Properties

Label 4725.2.a.bi.1.2
Level $4725$
Weight $2$
Character 4725.1
Self dual yes
Analytic conductor $37.729$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4725,2,Mod(1,4725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4725 = 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7293149551\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.91223\) of defining polynomial
Character \(\chi\) \(=\) 4725.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.656620 q^{2} -1.56885 q^{4} -1.00000 q^{7} -2.34338 q^{8} +1.91223 q^{11} -0.255609 q^{13} -0.656620 q^{14} +1.59899 q^{16} -6.16784 q^{17} +7.08007 q^{19} +1.25561 q^{22} +2.56885 q^{23} -0.167838 q^{26} +1.56885 q^{28} -2.56885 q^{29} -1.05763 q^{31} +5.73669 q^{32} -4.04993 q^{34} -8.39331 q^{37} +4.64892 q^{38} +10.8744 q^{41} +5.08777 q^{43} -3.00000 q^{44} +1.68676 q^{46} -3.05763 q^{47} +1.00000 q^{49} +0.401012 q^{52} -2.77453 q^{53} +2.34338 q^{56} -1.68676 q^{58} -8.36317 q^{59} -12.3055 q^{61} -0.694463 q^{62} +0.568850 q^{64} -8.93972 q^{67} +9.67641 q^{68} +12.5611 q^{71} +9.96216 q^{73} -5.51122 q^{74} -11.1076 q^{76} -1.91223 q^{77} -9.96216 q^{79} +7.14034 q^{82} -3.71425 q^{83} +3.34073 q^{86} -4.48108 q^{88} -6.33568 q^{89} +0.255609 q^{91} -4.03014 q^{92} -2.00770 q^{94} +5.64892 q^{97} +0.656620 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{4} - 3 q^{7} - 9 q^{8} - q^{11} + 4 q^{13} + 2 q^{16} - 7 q^{17} + 3 q^{19} - q^{22} - q^{23} + 11 q^{26} - 4 q^{28} + q^{29} - 4 q^{31} - 3 q^{32} + 12 q^{34} - 3 q^{37} - 13 q^{38} - 5 q^{41}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.656620 0.464301 0.232150 0.972680i \(-0.425424\pi\)
0.232150 + 0.972680i \(0.425424\pi\)
\(3\) 0 0
\(4\) −1.56885 −0.784425
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −2.34338 −0.828510
\(9\) 0 0
\(10\) 0 0
\(11\) 1.91223 0.576559 0.288279 0.957546i \(-0.406917\pi\)
0.288279 + 0.957546i \(0.406917\pi\)
\(12\) 0 0
\(13\) −0.255609 −0.0708931 −0.0354466 0.999372i \(-0.511285\pi\)
−0.0354466 + 0.999372i \(0.511285\pi\)
\(14\) −0.656620 −0.175489
\(15\) 0 0
\(16\) 1.59899 0.399747
\(17\) −6.16784 −1.49592 −0.747960 0.663744i \(-0.768967\pi\)
−0.747960 + 0.663744i \(0.768967\pi\)
\(18\) 0 0
\(19\) 7.08007 1.62428 0.812139 0.583463i \(-0.198303\pi\)
0.812139 + 0.583463i \(0.198303\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.25561 0.267697
\(23\) 2.56885 0.535642 0.267821 0.963469i \(-0.413696\pi\)
0.267821 + 0.963469i \(0.413696\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −0.167838 −0.0329157
\(27\) 0 0
\(28\) 1.56885 0.296485
\(29\) −2.56885 −0.477023 −0.238512 0.971140i \(-0.576660\pi\)
−0.238512 + 0.971140i \(0.576660\pi\)
\(30\) 0 0
\(31\) −1.05763 −0.189956 −0.0949782 0.995479i \(-0.530278\pi\)
−0.0949782 + 0.995479i \(0.530278\pi\)
\(32\) 5.73669 1.01411
\(33\) 0 0
\(34\) −4.04993 −0.694557
\(35\) 0 0
\(36\) 0 0
\(37\) −8.39331 −1.37985 −0.689926 0.723880i \(-0.742357\pi\)
−0.689926 + 0.723880i \(0.742357\pi\)
\(38\) 4.64892 0.754154
\(39\) 0 0
\(40\) 0 0
\(41\) 10.8744 1.69829 0.849147 0.528157i \(-0.177117\pi\)
0.849147 + 0.528157i \(0.177117\pi\)
\(42\) 0 0
\(43\) 5.08777 0.775878 0.387939 0.921685i \(-0.373187\pi\)
0.387939 + 0.921685i \(0.373187\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 1.68676 0.248699
\(47\) −3.05763 −0.446001 −0.223001 0.974818i \(-0.571585\pi\)
−0.223001 + 0.974818i \(0.571585\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0.401012 0.0556103
\(53\) −2.77453 −0.381111 −0.190555 0.981676i \(-0.561029\pi\)
−0.190555 + 0.981676i \(0.561029\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 2.34338 0.313147
\(57\) 0 0
\(58\) −1.68676 −0.221482
\(59\) −8.36317 −1.08879 −0.544396 0.838828i \(-0.683241\pi\)
−0.544396 + 0.838828i \(0.683241\pi\)
\(60\) 0 0
\(61\) −12.3055 −1.57556 −0.787781 0.615955i \(-0.788770\pi\)
−0.787781 + 0.615955i \(0.788770\pi\)
\(62\) −0.694463 −0.0881969
\(63\) 0 0
\(64\) 0.568850 0.0711062
\(65\) 0 0
\(66\) 0 0
\(67\) −8.93972 −1.09216 −0.546080 0.837733i \(-0.683881\pi\)
−0.546080 + 0.837733i \(0.683881\pi\)
\(68\) 9.67641 1.17344
\(69\) 0 0
\(70\) 0 0
\(71\) 12.5611 1.49073 0.745367 0.666654i \(-0.232274\pi\)
0.745367 + 0.666654i \(0.232274\pi\)
\(72\) 0 0
\(73\) 9.96216 1.16598 0.582991 0.812478i \(-0.301882\pi\)
