Properties

Label 4725.2.a.bi.1.1
Level $4725$
Weight $2$
Character 4725.1
Self dual yes
Analytic conductor $37.729$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4725,2,Mod(1,4725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4725.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4725 = 3^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4725.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.7293149551\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(0.713538\) of defining polynomial
Character \(\chi\) \(=\) 4725.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.49086 q^{2} +4.20440 q^{4} -1.00000 q^{7} -5.49086 q^{8} -0.713538 q^{11} -0.777326 q^{13} +2.49086 q^{14} +5.26819 q^{16} -4.06379 q^{17} +2.35025 q^{19} +1.77733 q^{22} -3.20440 q^{23} +1.93621 q^{26} -4.20440 q^{28} +3.20440 q^{29} +5.75905 q^{31} -2.14061 q^{32} +10.1223 q^{34} +2.63148 q^{37} -5.85415 q^{38} -8.54942 q^{41} +7.71354 q^{43} -3.00000 q^{44} +7.98173 q^{46} +3.75905 q^{47} +1.00000 q^{49} -3.26819 q^{52} -11.6953 q^{53} +5.49086 q^{56} -7.98173 q^{58} +12.1041 q^{59} +1.34502 q^{61} -14.3450 q^{62} -5.20440 q^{64} +9.94518 q^{67} -17.0858 q^{68} -0.567690 q^{71} -6.83588 q^{73} -6.55465 q^{74} +9.88139 q^{76} +0.713538 q^{77} +6.83588 q^{79} +21.2954 q^{82} +6.24992 q^{83} -19.2134 q^{86} +3.91794 q^{88} -2.12758 q^{89} +0.777326 q^{91} -13.4726 q^{92} -9.36329 q^{94} -4.85415 q^{97} -2.49086 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{4} - 3 q^{7} - 9 q^{8} - q^{11} + 4 q^{13} + 2 q^{16} - 7 q^{17} + 3 q^{19} - q^{22} - q^{23} + 11 q^{26} - 4 q^{28} + q^{29} - 4 q^{31} - 3 q^{32} + 12 q^{34} - 3 q^{37} - 13 q^{38} - 5 q^{41}+ \cdots - 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.49086 −1.76131 −0.880653 0.473761i \(-0.842896\pi\)
−0.880653 + 0.473761i \(0.842896\pi\)
\(3\) 0 0
\(4\) 4.20440 2.10220
\(5\) 0 0
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) −5.49086 −1.94131
\(9\) 0 0
\(10\) 0 0
\(11\) −0.713538 −0.215140 −0.107570 0.994198i \(-0.534307\pi\)
−0.107570 + 0.994198i \(0.534307\pi\)
\(12\) 0 0
\(13\) −0.777326 −0.215591 −0.107796 0.994173i \(-0.534379\pi\)
−0.107796 + 0.994173i \(0.534379\pi\)
\(14\) 2.49086 0.665711
\(15\) 0 0
\(16\) 5.26819 1.31705
\(17\) −4.06379 −0.985613 −0.492807 0.870139i \(-0.664029\pi\)
−0.492807 + 0.870139i \(0.664029\pi\)
\(18\) 0 0
\(19\) 2.35025 0.539184 0.269592 0.962975i \(-0.413111\pi\)
0.269592 + 0.962975i \(0.413111\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 1.77733 0.378927
\(23\) −3.20440 −0.668164 −0.334082 0.942544i \(-0.608426\pi\)
−0.334082 + 0.942544i \(0.608426\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 1.93621 0.379722
\(27\) 0 0
\(28\) −4.20440 −0.794557
\(29\) 3.20440 0.595042 0.297521 0.954715i \(-0.403840\pi\)
0.297521 + 0.954715i \(0.403840\pi\)
\(30\) 0 0
\(31\) 5.75905 1.03436 0.517178 0.855878i \(-0.326982\pi\)
0.517178 + 0.855878i \(0.326982\pi\)
\(32\) −2.14061 −0.378411
\(33\) 0 0
\(34\) 10.1223 1.73597
\(35\) 0 0
\(36\) 0 0
\(37\) 2.63148 0.432612 0.216306 0.976326i \(-0.430599\pi\)
0.216306 + 0.976326i \(0.430599\pi\)
\(38\) −5.85415 −0.949669
\(39\) 0 0
\(40\) 0 0
\(41\) −8.54942 −1.33519 −0.667597 0.744523i \(-0.732677\pi\)
−0.667597 + 0.744523i \(0.732677\pi\)
\(42\) 0 0
\(43\) 7.71354 1.17630 0.588152 0.808751i \(-0.299856\pi\)
0.588152 + 0.808751i \(0.299856\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) 7.98173 1.17684
\(47\) 3.75905 0.548314 0.274157 0.961685i \(-0.411601\pi\)
0.274157 + 0.961685i \(0.411601\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) −3.26819 −0.453216
\(53\) −11.6953 −1.60647 −0.803234 0.595663i \(-0.796889\pi\)
−0.803234 + 0.595663i \(0.796889\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.49086 0.733748
\(57\) 0 0
\(58\) −7.98173 −1.04805
\(59\) 12.1041 1.57582 0.787908 0.615793i \(-0.211164\pi\)
0.787908 + 0.615793i \(0.211164\pi\)
\(60\) 0 0
\(61\) 1.34502 0.172212 0.0861058 0.996286i \(-0.472558\pi\)
