0
\(611\) −36.6907 −1.48435
\(612\) 0 0
\(613\) 19.0000 0.767403 0.383701 0.923457i \(-0.374649\pi\)
0.383701 + 0.923457i \(0.374649\pi\)
\(614\) −21.5958 −0.871534
\(615\) 0 0
\(616\) 0.944272 0.0380458
\(617\) −9.31061 −0.374831 −0.187415 0.982281i \(-0.560011\pi\)
−0.187415 + 0.982281i \(0.560011\pi\)
\(618\) 0 0
\(619\) 17.4164 0.700025 0.350012 0.936745i \(-0.386177\pi\)
0.350012 + 0.936745i \(0.386177\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −21.0557 −0.844258
\(623\) 15.5563 0.623252
\(624\) 0 0
\(625\) 0 0
\(626\) −17.6870 −0.706914
\(627\) 0 0
\(628\) −19.4853 −0.777548
\(629\) 34.3237 1.36857
\(630\) 0 0
\(631\) 37.4721 1.49174 0.745871 0.666090i \(-0.232033\pi\)
0.745871 + 0.666090i \(0.232033\pi\)
\(632\) −6.32456 −0.251577
\(633\) 0 0
\(634\) 2.65248 0.105343
\(635\) 0 0
\(636\) 0 0
\(637\) −3.47214 −0.137571
\(638\) 1.08036 0.0427720
\(639\) 0 0
\(640\) 0 0
\(641\) 14.1908 0.560505 0.280252 0.959926i \(-0.409582\pi\)
0.280252 + 0.959926i \(0.409582\pi\)
\(642\) 0 0
\(643\) 7.05573 0.278251 0.139125 0.990275i \(-0.455571\pi\)
0.139125 + 0.990275i \(0.455571\pi\)
\(644\) −10.9010 −0.429561
\(645\) 0 0
\(646\) 23.4164 0.921306
\(647\) −31.6529 −1.24440 −0.622202 0.782857i \(-0.713762\pi\)
−0.622202 + 0.782857i \(0.713762\pi\)
\(648\) 0 0
\(649\) −1.77709 −0.0697568
\(650\) 0 0
\(651\) 0 0
\(652\) −24.0689 −0.942610
\(653\) −6.60970 −0.258657 −0.129329 0.991602i \(-0.541282\pi\)
−0.129329 + 0.991602i \(0.541282\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 9.23607 0.360059
\(659\) −49.0848 −1.91207 −0.956036 0.293248i \(-0.905264\pi\)
−0.956036 + 0.293248i \(0.905264\pi\)
\(660\) 0 0
\(661\) −12.2361 −0.475928 −0.237964 0.971274i \(-0.576480\pi\)
−0.237964 + 0.971274i \(0.576480\pi\)
\(662\) −9.86939 −0.383585
\(663\) 0 0
\(664\) 8.94427 0.347105
\(665\) 0 0
\(666\) 0 0
\(667\) −32.6525 −1.26431
\(668\) −13.2194 −0.511474
\(669\) 0 0
\(670\) 0 0
\(671\) −1.23799 −0.0477919
\(672\) 0 0
\(673\) −28.3050 −1.09108 −0.545538 0.838086i \(-0.683675\pi\)
−0.545538 + 0.838086i \(0.683675\pi\)
\(674\) −30.6513 −1.18065
\(675\) 0 0
\(676\) 1.16718 0.0448917
\(677\) −18.6398 −0.716386 −0.358193 0.933648i \(-0.616607\pi\)
−0.358193 + 0.933648i \(0.616607\pi\)
\(678\) 0 0
\(679\) 0.763932 0.0293170
\(680\) 0 0
\(681\) 0 0
\(682\) −0.875388 −0.0335203
\(683\) −25.4558 −0.974041 −0.487020 0.873391i \(-0.661916\pi\)
−0.487020 + 0.873391i \(0.661916\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0.874032 0.0333707
\(687\) 0 0
\(688\) 0 0
\(689\) 39.0091 1.48613
\(690\) 0 0
\(691\) 0.180340 0.00686045 0.00343023 0.999994i \(-0.498908\pi\)
0.00343023 + 0.999994i \(0.498908\pi\)
\(692\) 21.8021 0.828791
\(693\) 0 0
\(694\) 1.23607 0.0469205
\(695\) 0 0
\(696\) 0 0
\(697\) −26.1803 −0.991651
\(698\) 8.53399 0.323016
\(699\) 0 0
\(700\) 0 0
\(701\) 15.3013 0.577923 0.288961 0.957341i \(-0.406690\pi\)
0.288961 + 0.957341i \(0.406690\pi\)
\(702\) 0 0
\(703\) −35.1246 −1.32475
\(704\) −1.65065 −0.0622111
\(705\) 0 0
\(706\) −19.0557 −0.717172
\(707\) 7.73877 0.291046
\(708\) 0 0