0.582991 + 0.812478i \(0.301882\pi\)
\(74\) −5.51122 −0.640666
\(75\) 0 0
\(76\) −11.1076 −1.27412
\(77\) −1.91223 −0.217919
\(78\) 0 0
\(79\) −9.96216 −1.12083 −0.560415 0.828212i \(-0.689358\pi\)
−0.560415 + 0.828212i \(0.689358\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 7.14034 0.788519
\(83\) −3.71425 −0.407692 −0.203846 0.979003i \(-0.565344\pi\)
−0.203846 + 0.979003i \(0.565344\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.34073 0.360241
\(87\) 0 0
\(88\) −4.48108 −0.477685
\(89\) −6.33568 −0.671580 −0.335790 0.941937i \(-0.609003\pi\)
−0.335790 + 0.941937i \(0.609003\pi\)
\(90\) 0 0
\(91\) 0.255609 0.0267951
\(92\) −4.03014 −0.420171
\(93\) 0 0
\(94\) −2.00770 −0.207079
\(95\) 0 0
\(96\) 0 0
\(97\) 5.64892 0.573561 0.286780 0.957996i \(-0.407415\pi\)
0.286780 + 0.957996i \(0.407415\pi\)
\(98\) 0.656620 0.0663287
\(99\) 0 0
\(100\) 0 0
\(101\) −14.0422 −1.39725 −0.698627 0.715486i \(-0.746205\pi\)
−0.698627 + 0.715486i \(0.746205\pi\)
\(102\) 0 0
\(103\) 2.10756 0.207664 0.103832 0.994595i \(-0.466890\pi\)
0.103832 + 0.994595i \(0.466890\pi\)
\(104\) 0.598988 0.0587356
\(105\) 0 0
\(106\) −1.82181 −0.176950
\(107\) −11.1755 −1.08038 −0.540190 0.841543i \(-0.681648\pi\)
−0.540190 + 0.841543i \(0.681648\pi\)
\(108\) 0 0
\(109\) −1.86230 −0.178376 −0.0891880 0.996015i \(-0.528427\pi\)
−0.0891880 + 0.996015i \(0.528427\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.59899 −0.151090
\(113\) −8.67906 −0.816457 −0.408228 0.912880i \(-0.633853\pi\)
−0.408228 + 0.912880i \(0.633853\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.03014 0.374189
\(117\) 0 0
\(118\) −5.49143 −0.505527
\(119\) 6.16784 0.565405
\(120\) 0 0
\(121\) −7.34338 −0.667580
\(122\) −8.08007 −0.731535
\(123\) 0 0
\(124\) 1.65927 0.149006
\(125\) 0 0
\(126\) 0 0
\(127\) 12.9424 1.14845 0.574225 0.818698i \(-0.305304\pi\)
0.574225 + 0.818698i \(0.305304\pi\)
\(128\) −11.0999 −0.981098
\(129\) 0 0
\(130\) 0 0
\(131\) −5.30554 −0.463547 −0.231773 0.972770i \(-0.574453\pi\)
−0.231773 + 0.972770i \(0.574453\pi\)
\(132\) 0 0
\(133\) −7.08007 −0.613920
\(134\) −5.87000 −0.507091
\(135\) 0 0
\(136\) 14.4536 1.23938
\(137\) −19.9320 −1.70291 −0.851454 0.524430i \(-0.824278\pi\)
−0.851454 + 0.524430i \(0.824278\pi\)
\(138\) 0 0
\(139\) 9.27540 0.786729 0.393365 0.919383i \(-0.371311\pi\)
0.393365 + 0.919383i \(0.371311\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 8.24791 0.692149
\(143\) −0.488783 −0.0408740
\(144\) 0 0
\(145\) 0 0
\(146\) 6.54136 0.541366
\(147\) 0 0
\(148\) 13.1678 1.08239
\(149\) 2.08007 0.170406 0.0852029 0.996364i \(-0.472846\pi\)
0.0852029 + 0.996364i \(0.472846\pi\)
\(150\) 0 0
\(151\) 7.73669 0.629603 0.314801 0.949158i \(-0.398062\pi\)
0.314801 + 0.949158i \(0.398062\pi\)
\(152\) −16.5913 −1.34573
\(153\) 0 0
\(154\) −1.25561 −0.101180
\(155\) 0 0
\(156\) 0 0
\(157\) −5.45094 −0.435032 −0.217516 0.976057i \(-0.569795\pi\)
−0.217516 + 0.976057i \(0.569795\pi\)
\(158\) −6.54136 −0.520402
\(159\) 0 0
\(160\) 0 0
\(161\) −2.56885 −0.202454
\(162\) 0 0
\(163\) −22.3581 −1.75122 −0.875611 0.483017i \(-0.839541\pi\)
−0.875611 + 0.483017i \(0.839541\pi\)
\(164\) −17.0603 −1.33218
\(165\) 0 0
\(166\) −2.43885 −0.189292
\(167\) −12.1678 −0.941576 −0.470788 0.882246i \(-0.656030\pi\)
−0.470788 + 0.882246i \(0.656030\pi\)
\(168\) 0 0
\(169\) −12.9347 −0.994974
\(170\) 0 0
\(171\) 0 0
\(172\) −7.98195 −0.608618
\(173\) −16.0499 −1.22025 −0.610127 0.792304i \(-0.708881\pi\)
−0.610127 + 0.792304i \(0.708881\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.05763 0.230478
\(177\) 0 0
\(178\) −4.16013 −0.311815
\(179\) −10.8546 −0.811311 −0.405655 0.914026i \(-0.632957\pi\)
−0.405655 + 0.914026i \(0.632957\pi\)
\(180\) 0 0
\(181\) 2.82446 0.209940 0.104970 0.994475i \(-0.466525\pi\)
0.104970 + 0.994475i \(0.466525\pi\)
\(182\) 0.167838 0.0124410
\(183\) 0 0
\(184\) −6.01979 −0.443785
\(185\) 0 0
\(186\) 0 0
\(187\) −11.7943 −0.862486
\(188\) 4.79696 0.349855
\(189\) 0 0
\(190\) 0 0
\(191\) 24.4855 1.77171 0.885853 0.463966i \(-0.153574\pi\)
0.885853 + 0.463966i \(0.153574\pi\)
\(192\) 0 0
\(193\) 10.5990 0.762932 0.381466 0.924383i \(-0.375419\pi\)
0.381466 + 0.924383i \(0.375419\pi\)
\(194\) 3.70919 0.266305
\(195\) 0 0
\(196\) −1.56885 −0.112061
\(197\) 10.4811 0.746746 0.373373 0.927681i \(-0.378201\pi\)