0.0861058 + 0.996286i \(0.472558\pi\)
\(62\) −14.3450 −1.82182
\(63\) 0 0
\(64\) −5.20440 −0.650550
\(65\) 0 0
\(66\) 0 0
\(67\) 9.94518 1.21500 0.607499 0.794321i \(-0.292173\pi\)
0.607499 + 0.794321i \(0.292173\pi\)
\(68\) −17.0858 −2.07196
\(69\) 0 0
\(70\) 0 0
\(71\) −0.567690 −0.0673724 −0.0336862 0.999432i \(-0.510725\pi\)
−0.0336862 + 0.999432i \(0.510725\pi\)
\(72\) 0 0
\(73\) −6.83588 −0.800079 −0.400040 0.916498i \(-0.631004\pi\)
−0.400040 + 0.916498i \(0.631004\pi\)
\(74\) −6.55465 −0.761963
\(75\) 0 0
\(76\) 9.88139 1.13347
\(77\) 0.713538 0.0813152
\(78\) 0 0
\(79\) 6.83588 0.769096 0.384548 0.923105i \(-0.374357\pi\)
0.384548 + 0.923105i \(0.374357\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 21.2954 2.35169
\(83\) 6.24992 0.686017 0.343009 0.939332i \(-0.388554\pi\)
0.343009 + 0.939332i \(0.388554\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −19.2134 −2.07183
\(87\) 0 0
\(88\) 3.91794 0.417654
\(89\) −2.12758 −0.225523 −0.112761 0.993622i \(-0.535970\pi\)
−0.112761 + 0.993622i \(0.535970\pi\)
\(90\) 0 0
\(91\) 0.777326 0.0814859
\(92\) −13.4726 −1.40461
\(93\) 0 0
\(94\) −9.36329 −0.965749
\(95\) 0 0
\(96\) 0 0
\(97\) −4.85415 −0.492864 −0.246432 0.969160i \(-0.579258\pi\)
−0.246432 + 0.969160i \(0.579258\pi\)
\(98\) −2.49086 −0.251615
\(99\) 0 0
\(100\) 0 0
\(101\) 7.48563 0.744848 0.372424 0.928063i \(-0.378527\pi\)
0.372424 + 0.928063i \(0.378527\pi\)
\(102\) 0 0
\(103\) −18.8814 −1.86044 −0.930220 0.367004i \(-0.880384\pi\)
−0.930220 + 0.367004i \(0.880384\pi\)
\(104\) 4.26819 0.418530
\(105\) 0 0
\(106\) 29.1313 2.82948
\(107\) −16.4271 −1.58807 −0.794033 0.607875i \(-0.792022\pi\)
−0.794033 + 0.607875i \(0.792022\pi\)
\(108\) 0 0
\(109\) −13.4088 −1.28433 −0.642165 0.766566i \(-0.721964\pi\)
−0.642165 + 0.766566i \(0.721964\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.26819 −0.497797
\(113\) −7.61844 −0.716682 −0.358341 0.933591i \(-0.616658\pi\)
−0.358341 + 0.933591i \(0.616658\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 13.4726 1.25090
\(117\) 0 0
\(118\) −30.1496 −2.77549
\(119\) 4.06379 0.372527
\(120\) 0 0
\(121\) −10.4909 −0.953715
\(122\) −3.35025 −0.303317
\(123\) 0 0
\(124\) 24.2134 2.17442
\(125\) 0 0
\(126\) 0 0
\(127\) 19.7591 1.75333 0.876666 0.481099i \(-0.159762\pi\)
0.876666 + 0.481099i \(0.159762\pi\)
\(128\) 17.2447 1.52423
\(129\) 0 0
\(130\) 0 0
\(131\) 8.34502 0.729107 0.364554 0.931182i \(-0.381222\pi\)
0.364554 + 0.931182i \(0.381222\pi\)
\(132\) 0 0
\(133\) −2.35025 −0.203793
\(134\) −24.7721 −2.13998
\(135\) 0 0
\(136\) 22.3137 1.91338
\(137\) 6.30847 0.538969 0.269484 0.963005i \(-0.413147\pi\)
0.269484 + 0.963005i \(0.413147\pi\)
\(138\) 0 0
\(139\) −13.8176 −1.17199 −0.585997 0.810313i \(-0.699297\pi\)
−0.585997 + 0.810313i \(0.699297\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 1.41404 0.118663
\(143\) 0.554651 0.0463823
\(144\) 0 0
\(145\) 0 0
\(146\) 17.0272 1.40918
\(147\) 0 0
\(148\) 11.0638 0.909438
\(149\) −2.64975 −0.217076 −0.108538 0.994092i \(-0.534617\pi\)
−0.108538 + 0.994092i \(0.534617\pi\)
\(150\) 0 0
\(151\) −0.140614 −0.0114430 −0.00572149 0.999984i \(-0.501821\pi\)
−0.00572149 + 0.999984i \(0.501821\pi\)
\(152\) −12.9049 −1.04673
\(153\) 0 0
\(154\) −1.77733 −0.143221
\(155\) 0 0
\(156\) 0 0
\(157\) 12.3905 0.988872 0.494436 0.869214i \(-0.335375\pi\)
0.494436 + 0.869214i \(0.335375\pi\)
\(158\) −17.0272 −1.35461
\(159\) 0 0
\(160\) 0 0
\(161\) 3.20440 0.252542
\(162\) 0 0
\(163\) −20.2369 −1.58507 −0.792537 0.609823i \(-0.791240\pi\)
−0.792537 + 0.609823i \(0.791240\pi\)
\(164\) −35.9452 −2.80685
\(165\) 0 0
\(166\) −15.5677 −1.20829
\(167\) −10.0638 −0.778759 −0.389380 0.921077i \(-0.627311\pi\)
−0.389380 + 0.921077i \(0.627311\pi\)
\(168\) 0 0
\(169\) −12.3958 −0.953520
\(170\) 0 0
\(171\) 0 0
\(172\) 32.4308 2.47283
\(173\) −1.87766 −0.142756 −0.0713779 0.997449i \(-0.522740\pi\)
−0.0713779 + 0.997449i \(0.522740\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.75905 −0.283349
\(177\) 0 0