\(709\) −19.3050 −0.725013 −0.362506 0.931981i \(-0.618079\pi\)
−0.362506 + 0.931981i \(0.618079\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −44.0000 −1.64897
\(713\) 26.4574 0.990837
\(714\) 0 0
\(715\) 0 0
\(716\) −26.7912 −1.00124
\(717\) 0 0
\(718\) −6.40325 −0.238967
\(719\) 12.3941 0.462221 0.231110 0.972928i \(-0.425764\pi\)
0.231110 + 0.972928i \(0.425764\pi\)
\(720\) 0 0
\(721\) −13.1803 −0.490862
\(722\) −7.35621 −0.273770
\(723\) 0 0
\(724\) −7.34752 −0.273069
\(725\) 0 0
\(726\) 0 0
\(727\) 3.65248 0.135463 0.0677314 0.997704i \(-0.478424\pi\)
0.0677314 + 0.997704i \(0.478424\pi\)
\(728\) 9.82068 0.363979
\(729\) 0 0
\(730\) 0 0
\(731\) 29.4922 1.09081
\(732\) 0 0
\(733\) −28.5410 −1.05419 −0.527093 0.849807i \(-0.676718\pi\)
−0.527093 + 0.849807i \(0.676718\pi\)
\(734\) 10.5973 0.391153
\(735\) 0 0
\(736\) 49.8885 1.83892
\(737\) −1.92429 −0.0708822
\(738\) 0 0
\(739\) 22.7639 0.837385 0.418692 0.908128i \(-0.362489\pi\)
0.418692 + 0.908128i \(0.362489\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −9.81966 −0.360491
\(743\) −19.3863 −0.711215 −0.355608 0.934635i \(-0.615726\pi\)
−0.355608 + 0.934635i \(0.615726\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 15.2225 0.557335
\(747\) 0 0
\(748\) 2.11146 0.0772025
\(749\) 12.1877 0.445330
\(750\) 0 0
\(751\) −44.8885 −1.63801 −0.819003 0.573789i \(-0.805473\pi\)
−0.819003 + 0.573789i \(0.805473\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 11.2361 0.409193
\(755\) 0 0
\(756\) 0 0
\(757\) 39.7082 1.44322 0.721610 0.692300i \(-0.243403\pi\)
0.721610 + 0.692300i \(0.243403\pi\)
\(758\) −22.2635 −0.808645
\(759\) 0 0
\(760\) 0 0
\(761\) 51.0091 1.84908 0.924539 0.381087i \(-0.124450\pi\)
0.924539 + 0.381087i \(0.124450\pi\)
\(762\) 0 0
\(763\) 5.00000 0.181012
\(764\) 8.89794 0.321916
\(765\) 0 0
\(766\) 0.249224 0.00900481
\(767\) −18.4822 −0.667353
\(768\) 0 0
\(769\) 7.76393 0.279975 0.139987 0.990153i \(-0.455294\pi\)
0.139987 + 0.990153i \(0.455294\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −6.69505 −0.240960
\(773\) 20.0053 0.719541 0.359771 0.933041i \(-0.382855\pi\)
0.359771 + 0.933041i \(0.382855\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −2.16073 −0.0775655
\(777\) 0 0
\(778\) −23.6393 −0.847511
\(779\) 26.7912 0.959896
\(780\) 0 0
\(781\) 2.47214 0.0884600
\(782\) 39.4404 1.41038
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 54.4721 1.94172 0.970861 0.239643i \(-0.0770305\pi\)
0.970861 + 0.239643i \(0.0770305\pi\)
\(788\) −20.4667 −0.729096
\(789\) 0 0
\(790\) 0 0
\(791\) −17.5107 −0.622610
\(792\) 0 0
\(793\) −12.8754 −0.457218
\(794\) 22.1660 0.786644
\(795\) 0 0
\(796\) −16.2918 −0.577447
\(797\) 27.3801 0.969854 0.484927 0.874555i \(-0.338846\pi\)
0.484927 + 0.874555i \(0.338846\pi\)
\(798\) 0 0
\(799\) 54.0689 1.91282
\(800\) 0 0
\(801\) 0 0
\(802\) −12.8328 −0.453142
\(803\) 3.06486 0.108157
\(804\) 0 0
\(805\) 0 0
\(806\) −9.10427 −0.320684
\(807\) 0 0
\(808\) −21.8885 −0.770036
\(809\) 38.6938 1.36040 0.680202 0.733025i \(-0.261892\pi\)
0.680202 + 0.733025i \(0.261892\pi\)
\(810\) 0 0