0.373373 + 0.927681i \(0.378201\pi\)
\(198\) 0 0
\(199\) −0.827104 −0.0586318 −0.0293159 0.999570i \(-0.509333\pi\)
−0.0293159 + 0.999570i \(0.509333\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −9.22041 −0.648746
\(203\) 2.56885 0.180298
\(204\) 0 0
\(205\) 0 0
\(206\) 1.38387 0.0964186
\(207\) 0 0
\(208\) −0.408715 −0.0283393
\(209\) 13.5387 0.936492
\(210\) 0 0
\(211\) −4.88209 −0.336097 −0.168048 0.985779i \(-0.553747\pi\)
−0.168048 + 0.985779i \(0.553747\pi\)
\(212\) 4.35282 0.298953
\(213\) 0 0
\(214\) −7.33809 −0.501621
\(215\) 0 0
\(216\) 0 0
\(217\) 1.05763 0.0717967
\(218\) −1.22282 −0.0828201
\(219\) 0 0
\(220\) 0 0
\(221\) 1.57655 0.106050
\(222\) 0 0
\(223\) 14.7263 0.986149 0.493074 0.869987i \(-0.335873\pi\)
0.493074 + 0.869987i \(0.335873\pi\)
\(224\) −5.73669 −0.383299
\(225\) 0 0
\(226\) −5.69885 −0.379082
\(227\) −9.73404 −0.646071 −0.323036 0.946387i \(-0.604703\pi\)
−0.323036 + 0.946387i \(0.604703\pi\)
\(228\) 0 0
\(229\) −3.24791 −0.214628 −0.107314 0.994225i \(-0.534225\pi\)
−0.107314 + 0.994225i \(0.534225\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.01979 0.395219
\(233\) −9.58094 −0.627668 −0.313834 0.949478i \(-0.601614\pi\)
−0.313834 + 0.949478i \(0.601614\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 13.1206 0.854075
\(237\) 0 0
\(238\) 4.04993 0.262518
\(239\) −21.2831 −1.37669 −0.688345 0.725384i \(-0.741662\pi\)
−0.688345 + 0.725384i \(0.741662\pi\)
\(240\) 0 0
\(241\) −18.7565 −1.20821 −0.604105 0.796904i \(-0.706469\pi\)
−0.604105 + 0.796904i \(0.706469\pi\)
\(242\) −4.82181 −0.309958
\(243\) 0 0
\(244\) 19.3055 1.23591
\(245\) 0 0
\(246\) 0 0
\(247\) −1.80973 −0.115150
\(248\) 2.47843 0.157381
\(249\) 0 0
\(250\) 0 0
\(251\) −6.27804 −0.396267 −0.198133 0.980175i \(-0.563488\pi\)
−0.198133 + 0.980175i \(0.563488\pi\)
\(252\) 0 0
\(253\) 4.91223 0.308829
\(254\) 8.49822 0.533226
\(255\) 0 0
\(256\) −8.42609 −0.526631
\(257\) −25.5009 −1.59070 −0.795350 0.606150i \(-0.792713\pi\)
−0.795350 + 0.606150i \(0.792713\pi\)
\(258\) 0 0
\(259\) 8.39331 0.521535
\(260\) 0 0
\(261\) 0 0
\(262\) −3.48372 −0.215225
\(263\) 1.08271 0.0667629 0.0333815 0.999443i \(-0.489372\pi\)
0.0333815 + 0.999443i \(0.489372\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.64892 −0.285043
\(267\) 0 0
\(268\) 14.0251 0.856718
\(269\) 13.1403 0.801181 0.400590 0.916257i \(-0.368805\pi\)
0.400590 + 0.916257i \(0.368805\pi\)
\(270\) 0 0
\(271\) 25.8717 1.57160 0.785798 0.618483i \(-0.212252\pi\)
0.785798 + 0.618483i \(0.212252\pi\)
\(272\) −9.86230 −0.597990
\(273\) 0 0
\(274\) −13.0878 −0.790661
\(275\) 0 0
\(276\) 0 0
\(277\) −12.6540 −0.760304 −0.380152 0.924924i \(-0.624128\pi\)
−0.380152 + 0.924924i \(0.624128\pi\)
\(278\) 6.09042 0.365279
\(279\) 0 0
\(280\) 0 0
\(281\) −26.6988 −1.59272 −0.796360 0.604823i \(-0.793244\pi\)
−0.796360 + 0.604823i \(0.793244\pi\)
\(282\) 0 0
\(283\) 11.4613 0.681303 0.340651 0.940190i \(-0.389352\pi\)
0.340651 + 0.940190i \(0.389352\pi\)
\(284\) −19.7065 −1.16937
\(285\) 0 0
\(286\) −0.320945 −0.0189779
\(287\) −10.8744 −0.641895
\(288\) 0 0
\(289\) 21.0422 1.23778
\(290\) 0 0
\(291\) 0 0
\(292\) −15.6291 −0.914625
\(293\) −9.44588 −0.551834 −0.275917 0.961181i \(-0.588982\pi\)
−0.275917 + 0.961181i \(0.588982\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 19.6687 1.14322
\(297\) 0 0
\(298\) 1.36581 0.0791195
\(299\) −0.656620 −0.0379733
\(300\) 0 0
\(301\) −5.08777 −0.293254
\(302\) 5.08007 0.292325
\(303\) 0 0
\(304\) 11.3209 0.649301
\(305\) 0 0
\(306\) 0 0
\(307\) 20.7642 1.18507 0.592537 0.805543i \(-0.298126\pi\)
0.592537 + 0.805543i \(0.298126\pi\)
\(308\) 3.00000 0.170941
\(309\) 0 0
\(310\) 0 0
\(311\) 13.1454 0.745407 0.372704 0.927950i \(-0.378431\pi\)
0.372704 + 0.927950i \(0.378431\pi\)
\(312\) 0 0
\(313\) −27.1799 −1.53630 −0.768150 0.640270i \(-0.778823\pi\)
−0.768150 + 0.640270i \(0.778823\pi\)
\(314\) −3.57920 −0.201986
\(315\) 0 0
\(316\) 15.6291 0.879207
\(317\) 2.67906 0.150471 0.0752354 0.997166i \(-0.476029\pi\)
0.0752354 + 0.997166i \(0.476029\pi\)
\(318\) 0 0
\(319\) −4.91223 −0.275032
\(320\) 0 0
\(321\) 0 0
\(322\) −1.68676 −0.0939994
\(323\) −43.6687 −2.42979
\(324\) 0 0
\(325\) 0 0
\(326\) −14.6808 −0.813094
\(327\) 0 0
\(328\) −25.4828 −1.40705
\(329\) 3.05763 0.168573