\(178\) 5.29950 0.397214
\(179\) −15.0455 −1.12455 −0.562277 0.826949i \(-0.690075\pi\)
−0.562277 + 0.826949i \(0.690075\pi\)
\(180\) 0 0
\(181\) −2.42708 −0.180403 −0.0902016 0.995924i \(-0.528751\pi\)
−0.0902016 + 0.995924i \(0.528751\pi\)
\(182\) −1.93621 −0.143522
\(183\) 0 0
\(184\) 17.5949 1.29712
\(185\) 0 0
\(186\) 0 0
\(187\) 2.89967 0.212045
\(188\) 15.8046 1.15267
\(189\) 0 0
\(190\) 0 0
\(191\) −22.2394 −1.60919 −0.804595 0.593824i \(-0.797618\pi\)
−0.804595 + 0.593824i \(0.797618\pi\)
\(192\) 0 0
\(193\) 14.2682 1.02705 0.513523 0.858076i \(-0.328340\pi\)
0.513523 + 0.858076i \(0.328340\pi\)
\(194\) 12.0910 0.868085
\(195\) 0 0
\(196\) 4.20440 0.300314
\(197\) 2.08206 0.148341 0.0741703 0.997246i \(-0.476369\pi\)
0.0741703 + 0.997246i \(0.476369\pi\)
\(198\) 0 0
\(199\) −21.2772 −1.50830 −0.754149 0.656703i \(-0.771950\pi\)
−0.754149 + 0.656703i \(0.771950\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −18.6457 −1.31191
\(203\) −3.20440 −0.224905
\(204\) 0 0
\(205\) 0 0
\(206\) 47.0310 3.27680
\(207\) 0 0
\(208\) −4.09510 −0.283944
\(209\) −1.67699 −0.116000
\(210\) 0 0
\(211\) 7.18613 0.494714 0.247357 0.968924i \(-0.420438\pi\)
0.247357 + 0.968924i \(0.420438\pi\)
\(212\) −49.1716 −3.37712
\(213\) 0 0
\(214\) 40.9176 2.79707
\(215\) 0 0
\(216\) 0 0
\(217\) −5.75905 −0.390950
\(218\) 33.3995 2.26210
\(219\) 0 0
\(220\) 0 0
\(221\) 3.15889 0.212490
\(222\) 0 0
\(223\) −26.2081 −1.75503 −0.877513 0.479552i \(-0.840799\pi\)
−0.877513 + 0.479552i \(0.840799\pi\)
\(224\) 2.14061 0.143026
\(225\) 0 0
\(226\) 18.9765 1.26230
\(227\) 23.8448 1.58264 0.791319 0.611403i \(-0.209395\pi\)
0.791319 + 0.611403i \(0.209395\pi\)
\(228\) 0 0
\(229\) 3.58596 0.236967 0.118484 0.992956i \(-0.462197\pi\)
0.118484 + 0.992956i \(0.462197\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −17.5949 −1.15516
\(233\) 27.1626 1.77948 0.889741 0.456465i \(-0.150885\pi\)
0.889741 + 0.456465i \(0.150885\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 50.8904 3.31268
\(237\) 0 0
\(238\) −10.1223 −0.656134
\(239\) −5.54568 −0.358720 −0.179360 0.983783i \(-0.557403\pi\)
−0.179360 + 0.983783i \(0.557403\pi\)
\(240\) 0 0
\(241\) 12.7355 0.820369 0.410184 0.912003i \(-0.365464\pi\)
0.410184 + 0.912003i \(0.365464\pi\)
\(242\) 26.1313 1.67978
\(243\) 0 0
\(244\) 5.65498 0.362023
\(245\) 0 0
\(246\) 0 0
\(247\) −1.82691 −0.116243
\(248\) −31.6222 −2.00801
\(249\) 0 0
\(250\) 0 0
\(251\) −8.88663 −0.560919 −0.280460 0.959866i \(-0.590487\pi\)
−0.280460 + 0.959866i \(0.590487\pi\)
\(252\) 0 0
\(253\) 2.28646 0.143749
\(254\) −49.2171 −3.08816
\(255\) 0 0
\(256\) −32.5453 −2.03408
\(257\) 6.51287 0.406262 0.203131 0.979152i \(-0.434888\pi\)
0.203131 + 0.979152i \(0.434888\pi\)
\(258\) 0 0
\(259\) −2.63148 −0.163512
\(260\) 0 0
\(261\) 0 0
\(262\) −20.7863 −1.28418
\(263\) 22.0545 1.35994 0.679969 0.733241i \(-0.261993\pi\)
0.679969 + 0.733241i \(0.261993\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 5.85415 0.358941
\(267\) 0 0
\(268\) 41.8135 2.55417
\(269\) 27.2954 1.66423 0.832116 0.554602i \(-0.187129\pi\)
0.832116 + 0.554602i \(0.187129\pi\)
\(270\) 0 0
\(271\) −19.2537 −1.16958 −0.584788 0.811186i \(-0.698822\pi\)
−0.584788 + 0.811186i \(0.698822\pi\)
\(272\) −21.4088 −1.29810
\(273\) 0 0
\(274\) −15.7135 −0.949290
\(275\) 0 0
\(276\) 0 0
\(277\) 16.1951 0.973069 0.486535 0.873661i \(-0.338261\pi\)
0.486535 + 0.873661i \(0.338261\pi\)
\(278\) 34.4178 2.06424
\(279\) 0 0
\(280\) 0 0
\(281\) −2.02351 −0.120712 −0.0603562 0.998177i \(-0.519224\pi\)
−0.0603562 + 0.998177i \(0.519224\pi\)
\(282\) 0 0
\(283\) 26.6770 1.58578 0.792891 0.609363i \(-0.208575\pi\)
0.792891 + 0.609363i \(0.208575\pi\)
\(284\) −2.38680 −0.141630
\(285\) 0 0
\(286\) −1.38156 −0.0816934
\(287\) 8.54942 0.504656
\(288\) 0 0
\(289\) −0.485629 −0.0285664
\(290\) 0 0
\(291\) 0 0
\(292\) −28.7408 −1.68193
\(293\) −9.95042 −0.581310 −0.290655 0.956828i \(-0.593873\pi\)
−0.290655 + 0.956828i \(0.593873\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −14.4491 −0.839836