\(811\) 16.8885 0.593037 0.296518 0.955027i \(-0.404174\pi\)
0.296518 + 0.955027i \(0.404174\pi\)
\(812\) 4.57649 0.160603
\(813\) 0 0
\(814\) 1.95743 0.0686078
\(815\) 0 0
\(816\) 0 0
\(817\) −30.1803 −1.05588
\(818\) −22.6761 −0.792852
\(819\) 0 0
\(820\) 0 0
\(821\) 50.1351 1.74973 0.874863 0.484370i \(-0.160951\pi\)
0.874863 + 0.484370i \(0.160951\pi\)
\(822\) 0 0
\(823\) −31.0689 −1.08299 −0.541497 0.840703i \(-0.682142\pi\)
−0.541497 + 0.840703i \(0.682142\pi\)
\(824\) 37.2796 1.29870
\(825\) 0 0
\(826\) 4.65248 0.161880
\(827\) 22.7549 0.791267 0.395633 0.918409i \(-0.370525\pi\)
0.395633 + 0.918409i \(0.370525\pi\)
\(828\) 0 0
\(829\) 54.5967 1.89622 0.948112 0.317937i \(-0.102990\pi\)
0.948112 + 0.317937i \(0.102990\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −17.1672 −0.595165
\(833\) 5.11667 0.177282
\(834\) 0 0
\(835\) 0 0
\(836\) −2.16073 −0.0747303
\(837\) 0 0
\(838\) 7.59675 0.262425
\(839\) −18.7673 −0.647920 −0.323960 0.946071i \(-0.605014\pi\)
−0.323960 + 0.946071i \(0.605014\pi\)
\(840\) 0 0
\(841\) −15.2918 −0.527303
\(842\) −5.60815 −0.193269
\(843\) 0 0
\(844\) 3.70820 0.127642
\(845\) 0 0
\(846\) 0 0
\(847\) 10.8885 0.374135
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −59.1605 −2.02800
\(852\) 0 0
\(853\) 44.9574 1.53931 0.769657 0.638458i \(-0.220427\pi\)
0.769657 + 0.638458i \(0.220427\pi\)
\(854\) 3.24109 0.110908
\(855\) 0 0
\(856\) −34.4721 −1.17823
\(857\) 30.4937 1.04165 0.520823 0.853665i \(-0.325625\pi\)
0.520823 + 0.853665i \(0.325625\pi\)
\(858\) 0 0
\(859\) −3.11146 −0.106162 −0.0530808 0.998590i \(-0.516904\pi\)
−0.0530808 + 0.998590i \(0.516904\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −6.83282 −0.232727
\(863\) 28.9520 0.985537 0.492768 0.870161i \(-0.335985\pi\)
0.492768 + 0.870161i \(0.335985\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −7.29600 −0.247928
\(867\) 0 0
\(868\) −3.70820 −0.125865
\(869\) 0.746512 0.0253237
\(870\) 0 0
\(871\) −20.0132 −0.678120
\(872\) −14.1421 −0.478913
\(873\) 0 0
\(874\) −40.3607 −1.36522
\(875\) 0 0
\(876\) 0 0
\(877\) 6.94427 0.234491 0.117246 0.993103i \(-0.462593\pi\)
0.117246 + 0.993103i \(0.462593\pi\)
\(878\) 18.3547 0.619440
\(879\) 0 0
\(880\) 0 0
\(881\) 41.6799 1.40423 0.702116 0.712063i \(-0.252239\pi\)
0.702116 + 0.712063i \(0.252239\pi\)
\(882\) 0 0
\(883\) 11.5967 0.390262 0.195131 0.980777i \(-0.437487\pi\)
0.195131 + 0.980777i \(0.437487\pi\)
\(884\) 21.9597 0.738585
\(885\) 0 0
\(886\) −5.45898 −0.183398
\(887\) −32.5756 −1.09378 −0.546891 0.837204i \(-0.684189\pi\)
−0.546891 + 0.837204i \(0.684189\pi\)
\(888\) 0 0
\(889\) −16.9443 −0.568293
\(890\) 0 0
\(891\) 0 0
\(892\) −28.6525 −0.959356
\(893\) −55.3306 −1.85157
\(894\) 0 0
\(895\) 0 0
\(896\) −6.99226 −0.233595
\(897\) 0 0
\(898\) −11.4164 −0.380970
\(899\) −11.1074 −0.370452
\(900\) 0 0
\(901\) −57.4853 −1.91511
\(902\) −1.49302 −0.0497123
\(903\) 0 0
\(904\) 49.5279 1.64727
\(905\) 0 0
\(906\) 0 0
\(907\) −49.8328 −1.65467 −0.827336 0.561708i \(-0.810145\pi\)
−0.827336 + 0.561708i \(0.810145\pi\)
\(908\) −8.38787 −0.278361
\(909\) 0 0
\(910\) 0 0