\(330\) 0 0
\(331\) 1.68411 0.0925673 0.0462836 0.998928i \(-0.485262\pi\)
0.0462836 + 0.998928i \(0.485262\pi\)
\(332\) 5.82710 0.319804
\(333\) 0 0
\(334\) −7.98965 −0.437174
\(335\) 0 0
\(336\) 0 0
\(337\) −15.4760 −0.843033 −0.421516 0.906821i \(-0.638502\pi\)
−0.421516 + 0.906821i \(0.638502\pi\)
\(338\) −8.49316 −0.461967
\(339\) 0 0
\(340\) 0 0
\(341\) −2.02243 −0.109521
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −11.9226 −0.642822
\(345\) 0 0
\(346\) −10.5387 −0.566565
\(347\) −20.4683 −1.09880 −0.549398 0.835561i \(-0.685143\pi\)
−0.549398 + 0.835561i \(0.685143\pi\)
\(348\) 0 0
\(349\) −17.0647 −0.913450 −0.456725 0.889608i \(-0.650978\pi\)
−0.456725 + 0.889608i \(0.650978\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.9699 0.584696
\(353\) −36.6188 −1.94902 −0.974510 0.224342i \(-0.927977\pi\)
−0.974510 + 0.224342i \(0.927977\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 9.93972 0.526804
\(357\) 0 0
\(358\) −7.12735 −0.376692
\(359\) 25.3856 1.33980 0.669900 0.742451i \(-0.266337\pi\)
0.669900 + 0.742451i \(0.266337\pi\)
\(360\) 0 0
\(361\) 31.1274 1.63828
\(362\) 1.85460 0.0974755
\(363\) 0 0
\(364\) −0.401012 −0.0210187
\(365\) 0 0
\(366\) 0 0
\(367\) 26.1274 1.36384 0.681918 0.731428i \(-0.261146\pi\)
0.681918 + 0.731428i \(0.261146\pi\)
\(368\) 4.10756 0.214121
\(369\) 0 0
\(370\) 0 0
\(371\) 2.77453 0.144046
\(372\) 0 0
\(373\) 20.7840 1.07615 0.538077 0.842896i \(-0.319151\pi\)
0.538077 + 0.842896i \(0.319151\pi\)
\(374\) −7.74439 −0.400453
\(375\) 0 0
\(376\) 7.16519 0.369517
\(377\) 0.656620 0.0338177
\(378\) 0 0
\(379\) 27.8942 1.43283 0.716414 0.697676i \(-0.245782\pi\)
0.716414 + 0.697676i \(0.245782\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 16.0777 0.822604
\(383\) 19.1850 0.980307 0.490153 0.871636i \(-0.336941\pi\)
0.490153 + 0.871636i \(0.336941\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 6.95951 0.354230
\(387\) 0 0
\(388\) −8.86230 −0.449915
\(389\) 18.7092 0.948594 0.474297 0.880365i \(-0.342702\pi\)
0.474297 + 0.880365i \(0.342702\pi\)
\(390\) 0 0
\(391\) −15.8442 −0.801278
\(392\) −2.34338 −0.118359
\(393\) 0 0
\(394\) 6.88209 0.346715
\(395\) 0 0
\(396\) 0 0
\(397\) −11.2453 −0.564383 −0.282192 0.959358i \(-0.591061\pi\)
−0.282192 + 0.959358i \(0.591061\pi\)
\(398\) −0.543093 −0.0272228
\(399\) 0 0
\(400\) 0 0
\(401\) 26.2875 1.31273 0.656367 0.754442i \(-0.272092\pi\)
0.656367 + 0.754442i \(0.272092\pi\)
\(402\) 0 0
\(403\) 0.270340 0.0134666
\(404\) 22.0301 1.09604
\(405\) 0 0
\(406\) 1.68676 0.0837125
\(407\) −16.0499 −0.795565
\(408\) 0 0
\(409\) 9.16519 0.453190 0.226595 0.973989i \(-0.427241\pi\)
0.226595 + 0.973989i \(0.427241\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −3.30645 −0.162897
\(413\) 8.36317 0.411525
\(414\) 0 0
\(415\) 0 0
\(416\) −1.46635 −0.0718936
\(417\) 0 0
\(418\) 8.88979 0.434814
\(419\) −8.08007 −0.394737 −0.197369 0.980329i \(-0.563240\pi\)
−0.197369 + 0.980329i \(0.563240\pi\)
\(420\) 0 0
\(421\) 6.37087 0.310497 0.155249 0.987875i \(-0.450382\pi\)
0.155249 + 0.987875i \(0.450382\pi\)
\(422\) −3.20568 −0.156050
\(423\) 0 0
\(424\) 6.50178 0.315754
\(425\) 0 0
\(426\) 0 0
\(427\) 12.3055 0.595507
\(428\) 17.5327 0.847477
\(429\) 0 0
\(430\) 0 0
\(431\) −36.5284 −1.75951 −0.879755 0.475428i \(-0.842293\pi\)
−0.879755 + 0.475428i \(0.842293\pi\)
\(432\) 0 0
\(433\) −10.9622 −0.526808 −0.263404 0.964686i \(-0.584845\pi\)
−0.263404 + 0.964686i \(0.584845\pi\)
\(434\) 0.694463 0.0333353
\(435\) 0 0
\(436\) 2.92167 0.139923
\(437\) 18.1876 0.870032
\(438\) 0 0
\(439\) 9.29519 0.443635 0.221818 0.975088i \(-0.428801\pi\)
0.221818 + 0.975088i \(0.428801\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 1.03520 0.0492393
\(443\) −16.3709 −0.777804 −0.388902 0.921279i \(-0.627145\pi\)
−0.388902 + 0.921279i \(0.627145\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 9.66961 0.457870
\(447\) 0 0
\(448\) −0.568850 −0.0268756
\(449\) −34.3427 −1.62073 −0.810366 0.585924i \(-0.800732\pi\)
−0.810366 + 0.585924i \(0.800732\pi\)
\(450\) 0 0
\(451\) 20.7943 0.979166
\(452\) 13.6161 0.640449
\(453\) 0 0
\(454\) −6.39157 −0.299971
\(455\) 0 0
\(456\) 0 0
\(457\) −1.92432 −0.0900157 −0.0450078 0.998987i \(-0.514331\pi\)
−0.0450078 + 0.998987i \(0.514331\pi\)
\(458\) −2.13264 −0.0996518