\(297\) 0 0
\(298\) 6.60017 0.382337
\(299\) 2.49086 0.144050
\(300\) 0 0
\(301\) −7.71354 −0.444601
\(302\) 0.350250 0.0201546
\(303\) 0 0
\(304\) 12.3816 0.710131
\(305\) 0 0
\(306\) 0 0
\(307\) −3.37226 −0.192465 −0.0962325 0.995359i \(-0.530679\pi\)
−0.0962325 + 0.995359i \(0.530679\pi\)
\(308\) 3.00000 0.170941
\(309\) 0 0
\(310\) 0 0
\(311\) 8.95449 0.507762 0.253881 0.967235i \(-0.418293\pi\)
0.253881 + 0.967235i \(0.418293\pi\)
\(312\) 0 0
\(313\) 5.89443 0.333173 0.166587 0.986027i \(-0.446725\pi\)
0.166587 + 0.986027i \(0.446725\pi\)
\(314\) −30.8631 −1.74171
\(315\) 0 0
\(316\) 28.7408 1.61680
\(317\) 1.61844 0.0909006 0.0454503 0.998967i \(-0.485528\pi\)
0.0454503 + 0.998967i \(0.485528\pi\)
\(318\) 0 0
\(319\) −2.28646 −0.128017
\(320\) 0 0
\(321\) 0 0
\(322\) −7.98173 −0.444804
\(323\) −9.55092 −0.531427
\(324\) 0 0
\(325\) 0 0
\(326\) 50.4073 2.79180
\(327\) 0 0
\(328\) 46.9437 2.59203
\(329\) −3.75905 −0.207243
\(330\) 0 0
\(331\) −17.7225 −0.974117 −0.487059 0.873369i \(-0.661930\pi\)
−0.487059 + 0.873369i \(0.661930\pi\)
\(332\) 26.2772 1.44215
\(333\) 0 0
\(334\) 25.0675 1.37163
\(335\) 0 0
\(336\) 0 0
\(337\) −25.4230 −1.38488 −0.692440 0.721476i \(-0.743464\pi\)
−0.692440 + 0.721476i \(0.743464\pi\)
\(338\) 30.8762 1.67944
\(339\) 0 0
\(340\) 0 0
\(341\) −4.10930 −0.222531
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −42.3540 −2.28357
\(345\) 0 0
\(346\) 4.67699 0.251437
\(347\) −23.0597 −1.23791 −0.618955 0.785426i \(-0.712444\pi\)
−0.618955 + 0.785426i \(0.712444\pi\)
\(348\) 0 0
\(349\) 2.37633 0.127202 0.0636009 0.997975i \(-0.479742\pi\)
0.0636009 + 0.997975i \(0.479742\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.52741 0.0814112
\(353\) −16.6733 −0.887428 −0.443714 0.896168i \(-0.646339\pi\)
−0.443714 + 0.896168i \(0.646339\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −8.94518 −0.474094
\(357\) 0 0
\(358\) 37.4763 1.98069
\(359\) 7.00523 0.369722 0.184861 0.982765i \(-0.440816\pi\)
0.184861 + 0.982765i \(0.440816\pi\)
\(360\) 0 0
\(361\) −13.4763 −0.709280
\(362\) 6.04551 0.317745
\(363\) 0 0
\(364\) 3.26819 0.171300
\(365\) 0 0
\(366\) 0 0
\(367\) −18.4763 −0.964456 −0.482228 0.876046i \(-0.660172\pi\)
−0.482228 + 0.876046i \(0.660172\pi\)
\(368\) −16.8814 −0.880003
\(369\) 0 0
\(370\) 0 0
\(371\) 11.6953 0.607188
\(372\) 0 0
\(373\) −26.9672 −1.39631 −0.698154 0.715948i \(-0.745995\pi\)
−0.698154 + 0.715948i \(0.745995\pi\)
\(374\) −7.22267 −0.373476
\(375\) 0 0
\(376\) −20.6404 −1.06445
\(377\) −2.49086 −0.128286
\(378\) 0 0
\(379\) −15.1443 −0.777913 −0.388956 0.921256i \(-0.627164\pi\)
−0.388956 + 0.921256i \(0.627164\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 55.3954 2.83428
\(383\) −32.2354 −1.64715 −0.823575 0.567207i \(-0.808024\pi\)
−0.823575 + 0.567207i \(0.808024\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −35.5401 −1.80894
\(387\) 0 0
\(388\) −20.4088 −1.03610
\(389\) 27.0910 1.37357 0.686785 0.726861i \(-0.259021\pi\)
0.686785 + 0.726861i \(0.259021\pi\)
\(390\) 0 0
\(391\) 13.0220 0.658551
\(392\) −5.49086 −0.277330
\(393\) 0 0
\(394\) −5.18613 −0.261273
\(395\) 0 0
\(396\) 0 0
\(397\) 21.2902 1.06852 0.534262 0.845319i \(-0.320590\pi\)
0.534262 + 0.845319i \(0.320590\pi\)
\(398\) 52.9985 2.65657
\(399\) 0 0
\(400\) 0 0
\(401\) −27.7758 −1.38706 −0.693529 0.720428i \(-0.743945\pi\)
−0.693529 + 0.720428i \(0.743945\pi\)
\(402\) 0 0
\(403\) −4.47666 −0.222998
\(404\) 31.4726 1.56582
\(405\) 0 0
\(406\) 7.98173 0.396126
\(407\) −1.87766 −0.0930721
\(408\) 0 0
\(409\) −18.6404 −0.921711 −0.460855 0.887475i \(-0.652457\pi\)
−0.460855 + 0.887475i \(0.652457\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −79.3850 −3.91102
\(413\) −12.1041 −0.595602
\(414\) 0 0
\(415\) 0 0
\(416\) 1.66395 0.0815821
\(417\) 0 0
\(418\) 4.17716 0.204312
\(419\) −3.35025 −0.163670 −0.0818352 0.996646i \(-0.526078\pi\)
−0.0818352 + 0.996646i \(0.526078\pi\)
\(420\) 0 0
\(421\) −6.74078 −0.328526 −0.164263 0.986417i \(-0.552524\pi\)