\(911\) 19.0038 0.629623 0.314811 0.949154i \(-0.398059\pi\)
0.314811 + 0.949154i \(0.398059\pi\)
\(912\) 0 0
\(913\) −1.05573 −0.0349395
\(914\) 16.5579 0.547687
\(915\) 0 0
\(916\) 13.0132 0.429967
\(917\) −4.37016 −0.144315
\(918\) 0 0
\(919\) −4.52786 −0.149360 −0.0746802 0.997208i \(-0.523794\pi\)
−0.0746802 + 0.997208i \(0.523794\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 17.3050 0.569908
\(923\) 25.7109 0.846284
\(924\) 0 0
\(925\) 0 0
\(926\) 24.9945 0.821369
\(927\) 0 0
\(928\) −20.9443 −0.687529
\(929\) −46.4326 −1.52340 −0.761702 0.647927i \(-0.775636\pi\)
−0.761702 + 0.647927i \(0.775636\pi\)
\(930\) 0 0
\(931\) −5.23607 −0.171605
\(932\) 9.56564 0.313333
\(933\) 0 0
\(934\) 21.4590 0.702159
\(935\) 0 0
\(936\) 0 0
\(937\) −56.7214 −1.85301 −0.926503 0.376287i \(-0.877201\pi\)
−0.926503 + 0.376287i \(0.877201\pi\)
\(938\) 5.03786 0.164492
\(939\) 0 0
\(940\) 0 0
\(941\) −15.1437 −0.493670 −0.246835 0.969058i \(-0.579391\pi\)
−0.246835 + 0.969058i \(0.579391\pi\)
\(942\) 0 0
\(943\) 45.1246 1.46946
\(944\) 0 0
\(945\) 0 0
\(946\) 1.68189 0.0546830
\(947\) 13.2681 0.431155 0.215578 0.976487i \(-0.430837\pi\)
0.215578 + 0.976487i \(0.430837\pi\)
\(948\) 0 0
\(949\) 31.8754 1.03472
\(950\) 0 0
\(951\) 0 0
\(952\) −14.4721 −0.469045
\(953\) −8.77042 −0.284102 −0.142051 0.989859i \(-0.545370\pi\)
−0.142051 + 0.989859i \(0.545370\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.412662 0.0133464
\(957\) 0 0
\(958\) 8.47214 0.273722
\(959\) 8.61280 0.278122
\(960\) 0 0
\(961\) −22.0000 −0.709677
\(962\) 20.3578 0.656361
\(963\) 0 0
\(964\) −21.4590 −0.691147
\(965\) 0 0
\(966\) 0 0
\(967\) 43.1803 1.38859 0.694293 0.719692i \(-0.255717\pi\)
0.694293 + 0.719692i \(0.255717\pi\)
\(968\) −30.7975 −0.989868
\(969\) 0 0
\(970\) 0 0
\(971\) −44.8121 −1.43809 −0.719044 0.694965i \(-0.755420\pi\)
−0.719044 + 0.694965i \(0.755420\pi\)
\(972\) 0 0
\(973\) 17.6525 0.565912
\(974\) −23.7565 −0.761207
\(975\) 0 0
\(976\) 0 0
\(977\) −54.4078 −1.74066 −0.870330 0.492469i \(-0.836095\pi\)
−0.870330 + 0.492469i \(0.836095\pi\)
\(978\) 0 0
\(979\) 5.19350 0.165985
\(980\) 0 0
\(981\) 0 0
\(982\) −32.5836 −1.03978
\(983\) −41.8862 −1.33596 −0.667982 0.744178i \(-0.732842\pi\)
−0.667982 + 0.744178i \(0.732842\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −16.5579 −0.527311
\(987\) 0 0
\(988\) −22.4721 −0.714934
\(989\) −50.8329 −1.61639
\(990\) 0 0
\(991\) 21.5279 0.683855 0.341928 0.939726i \(-0.388920\pi\)
0.341928 + 0.939726i \(0.388920\pi\)
\(992\) 16.9706 0.538816
\(993\) 0 0
\(994\) −6.47214 −0.205284
\(995\) 0 0
\(996\) 0 0
\(997\) 4.83282 0.153057 0.0765284 0.997067i \(-0.475616\pi\)
0.0765284 + 0.997067i \(0.475616\pi\)
\(998\) 11.2650 0.356587
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4725.2.a.bu.1.2 4
3.2 odd 2 inner 4725.2.a.bu.1.3 yes 4
5.4 even 2 4725.2.a.bv.1.3 yes 4
15.14 odd 2 4725.2.a.bv.1.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4725.2.a.bu.1.2 4 1.1 even 1 trivial
4725.2.a.bu.1.3 yes 4 3.2 odd 2 inner
4725.2.a.bv.1.2 yes 4 15.14 odd 2
4725.2.a.bv.1.3 yes 4 5.4 even 2