\(459\) 0 0
\(460\) 0 0
\(461\) 37.3676 1.74038 0.870190 0.492716i \(-0.163996\pi\)
0.870190 + 0.492716i \(0.163996\pi\)
\(462\) 0 0
\(463\) 13.2074 0.613801 0.306900 0.951742i \(-0.400708\pi\)
0.306900 + 0.951742i \(0.400708\pi\)
\(464\) −4.10756 −0.190689
\(465\) 0 0
\(466\) −6.29104 −0.291427
\(467\) −7.14034 −0.330416 −0.165208 0.986259i \(-0.552830\pi\)
−0.165208 + 0.986259i \(0.552830\pi\)
\(468\) 0 0
\(469\) 8.93972 0.412798
\(470\) 0 0
\(471\) 0 0
\(472\) 19.5981 0.902075
\(473\) 9.72898 0.447339
\(474\) 0 0
\(475\) 0 0
\(476\) −9.67641 −0.443518
\(477\) 0 0
\(478\) −13.9749 −0.639198
\(479\) −33.8770 −1.54788 −0.773941 0.633258i \(-0.781717\pi\)
−0.773941 + 0.633258i \(0.781717\pi\)
\(480\) 0 0
\(481\) 2.14540 0.0978220
\(482\) −12.3159 −0.560973
\(483\) 0 0
\(484\) 11.5207 0.523666
\(485\) 0 0
\(486\) 0 0
\(487\) 30.4881 1.38155 0.690774 0.723071i \(-0.257270\pi\)
0.690774 + 0.723071i \(0.257270\pi\)
\(488\) 28.8365 1.30537
\(489\) 0 0
\(490\) 0 0
\(491\) −14.1755 −0.639733 −0.319867 0.947463i \(-0.603638\pi\)
−0.319867 + 0.947463i \(0.603638\pi\)
\(492\) 0 0
\(493\) 15.8442 0.713589
\(494\) −1.18830 −0.0534643
\(495\) 0 0
\(496\) −1.69114 −0.0759345
\(497\) −12.5611 −0.563444
\(498\) 0 0
\(499\) −6.19533 −0.277341 −0.138671 0.990339i \(-0.544283\pi\)
−0.138671 + 0.990339i \(0.544283\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −4.12229 −0.183987
\(503\) −1.62913 −0.0726392 −0.0363196 0.999340i \(-0.511563\pi\)
−0.0363196 + 0.999340i \(0.511563\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 3.22547 0.143390
\(507\) 0 0
\(508\) −20.3046 −0.900872
\(509\) 5.47670 0.242750 0.121375 0.992607i \(-0.461270\pi\)
0.121375 + 0.992607i \(0.461270\pi\)
\(510\) 0 0
\(511\) −9.96216 −0.440700
\(512\) 16.6670 0.736583
\(513\) 0 0
\(514\) −16.7444 −0.738563
\(515\) 0 0
\(516\) 0 0
\(517\) −5.84689 −0.257146
\(518\) 5.51122 0.242149
\(519\) 0 0
\(520\) 0 0
\(521\) −2.08513 −0.0913510 −0.0456755 0.998956i \(-0.514544\pi\)
−0.0456755 + 0.998956i \(0.514544\pi\)
\(522\) 0 0
\(523\) −18.1652 −0.794308 −0.397154 0.917752i \(-0.630002\pi\)
−0.397154 + 0.917752i \(0.630002\pi\)
\(524\) 8.32359 0.363618
\(525\) 0 0
\(526\) 0.710931 0.0309981
\(527\) 6.52330 0.284160
\(528\) 0 0
\(529\) −16.4010 −0.713087
\(530\) 0 0
\(531\) 0 0
\(532\) 11.1076 0.481574
\(533\) −2.77959 −0.120397
\(534\) 0 0
\(535\) 0 0
\(536\) 20.9492 0.904866
\(537\) 0 0
\(538\) 8.62822 0.371989
\(539\) 1.91223 0.0823655
\(540\) 0 0
\(541\) 42.9716 1.84749 0.923747 0.383004i \(-0.125110\pi\)
0.923747 + 0.383004i \(0.125110\pi\)
\(542\) 16.9879 0.729693
\(543\) 0 0
\(544\) −35.3830 −1.51703
\(545\) 0 0
\(546\) 0 0
\(547\) −28.4355 −1.21582 −0.607908 0.794008i \(-0.707991\pi\)
−0.607908 + 0.794008i \(0.707991\pi\)
\(548\) 31.2703 1.33580
\(549\) 0 0
\(550\) 0 0
\(551\) −18.1876 −0.774819
\(552\) 0 0
\(553\) 9.96216 0.423634
\(554\) −8.30886 −0.353010
\(555\) 0 0
\(556\) −14.5517 −0.617130
\(557\) 24.7290 1.04780 0.523900 0.851780i \(-0.324476\pi\)
0.523900 + 0.851780i \(0.324476\pi\)
\(558\) 0 0
\(559\) −1.30048 −0.0550044
\(560\) 0 0
\(561\) 0 0
\(562\) −17.5310 −0.739501
\(563\) −6.46899 −0.272636 −0.136318 0.990665i \(-0.543527\pi\)
−0.136318 + 0.990665i \(0.543527\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 7.52572 0.316329
\(567\) 0 0
\(568\) −29.4355 −1.23509
\(569\) 5.02243 0.210551 0.105276 0.994443i \(-0.466427\pi\)
0.105276 + 0.994443i \(0.466427\pi\)
\(570\) 0 0
\(571\) −21.0372 −0.880378 −0.440189 0.897905i \(-0.645089\pi\)
−0.440189 + 0.897905i \(0.645089\pi\)
\(572\) 0.766826 0.0320626
\(573\) 0 0
\(574\) −7.14034 −0.298032
\(575\) 0 0
\(576\) 0 0
\(577\) 30.2677 1.26006 0.630030 0.776571i \(-0.283042\pi\)
0.630030 + 0.776571i \(0.283042\pi\)
\(578\) 13.8168 0.574701
\(579\) 0 0
\(580\) 0 0
\(581\) 3.71425 0.154093
\(582\) 0 0
\(583\) −5.30554 −0.219733
\(584\) −23.3451 −0.966028
\(585\) 0 0
\(586\) −6.20236 −0.256217
\(587\) −13.8020 −0.569670 −0.284835 0.958576i \(-0.591939\pi\)
−0.284835 + 0.958576i \(0.591939\pi\)
\(588\) 0 0
\(589\) −7.48811 −0.308542
\(590\) 0 0
\(591\) 0 0
\(592\) −13.4208 −0.551592
\(593\) 12.6335 0.518796 0.259398 0.965771i \(-0.416476\pi\)
0.259398 + 0.965771i \(0.416476\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.26331 −0.133670
\(597\) 0 0
\(598\) −0.431150 −0.0176311