−0.164263 + 0.986417i \(0.552524\pi\)
\(422\) −17.8997 −0.871342
\(423\) 0 0
\(424\) 64.2171 3.11866
\(425\) 0 0
\(426\) 0 0
\(427\) −1.34502 −0.0650899
\(428\) −69.0660 −3.33843
\(429\) 0 0
\(430\) 0 0
\(431\) 11.7445 0.565713 0.282857 0.959162i \(-0.408718\pi\)
0.282857 + 0.959162i \(0.408718\pi\)
\(432\) 0 0
\(433\) 5.83588 0.280454 0.140227 0.990119i \(-0.455217\pi\)
0.140227 + 0.990119i \(0.455217\pi\)
\(434\) 14.3450 0.688583
\(435\) 0 0
\(436\) −56.3760 −2.69992
\(437\) −7.53114 −0.360263
\(438\) 0 0
\(439\) −37.4125 −1.78560 −0.892802 0.450450i \(-0.851263\pi\)
−0.892802 + 0.450450i \(0.851263\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −7.86836 −0.374260
\(443\) −3.25922 −0.154850 −0.0774251 0.996998i \(-0.524670\pi\)
−0.0774251 + 0.996998i \(0.524670\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 65.2809 3.09114
\(447\) 0 0
\(448\) 5.20440 0.245885
\(449\) −17.5103 −0.826362 −0.413181 0.910649i \(-0.635582\pi\)
−0.413181 + 0.910649i \(0.635582\pi\)
\(450\) 0 0
\(451\) 6.10033 0.287253
\(452\) −32.0310 −1.50661
\(453\) 0 0
\(454\) −59.3943 −2.78751
\(455\) 0 0
\(456\) 0 0
\(457\) 31.6718 1.48154 0.740771 0.671757i \(-0.234460\pi\)
0.740771 + 0.671757i \(0.234460\pi\)
\(458\) −8.93214 −0.417372
\(459\) 0 0
\(460\) 0 0
\(461\) −21.4256 −0.997889 −0.498944 0.866634i \(-0.666279\pi\)
−0.498944 + 0.866634i \(0.666279\pi\)
\(462\) 0 0
\(463\) −36.1261 −1.67892 −0.839461 0.543421i \(-0.817129\pi\)
−0.839461 + 0.543421i \(0.817129\pi\)
\(464\) 16.8814 0.783699
\(465\) 0 0
\(466\) −67.6584 −3.13421
\(467\) −21.2954 −0.985435 −0.492718 0.870189i \(-0.663996\pi\)
−0.492718 + 0.870189i \(0.663996\pi\)
\(468\) 0 0
\(469\) −9.94518 −0.459226
\(470\) 0 0
\(471\) 0 0
\(472\) −66.4618 −3.05915
\(473\) −5.50390 −0.253070
\(474\) 0 0
\(475\) 0 0
\(476\) 17.0858 0.783126
\(477\) 0 0
\(478\) 13.8135 0.631816
\(479\) −40.1548 −1.83472 −0.917360 0.398058i \(-0.869684\pi\)
−0.917360 + 0.398058i \(0.869684\pi\)
\(480\) 0 0
\(481\) −2.04551 −0.0932675
\(482\) −31.7225 −1.44492
\(483\) 0 0
\(484\) −44.1078 −2.00490
\(485\) 0 0
\(486\) 0 0
\(487\) 9.46479 0.428890 0.214445 0.976736i \(-0.431206\pi\)
0.214445 + 0.976736i \(0.431206\pi\)
\(488\) −7.38530 −0.334317
\(489\) 0 0
\(490\) 0 0
\(491\) −19.4271 −0.876732 −0.438366 0.898797i \(-0.644443\pi\)
−0.438366 + 0.898797i \(0.644443\pi\)
\(492\) 0 0
\(493\) −13.0220 −0.586482
\(494\) 4.55058 0.204740
\(495\) 0 0
\(496\) 30.3398 1.36230
\(497\) 0.567690 0.0254644
\(498\) 0 0
\(499\) 12.1679 0.544708 0.272354 0.962197i \(-0.412198\pi\)
0.272354 + 0.962197i \(0.412198\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 22.1354 0.987950
\(503\) −14.7408 −0.657259 −0.328629 0.944459i \(-0.606587\pi\)
−0.328629 + 0.944459i \(0.606587\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −5.69527 −0.253185
\(507\) 0 0
\(508\) 83.0750 3.68586
\(509\) 35.4036 1.56924 0.784618 0.619980i \(-0.212859\pi\)
0.784618 + 0.619980i \(0.212859\pi\)
\(510\) 0 0
\(511\) 6.83588 0.302401
\(512\) 46.5767 2.05842
\(513\) 0 0
\(514\) −16.2227 −0.715551
\(515\) 0 0
\(516\) 0 0
\(517\) −2.68223 −0.117964
\(518\) 6.55465 0.287995
\(519\) 0 0
\(520\) 0 0
\(521\) 20.9907 0.919619 0.459810 0.888018i \(-0.347918\pi\)
0.459810 + 0.888018i \(0.347918\pi\)
\(522\) 0 0
\(523\) 9.64045 0.421547 0.210774 0.977535i \(-0.432402\pi\)
0.210774 + 0.977535i \(0.432402\pi\)
\(524\) 35.0858 1.53273
\(525\) 0 0
\(526\) −54.9347 −2.39527
\(527\) −23.4036 −1.01948
\(528\) 0 0
\(529\) −12.7318 −0.553557
\(530\) 0 0
\(531\) 0 0
\(532\) −9.88139 −0.428413
\(533\) 6.64568 0.287856
\(534\) 0 0
\(535\) 0 0
\(536\) −54.6076 −2.35869
\(537\) 0 0
\(538\) −67.9892 −2.93122
\(539\) −0.713538 −0.0307343
\(540\) 0 0
\(541\) −30.4983 −1.31123 −0.655613 0.755097i \(-0.727590\pi\)
−0.655613 + 0.755097i \(0.727590\pi\)
\(542\) 47.9582 2.05998
\(543\) 0 0
\(544\) 8.69900 0.372967
\(545\) 0 0
\(546\) 0 0
\(547\) 4.11711 0.176035 0.0880174 0.996119i \(-0.471947\pi\)
0.0880174 + 0.996119i \(0.471947\pi\)