\(599\) −7.39066 −0.301974 −0.150987 0.988536i \(-0.548245\pi\)
−0.150987 + 0.988536i \(0.548245\pi\)
\(600\) 0 0
\(601\) 35.5053 1.44829 0.724145 0.689648i \(-0.242235\pi\)
0.724145 + 0.689648i \(0.242235\pi\)
\(602\) −3.34073 −0.136158
\(603\) 0 0
\(604\) −12.1377 −0.493876
\(605\) 0 0
\(606\) 0 0
\(607\) −18.7116 −0.759481 −0.379740 0.925093i \(-0.623987\pi\)
−0.379740 + 0.925093i \(0.623987\pi\)
\(608\) 40.6161 1.64720
\(609\) 0 0
\(610\) 0 0
\(611\) 0.781558 0.0316184
\(612\) 0 0
\(613\) −16.6265 −0.671537 −0.335769 0.941944i \(-0.608996\pi\)
−0.335769 + 0.941944i \(0.608996\pi\)
\(614\) 13.6342 0.550231
\(615\) 0 0
\(616\) 4.48108 0.180548
\(617\) 45.8064 1.84410 0.922048 0.387075i \(-0.126515\pi\)
0.922048 + 0.387075i \(0.126515\pi\)
\(618\) 0 0
\(619\) 18.3528 0.737662 0.368831 0.929496i \(-0.379758\pi\)
0.368831 + 0.929496i \(0.379758\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 8.63154 0.346093
\(623\) 6.33568 0.253833
\(624\) 0 0
\(625\) 0 0
\(626\) −17.8469 −0.713305
\(627\) 0 0
\(628\) 8.55171 0.341250
\(629\) 51.7686 2.06415
\(630\) 0 0
\(631\) −22.5759 −0.898731 −0.449366 0.893348i \(-0.648350\pi\)
−0.449366 + 0.893348i \(0.648350\pi\)
\(632\) 23.3451 0.928619
\(633\) 0 0
\(634\) 1.75912 0.0698637
\(635\) 0 0
\(636\) 0 0
\(637\) −0.255609 −0.0101276
\(638\) −3.22547 −0.127698
\(639\) 0 0
\(640\) 0 0
\(641\) −1.22109 −0.0482301 −0.0241150 0.999709i \(-0.507677\pi\)
−0.0241150 + 0.999709i \(0.507677\pi\)
\(642\) 0 0
\(643\) 35.0878 1.38373 0.691863 0.722029i \(-0.256790\pi\)
0.691863 + 0.722029i \(0.256790\pi\)
\(644\) 4.03014 0.158810
\(645\) 0 0
\(646\) −28.6738 −1.12815
\(647\) −14.1179 −0.555032 −0.277516 0.960721i \(-0.589511\pi\)
−0.277516 + 0.960721i \(0.589511\pi\)
\(648\) 0 0
\(649\) −15.9923 −0.627753
\(650\) 0 0
\(651\) 0 0
\(652\) 35.0765 1.37370
\(653\) 5.73669 0.224494 0.112247 0.993680i \(-0.464195\pi\)
0.112247 + 0.993680i \(0.464195\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 17.3880 0.678888
\(657\) 0 0
\(658\) 2.00770 0.0782684
\(659\) −27.8838 −1.08620 −0.543100 0.839668i \(-0.682749\pi\)
−0.543100 + 0.839668i \(0.682749\pi\)
\(660\) 0 0
\(661\) −18.7943 −0.731014 −0.365507 0.930809i \(-0.619104\pi\)
−0.365507 + 0.930809i \(0.619104\pi\)
\(662\) 1.10582 0.0429791
\(663\) 0 0
\(664\) 8.70390 0.337777
\(665\) 0 0
\(666\) 0 0
\(667\) −6.59899 −0.255514
\(668\) 19.0895 0.738595
\(669\) 0 0
\(670\) 0 0
\(671\) −23.5310 −0.908404
\(672\) 0 0
\(673\) −29.1628 −1.12414 −0.562071 0.827089i \(-0.689995\pi\)
−0.562071 + 0.827089i \(0.689995\pi\)
\(674\) −10.1619 −0.391421
\(675\) 0 0
\(676\) 20.2925 0.780482
\(677\) −14.9294 −0.573782 −0.286891 0.957963i \(-0.592622\pi\)
−0.286891 + 0.957963i \(0.592622\pi\)
\(678\) 0 0
\(679\) −5.64892 −0.216786
\(680\) 0 0
\(681\) 0 0
\(682\) −1.32797 −0.0508507
\(683\) −7.94501 −0.304007 −0.152004 0.988380i \(-0.548573\pi\)
−0.152004 + 0.988380i \(0.548573\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −0.656620 −0.0250699
\(687\) 0 0
\(688\) 8.13529 0.310155
\(689\) 0.709194 0.0270181
\(690\) 0 0
\(691\) 6.98459 0.265706 0.132853 0.991136i \(-0.457586\pi\)
0.132853 + 0.991136i \(0.457586\pi\)
\(692\) 25.1799 0.957197
\(693\) 0 0
\(694\) −13.4399 −0.510172
\(695\) 0 0
\(696\) 0 0
\(697\) −67.0715 −2.54051
\(698\) −11.2050 −0.424116
\(699\) 0 0
\(700\) 0 0
\(701\) −21.1678 −0.799498 −0.399749 0.916625i \(-0.630903\pi\)
−0.399749 + 0.916625i \(0.630903\pi\)
\(702\) 0 0
\(703\) −59.4252 −2.24126
\(704\) 1.08777 0.0409969
\(705\) 0 0
\(706\) −24.0446 −0.904932
\(707\) 14.0422 0.528112
\(708\) 0 0
\(709\) 34.4701 1.29455 0.647275 0.762257i \(-0.275909\pi\)
0.647275 + 0.762257i \(0.275909\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 14.8469 0.556411
\(713\) −2.71690 −0.101749
\(714\) 0 0
\(715\) 0 0
\(716\) 17.0292 0.636412
\(717\) 0 0
\(718\) 16.6687 0.622071
\(719\) 33.9217 1.26506 0.632532 0.774534i \(-0.282016\pi\)
0.632532 + 0.774534i \(0.282016\pi\)
\(720\) 0 0
\(721\) −2.10756 −0.0784897
\(722\) 20.4389 0.760655
\(723\) 0 0
\(724\) −4.43115 −0.164682
\(725\) 0 0
\(726\) 0 0
\(727\) 10.8674 0.403048 0.201524 0.979484i \(-0.435411\pi\)
0.201524 + 0.979484i \(0.435411\pi\)
\(728\) −0.598988 −0.0222000
\(729\) 0 0
\(730\) 0 0
\(731\) −31.3805 −1.16065
\(732\) 0 0
\(733\) 14.7919 0.546352 0.273176 0.961964i \(-0.411926\pi\)
0.273176 + 0.961964i \(0.411926\pi\)
\(734\) 17.1558 0.633230
\(735\) 0 0
\(736\) 14.7367 0.543202
\(737\) −17.0948 −0.629695
\(738\) 0 0
\(739\) −6.94410 −0.255443 −0.127722 0.991810i \(-0.540766\pi\)
−0.127722 + 0.991810i \(0.540766\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 1.82181 0.0668809
\(743\) −48.9890 −1.79723 −0.898616 0.438737i \(-0.855426\pi\)
−0.898616 + 0.438737i \(0.855426\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 13.6472 0.499659
\(747\) 0 0
\(748\) 18.5035 0.676555
\(749\) 11.1755 0.408345
\(750\) 0 0
\(751\) 5.66168 0.206598 0.103299 0.994650i \(-0.467060\pi\)
0.103299 + 0.994650i \(0.467060\pi\)
\(752\) −4.88912 −0.178288
\(753\) 0 0
\(754\) 0.431150 0.0157016
\(755\) 0 0
\(756\) 0 0
\(757\) 45.9063 1.66849 0.834246 0.551393i \(-0.185903\pi\)
0.834246 + 0.551393i \(0.185903\pi\)
\(758\) 18.3159 0.665263
\(759\) 0 0
\(760\) 0 0
\(761\) −25.9173 −0.939501 −0.469750 0.882799i \(-0.655656\pi\)
−0.469750 + 0.882799i \(0.655656\pi\)
\(762\) 0 0
\(763\) 1.86230 0.0674198
\(764\) −38.4140 −1.38977
\(765\) 0 0
\(766\) 12.5973 0.455157
\(767\) 2.13770 0.0771878
\(768\) 0 0
\(769\) 45.7609 1.65018 0.825089 0.565002i \(-0.191125\pi\)
0.825089 + 0.565002i \(0.191125\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −16.6282 −0.598463
\(773\) 37.4778 1.34798 0.673991 0.738740i \(-0.264579\pi\)
0.673991 + 0.738740i \(0.264579\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −13.2376 −0.475201
\(777\) 0 0
\(778\) 12.2848 0.440433
\(779\) 76.9914 2.75850
\(780\) 0 0
\(781\) 24.0198 0.859496
\(782\) −10.4037 −0.372034
\(783\) 0 0
\(784\) 1.59899 0.0571067
\(785\) 0 0
\(786\) 0 0
\(787\) −46.3350 −1.65166 −0.825832 0.563916i \(-0.809294\pi\)
−0.825832 + 0.563916i \(0.809294\pi\)
\(788\) −16.4432 −0.585766
\(789\) 0 0
\(790\) 0 0
\(791\) 8.67906 0.308592
\(792\) 0 0
\(793\) 3.14540 0.111697
\(794\) −7.38387 −0.262044
\(795\) 0 0
\(796\) 1.29760 0.0459923
\(797\) 20.6214 0.730448 0.365224 0.930920i \(-0.380992\pi\)
0.365224 + 0.930920i \(0.380992\pi\)
\(798\) 0 0
\(799\) 18.8590 0.667183
\(800\) 0 0
\(801\) 0 0
\(802\) 17.2609 0.609504
\(803\) 19.0499 0.672257
\(804\) 0 0
\(805\) 0 0
\(806\) 0.177511 0.00625255
\(807\) 0 0
\(808\) 32.9063 1.15764
\(809\) −35.0570 −1.23254 −0.616268 0.787536i \(-0.711356\pi\)
−0.616268 + 0.787536i \(0.711356\pi\)
\(810\) 0 0
\(811\) 35.3126 1.23999 0.619996 0.784605i \(-0.287134\pi\)
0.619996 + 0.784605i \(0.287134\pi\)
\(812\) −4.03014 −0.141430
\(813\) 0 0
\(814\) −10.5387 −0.369382
\(815\) 0 0
\(816\) 0 0
\(817\) 36.0218 1.26024
\(818\) 6.01805 0.210416
\(819\) 0 0
\(820\) 0 0
\(821\) −51.4228 −1.79467 −0.897334 0.441353i \(-0.854499\pi\)
−0.897334 + 0.441353i \(0.854499\pi\)
\(822\) 0 0
\(823\) −31.0389 −1.08195 −0.540974 0.841039i \(-0.681944\pi\)
−0.540974 + 0.841039i \(0.681944\pi\)
\(824\) −4.93881 −0.172052
\(825\) 0 0
\(826\) 5.49143 0.191071
\(827\) 49.8812 1.73454 0.867269 0.497839i \(-0.165873\pi\)
0.867269 + 0.497839i \(0.165873\pi\)
\(828\) 0 0
\(829\) 16.3434 0.567629 0.283815 0.958879i \(-0.408400\pi\)
0.283815 + 0.958879i \(0.408400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −0.145403 −0.00504094
\(833\) −6.16784 −0.213703
\(834\) 0 0
\(835\) 0 0
\(836\) −21.2402 −0.734608
\(837\) 0 0
\(838\) −5.30554 −0.183277
\(839\) 36.6714 1.26604 0.633018 0.774137i \(-0.281816\pi\)
0.633018 + 0.774137i \(0.281816\pi\)
\(840\) 0 0
\(841\) −22.4010 −0.772449
\(842\) 4.18325 0.144164
\(843\) 0 0
\(844\) 7.65927 0.263643
\(845\) 0 0
\(846\) 0 0
\(847\) 7.34338 0.252322
\(848\) −4.43644 −0.152348
\(849\) 0 0
\(850\) 0 0
\(851\) −21.5611 −0.739107
\(852\) 0 0
\(853\) 32.6507 1.11794 0.558969 0.829189i \(-0.311197\pi\)
0.558969 + 0.829189i \(0.311197\pi\)
\(854\) 8.08007 0.276494
\(855\) 0 0
\(856\) 26.1885 0.895106
\(857\) 42.5990 1.45515 0.727577 0.686026i \(-0.240646\pi\)
0.727577 + 0.686026i \(0.240646\pi\)
\(858\) 0 0
\(859\) 5.14805 0.175649 0.0878246 0.996136i \(-0.472009\pi\)
0.0878246 + 0.996136i \(0.472009\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −23.9853 −0.816941
\(863\) 1.60140 0.0545123 0.0272562 0.999628i \(-0.491323\pi\)
0.0272562 + 0.999628i \(0.491323\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −7.19798 −0.244597
\(867\) 0 0
\(868\) −1.65927 −0.0563191