\(548\) 26.5233 1.13302
\(549\) 0 0
\(550\) 0 0
\(551\) 7.53114 0.320838
\(552\) 0 0
\(553\) −6.83588 −0.290691
\(554\) −40.3398 −1.71387
\(555\) 0 0
\(556\) −58.0948 −2.46377
\(557\) 9.49610 0.402363 0.201181 0.979554i \(-0.435522\pi\)
0.201181 + 0.979554i \(0.435522\pi\)
\(558\) 0 0
\(559\) −5.99593 −0.253601
\(560\) 0 0
\(561\) 0 0
\(562\) 5.04028 0.212611
\(563\) −29.0403 −1.22390 −0.611951 0.790896i \(-0.709615\pi\)
−0.611951 + 0.790896i \(0.709615\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −66.4487 −2.79305
\(567\) 0 0
\(568\) 3.11711 0.130791
\(569\) 7.10930 0.298037 0.149019 0.988834i \(-0.452389\pi\)
0.149019 + 0.988834i \(0.452389\pi\)
\(570\) 0 0
\(571\) −17.8553 −0.747222 −0.373611 0.927586i \(-0.621880\pi\)
−0.373611 + 0.927586i \(0.621880\pi\)
\(572\) 2.33198 0.0975049
\(573\) 0 0
\(574\) −21.2954 −0.888854
\(575\) 0 0
\(576\) 0 0
\(577\) −0.180894 −0.00753073 −0.00376536 0.999993i \(-0.501199\pi\)
−0.00376536 + 0.999993i \(0.501199\pi\)
\(578\) 1.20964 0.0503142
\(579\) 0 0
\(580\) 0 0
\(581\) −6.24992 −0.259290
\(582\) 0 0
\(583\) 8.34502 0.345615
\(584\) 37.5349 1.55320
\(585\) 0 0
\(586\) 24.7851 1.02386
\(587\) −6.46362 −0.266782 −0.133391 0.991063i \(-0.542587\pi\)
−0.133391 + 0.991063i \(0.542587\pi\)
\(588\) 0 0
\(589\) 13.5352 0.557709
\(590\) 0 0
\(591\) 0 0
\(592\) 13.8631 0.569771
\(593\) −12.5807 −0.516629 −0.258314 0.966061i \(-0.583167\pi\)
−0.258314 + 0.966061i \(0.583167\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −11.1406 −0.456337
\(597\) 0 0
\(598\) −6.20440 −0.253717
\(599\) 29.3357 1.19862 0.599312 0.800515i \(-0.295441\pi\)
0.599312 + 0.800515i \(0.295441\pi\)
\(600\) 0 0
\(601\) −34.8344 −1.42092 −0.710462 0.703736i \(-0.751514\pi\)
−0.710462 + 0.703736i \(0.751514\pi\)
\(602\) 19.2134 0.783079
\(603\) 0 0
\(604\) −0.591197 −0.0240555
\(605\) 0 0
\(606\) 0 0
\(607\) 16.9542 0.688148 0.344074 0.938943i \(-0.388193\pi\)
0.344074 + 0.938943i \(0.388193\pi\)
\(608\) −5.03098 −0.204033
\(609\) 0 0
\(610\) 0 0
\(611\) −2.92201 −0.118212
\(612\) 0 0
\(613\) −4.03655 −0.163035 −0.0815173 0.996672i \(-0.525977\pi\)
−0.0815173 + 0.996672i \(0.525977\pi\)
\(614\) 8.39983 0.338990
\(615\) 0 0
\(616\) −3.91794 −0.157858
\(617\) 0.142113 0.00572127 0.00286063 0.999996i \(-0.499089\pi\)
0.00286063 + 0.999996i \(0.499089\pi\)
\(618\) 0 0
\(619\) −35.1716 −1.41367 −0.706833 0.707381i \(-0.749877\pi\)
−0.706833 + 0.707381i \(0.749877\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −22.3044 −0.894325
\(623\) 2.12758 0.0852395
\(624\) 0 0
\(625\) 0 0
\(626\) −14.6822 −0.586820
\(627\) 0 0
\(628\) 52.0948 2.07881
\(629\) −10.6938 −0.426388
\(630\) 0 0
\(631\) −4.17832 −0.166336 −0.0831682 0.996536i \(-0.526504\pi\)
−0.0831682 + 0.996536i \(0.526504\pi\)
\(632\) −37.5349 −1.49306
\(633\) 0 0
\(634\) −4.03131 −0.160104
\(635\) 0 0
\(636\) 0 0
\(637\) −0.777326 −0.0307988
\(638\) 5.69527 0.225478
\(639\) 0 0
\(640\) 0 0
\(641\) −30.6262 −1.20966 −0.604832 0.796353i \(-0.706760\pi\)
−0.604832 + 0.796353i \(0.706760\pi\)
\(642\) 0 0
\(643\) 37.7135 1.48728 0.743638 0.668582i \(-0.233098\pi\)
0.743638 + 0.668582i \(0.233098\pi\)
\(644\) 13.4726 0.530894
\(645\) 0 0
\(646\) 23.7900 0.936006
\(647\) −26.1861 −1.02948 −0.514741 0.857345i \(-0.672112\pi\)
−0.514741 + 0.857345i \(0.672112\pi\)
\(648\) 0 0
\(649\) −8.63671 −0.339021
\(650\) 0 0
\(651\) 0 0
\(652\) −85.0840 −3.33215
\(653\) −2.14061 −0.0837687 −0.0418843 0.999122i \(-0.513336\pi\)
−0.0418843 + 0.999122i \(0.513336\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −45.0399 −1.75851
\(657\) 0 0
\(658\) 9.36329 0.365019
\(659\) 48.2119 1.87807 0.939034 0.343824i \(-0.111723\pi\)
0.939034 + 0.343824i \(0.111723\pi\)
\(660\) 0 0
\(661\) −4.10033 −0.159484 −0.0797422 0.996816i \(-0.525410\pi\)
−0.0797422 + 0.996816i \(0.525410\pi\)
\(662\) 44.1443 1.71572
\(663\) 0 0
\(664\) −34.3174 −1.33177
\(665\) 0 0
\(666\) 0 0
\(667\) −10.2682 −0.397586
\(668\) −42.3122 −1.63711
\(669\) 0 0
\(670\) 0 0
\(671\) −0.959719 −0.0370496
\(672\) 0 0
\(673\) −45.4047 −1.75022 −0.875112 0.483921i \(-0.839212\pi\)
−0.875112 + 0.483921i \(0.839212\pi\)
\(674\) 63.3252 2.43920
\(675\) 0 0
\(676\) −52.1168 −2.00449
\(677\) 37.0127 1.42251 0.711257 0.702932i \(-0.248126\pi\)
0.711257 + 0.702932i \(0.248126\pi\)
\(678\) 0 0
\(679\) 4.85415 0.186285
\(680\) 0 0
\(681\) 0 0
\(682\) 10.2357 0.391946
\(683\) −40.4633 −1.54828 −0.774142 0.633012i \(-0.781819\pi\)
−0.774142 + 0.633012i \(0.781819\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 2.49086 0.0951016
\(687\) 0 0
\(688\) 40.6364 1.54925
\(689\) 9.09103 0.346341
\(690\) 0 0
\(691\) −7.72658 −0.293933 −0.146966 0.989141i \(-0.546951\pi\)
−0.146966 + 0.989141i \(0.546951\pi\)
\(692\) −7.89443 −0.300101
\(693\) 0 0
\(694\) 57.4386 2.18034
\(695\) 0 0
\(696\) 0 0
\(697\) 34.7430 1.31599
\(698\) −5.91911 −0.224041
\(699\) 0 0
\(700\) 0 0
\(701\) −19.0638 −0.720029 −0.360015 0.932947i \(-0.617228\pi\)
−0.360015 + 0.932947i \(0.617228\pi\)
\(702\) 0 0
\(703\) 6.18463 0.233258
\(704\) 3.71354 0.139959
\(705\) 0 0
\(706\) 41.5308 1.56303
\(707\) −7.48563 −0.281526
\(708\) 0 0
\(709\) −26.9660 −1.01273 −0.506365 0.862319i \(-0.669011\pi\)
−0.506365 + 0.862319i \(0.669011\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 11.6822 0.437810
\(713\) −18.4543 −0.691120
\(714\) 0 0
\(715\) 0 0
\(716\) −63.2574 −2.36404
\(717\) 0 0
\(718\) −17.4491 −0.651194
\(719\) −25.3760 −0.946365 −0.473182 0.880964i \(-0.656895\pi\)
−0.473182 + 0.880964i \(0.656895\pi\)
\(720\) 0 0
\(721\) 18.8814 0.703180
\(722\) 33.5677 1.24926
\(723\) 0 0
\(724\) −10.2044 −0.379244
\(725\) 0 0
\(726\) 0 0
\(727\) 4.06786 0.150868 0.0754342 0.997151i \(-0.475966\pi\)
0.0754342 + 0.997151i \(0.475966\pi\)
\(728\) −4.26819 −0.158190
\(729\) 0 0
\(730\) 0 0
\(731\) −31.3462 −1.15938
\(732\) 0 0
\(733\) 44.1455 1.63055 0.815276 0.579073i \(-0.196585\pi\)
0.815276 + 0.579073i \(0.196585\pi\)
\(734\) 46.0220 1.69870
\(735\) 0 0
\(736\) 6.85939 0.252840
\(737\) −7.09626 −0.261394
\(738\) 0 0
\(739\) 50.2667 1.84909 0.924545 0.381073i \(-0.124445\pi\)
0.924545 + 0.381073i \(0.124445\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −29.1313 −1.06944
\(743\) 4.04808 0.148510 0.0742549 0.997239i \(-0.476342\pi\)
0.0742549 + 0.997239i \(0.476342\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 67.1716 2.45933
\(747\) 0 0
\(748\) 12.1914 0.445760
\(749\) 16.4271 0.600232
\(750\) 0 0
\(751\) −15.8318 −0.577711 −0.288855 0.957373i \(-0.593275\pi\)
−0.288855 + 0.957373i \(0.593275\pi\)
\(752\) 19.8034 0.722156
\(753\) 0 0
\(754\) 6.20440 0.225951
\(755\) 0 0
\(756\) 0 0
\(757\) −28.1026 −1.02141 −0.510703 0.859757i \(-0.670615\pi\)
−0.510703 + 0.859757i \(0.670615\pi\)
\(758\) 37.7225 1.37014
\(759\) 0 0
\(760\) 0 0
\(761\) −4.94552 −0.179275 −0.0896374 0.995974i \(-0.528571\pi\)
−0.0896374 + 0.995974i \(0.528571\pi\)
\(762\) 0 0
\(763\) 13.4088 0.485431
\(764\) −93.5036 −3.38284
\(765\) 0 0
\(766\) 80.2939 2.90114
\(767\) −9.40880 −0.339732
\(768\) 0 0
\(769\) −24.0571 −0.867520 −0.433760 0.901029i \(-0.642813\pi\)
−0.433760 + 0.901029i \(0.642813\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 59.9892 2.15906
\(773\) −16.6027 −0.597159 −0.298579 0.954385i \(-0.596513\pi\)
−0.298579 + 0.954385i \(0.596513\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 26.6535 0.956804
\(777\) 0 0
\(778\) −67.4801 −2.41928
\(779\) −20.0933 −0.719916
\(780\) 0 0
\(781\) 0.405068 0.0144945
\(782\) −32.4360 −1.15991
\(783\) 0 0
\(784\) 5.26819 0.188150
\(785\) 0 0
\(786\) 0 0
\(787\) −22.1470 −0.789456 −0.394728 0.918798i \(-0.629161\pi\)
−0.394728 + 0.918798i \(0.629161\pi\)
\(788\) 8.75382 0.311842
\(789\) 0 0
\(790\) 0 0
\(791\) 7.61844 0.270881
\(792\) 0 0
\(793\) −1.04551 −0.0371273
\(794\) −53.0310 −1.88200
\(795\) 0 0
\(796\) −89.4577 −3.17074
\(797\) 26.3775 0.934339 0.467169 0.884168i \(-0.345274\pi\)
0.467169 + 0.884168i \(0.345274\pi\)
\(798\) 0 0
\(799\) −15.2760 −0.540426
\(800\) 0 0
\(801\) 0 0