\(869\) −19.0499 −0.646225
\(870\) 0 0
\(871\) 2.28507 0.0774267
\(872\) 4.36408 0.147786
\(873\) 0 0
\(874\) 11.9424 0.403957
\(875\) 0 0
\(876\) 0 0
\(877\) 13.9940 0.472545 0.236272 0.971687i \(-0.424074\pi\)
0.236272 + 0.971687i \(0.424074\pi\)
\(878\) 6.10341 0.205980
\(879\) 0 0
\(880\) 0 0
\(881\) 15.9098 0.536015 0.268008 0.963417i \(-0.413635\pi\)
0.268008 + 0.963417i \(0.413635\pi\)
\(882\) 0 0
\(883\) 1.99230 0.0670461 0.0335231 0.999438i \(-0.489327\pi\)
0.0335231 + 0.999438i \(0.489327\pi\)
\(884\) −2.47338 −0.0831886
\(885\) 0 0
\(886\) −10.7494 −0.361135
\(887\) 0.761768 0.0255777 0.0127888 0.999918i \(-0.495929\pi\)
0.0127888 + 0.999918i \(0.495929\pi\)
\(888\) 0 0
\(889\) −12.9424 −0.434073
\(890\) 0 0
\(891\) 0 0
\(892\) −23.1034 −0.773559
\(893\) −21.6482 −0.724431
\(894\) 0 0
\(895\) 0 0
\(896\) 11.0999 0.370820
\(897\) 0 0
\(898\) −22.5501 −0.752507
\(899\) 2.71690 0.0906136
\(900\) 0 0
\(901\) 17.1129 0.570112
\(902\) 13.6540 0.454628
\(903\) 0 0
\(904\) 20.3383 0.676442
\(905\) 0 0
\(906\) 0 0
\(907\) −52.5180 −1.74383 −0.871916 0.489655i \(-0.837123\pi\)
−0.871916 + 0.489655i \(0.837123\pi\)
\(908\) 15.2712 0.506794
\(909\) 0 0
\(910\) 0 0
\(911\) 37.0070 1.22610 0.613049 0.790045i \(-0.289943\pi\)
0.613049 + 0.790045i \(0.289943\pi\)
\(912\) 0 0
\(913\) −7.10250 −0.235059
\(914\) −1.26354 −0.0417943
\(915\) 0 0
\(916\) 5.09547 0.168359
\(917\) 5.30554 0.175204
\(918\) 0 0
\(919\) −46.1119 −1.52109 −0.760546 0.649284i \(-0.775069\pi\)
−0.760546 + 0.649284i \(0.775069\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 24.5363 0.808060
\(923\) −3.21074 −0.105683
\(924\) 0 0
\(925\) 0 0
\(926\) 8.67226 0.284988
\(927\) 0 0
\(928\) −14.7367 −0.483755
\(929\) 50.0620 1.64248 0.821241 0.570582i \(-0.193282\pi\)
0.821241 + 0.570582i \(0.193282\pi\)
\(930\) 0 0
\(931\) 7.08007 0.232040
\(932\) 15.0310 0.492358
\(933\) 0 0
\(934\) −4.68850 −0.153412
\(935\) 0 0
\(936\) 0 0
\(937\) 34.2074 1.11751 0.558754 0.829334i \(-0.311280\pi\)
0.558754 + 0.829334i \(0.311280\pi\)
\(938\) 5.87000 0.191662
\(939\) 0 0
\(940\) 0 0
\(941\) −40.4432 −1.31841 −0.659206 0.751962i \(-0.729107\pi\)
−0.659206 + 0.751962i \(0.729107\pi\)
\(942\) 0 0
\(943\) 27.9347 0.909678
\(944\) −13.3726 −0.435241
\(945\) 0 0
\(946\) 6.38825 0.207700
\(947\) −16.7692 −0.544927 −0.272464 0.962166i \(-0.587838\pi\)
−0.272464 + 0.962166i \(0.587838\pi\)
\(948\) 0 0
\(949\) −2.54641 −0.0826601
\(950\) 0 0
\(951\) 0 0
\(952\) −14.4536 −0.468443
\(953\) −24.6040 −0.797003 −0.398502 0.917168i \(-0.630470\pi\)
−0.398502 + 0.917168i \(0.630470\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 33.3900 1.07991
\(957\) 0 0
\(958\) −22.2444 −0.718682
\(959\) 19.9320 0.643638
\(960\) 0 0
\(961\) −29.8814 −0.963917
\(962\) 1.40872 0.0454188
\(963\) 0 0
\(964\) 29.4261 0.947751
\(965\) 0 0
\(966\) 0 0
\(967\) −7.88979 −0.253719 −0.126859 0.991921i \(-0.540490\pi\)
−0.126859 + 0.991921i \(0.540490\pi\)
\(968\) 17.2083 0.553097
\(969\) 0 0
\(970\) 0 0
\(971\) 49.7512 1.59659 0.798296 0.602266i \(-0.205735\pi\)
0.798296 + 0.602266i \(0.205735\pi\)
\(972\) 0 0
\(973\) −9.27540 −0.297356
\(974\) 20.0191 0.641454
\(975\) 0 0
\(976\) −19.6764 −0.629827
\(977\) 41.5508 1.32933 0.664664 0.747143i \(-0.268575\pi\)
0.664664 + 0.747143i \(0.268575\pi\)
\(978\) 0 0
\(979\) −12.1153 −0.387206
\(980\) 0 0
\(981\) 0 0
\(982\) −9.30795 −0.297029
\(983\) −30.6714 −0.978264 −0.489132 0.872210i \(-0.662686\pi\)
−0.489132 + 0.872210i \(0.662686\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 10.4037 0.331320
\(987\) 0 0
\(988\) 2.83919 0.0903267
\(989\) 13.0697 0.415593
\(990\) 0 0
\(991\) −32.1370 −1.02087 −0.510433 0.859917i \(-0.670515\pi\)
−0.510433 + 0.859917i \(0.670515\pi\)
\(992\) −6.06730 −0.192637
\(993\) 0 0
\(994\) −8.24791 −0.261608
\(995\) 0 0
\(996\) 0 0
\(997\) 57.9769 1.83615 0.918073 0.396411i \(-0.129744\pi\)
0.918073 + 0.396411i \(0.129744\pi\)
\(998\) −4.06798 −0.128770
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4725.2.a.bi.1.2 3
3.2 odd 2 4725.2.a.bj.1.2 yes 3
5.4 even 2 4725.2.a.bl.1.2 yes 3
15.14 odd 2 4725.2.a.bk.1.2 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4725.2.a.bi.1.2 3 1.1 even 1 trivial
4725.2.a.bj.1.2 yes 3 3.2 odd 2
4725.2.a.bk.1.2 yes 3 15.14 odd 2
4725.2.a.bl.1.2 yes 3 5.4 even 2