\(802\) 69.1858 2.44304
\(803\) 4.87766 0.172129
\(804\) 0 0
\(805\) 0 0
\(806\) 11.1507 0.392768
\(807\) 0 0
\(808\) −41.1026 −1.44598
\(809\) −8.26039 −0.290420 −0.145210 0.989401i \(-0.546386\pi\)
−0.145210 + 0.989401i \(0.546386\pi\)
\(810\) 0 0
\(811\) 9.03771 0.317357 0.158678 0.987330i \(-0.449277\pi\)
0.158678 + 0.987330i \(0.449277\pi\)
\(812\) −13.4726 −0.472795
\(813\) 0 0
\(814\) 4.67699 0.163928
\(815\) 0 0
\(816\) 0 0
\(817\) 18.1287 0.634244
\(818\) 46.4308 1.62342
\(819\) 0 0
\(820\) 0 0
\(821\) −29.8606 −1.04214 −0.521070 0.853514i \(-0.674467\pi\)
−0.521070 + 0.853514i \(0.674467\pi\)
\(822\) 0 0
\(823\) 36.1704 1.26082 0.630411 0.776262i \(-0.282886\pi\)
0.630411 + 0.776262i \(0.282886\pi\)
\(824\) 103.675 3.61170
\(825\) 0 0
\(826\) 30.1496 1.04904
\(827\) −51.9161 −1.80530 −0.902650 0.430376i \(-0.858381\pi\)
−0.902650 + 0.430376i \(0.858381\pi\)
\(828\) 0 0
\(829\) 19.4909 0.676946 0.338473 0.940976i \(-0.390090\pi\)
0.338473 + 0.940976i \(0.390090\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 4.04551 0.140253
\(833\) −4.06379 −0.140802
\(834\) 0 0
\(835\) 0 0
\(836\) −7.05075 −0.243855
\(837\) 0 0
\(838\) 8.34502 0.288274
\(839\) 28.2552 0.975476 0.487738 0.872990i \(-0.337822\pi\)
0.487738 + 0.872990i \(0.337822\pi\)
\(840\) 0 0
\(841\) −18.7318 −0.645925
\(842\) 16.7904 0.578634
\(843\) 0 0
\(844\) 30.2134 1.03999
\(845\) 0 0
\(846\) 0 0
\(847\) 10.4909 0.360470
\(848\) −61.6129 −2.11579
\(849\) 0 0
\(850\) 0 0
\(851\) −8.43231 −0.289056
\(852\) 0 0
\(853\) −41.8799 −1.43394 −0.716970 0.697104i \(-0.754472\pi\)
−0.716970 + 0.697104i \(0.754472\pi\)
\(854\) 3.35025 0.114643
\(855\) 0 0
\(856\) 90.1988 3.08293
\(857\) 46.2682 1.58049 0.790246 0.612790i \(-0.209953\pi\)
0.790246 + 0.612790i \(0.209953\pi\)
\(858\) 0 0
\(859\) 26.6587 0.909584 0.454792 0.890598i \(-0.349714\pi\)
0.454792 + 0.890598i \(0.349714\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −29.2540 −0.996395
\(863\) −38.7770 −1.31998 −0.659992 0.751273i \(-0.729440\pi\)
−0.659992 + 0.751273i \(0.729440\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −14.5364 −0.493966
\(867\) 0 0
\(868\) −24.2134 −0.821855
\(869\) −4.87766 −0.165463
\(870\) 0 0
\(871\) −7.73065 −0.261943
\(872\) 73.6259 2.49329
\(873\) 0 0
\(874\) 18.7591 0.634534
\(875\) 0 0
\(876\) 0 0
\(877\) −57.3890 −1.93789 −0.968945 0.247277i \(-0.920464\pi\)
−0.968945 + 0.247277i \(0.920464\pi\)
\(878\) 93.1895 3.14499
\(879\) 0 0
\(880\) 0 0
\(881\) 57.3316 1.93155 0.965776 0.259377i \(-0.0835173\pi\)
0.965776 + 0.259377i \(0.0835173\pi\)
\(882\) 0 0
\(883\) −5.36329 −0.180489 −0.0902445 0.995920i \(-0.528765\pi\)
−0.0902445 + 0.995920i \(0.528765\pi\)
\(884\) 13.2812 0.446696
\(885\) 0 0
\(886\) 8.11827 0.272739
\(887\) 20.6729 0.694129 0.347064 0.937841i \(-0.387179\pi\)
0.347064 + 0.937841i \(0.387179\pi\)
\(888\) 0 0
\(889\) −19.7591 −0.662697
\(890\) 0 0
\(891\) 0 0
\(892\) −110.190 −3.68942
\(893\) 8.83471 0.295642
\(894\) 0 0
\(895\) 0 0
\(896\) −17.2447 −0.576104
\(897\) 0 0
\(898\) 43.6158 1.45548
\(899\) 18.4543 0.615486
\(900\) 0 0
\(901\) 47.5271 1.58336
\(902\) −15.1951 −0.505941
\(903\) 0 0
\(904\) 41.8318 1.39131
\(905\) 0 0
\(906\) 0 0
\(907\) 28.8120 0.956688 0.478344 0.878173i \(-0.341237\pi\)
0.478344 + 0.878173i \(0.341237\pi\)
\(908\) 100.253 3.32702
\(909\) 0 0
\(910\) 0 0
\(911\) 24.3827 0.807836 0.403918 0.914795i \(-0.367648\pi\)
0.403918 + 0.914795i \(0.367648\pi\)
\(912\) 0 0
\(913\) −4.45955 −0.147590
\(914\) −78.8900 −2.60945
\(915\) 0 0
\(916\) 15.0768 0.498152
\(917\) −8.34502 −0.275577
\(918\) 0 0
\(919\) 13.2029 0.435524 0.217762 0.976002i \(-0.430124\pi\)
0.217762 + 0.976002i \(0.430124\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 53.3682 1.75759
\(923\) 0.441280 0.0145249
\(924\) 0 0
\(925\) 0 0
\(926\) 89.9851 2.95709
\(927\) 0 0
\(928\) −6.85939 −0.225170
\(929\) 4.91944 0.161402 0.0807008 0.996738i \(-0.474284\pi\)
0.0807008 + 0.996738i \(0.474284\pi\)
\(930\) 0 0
\(931\) 2.35025 0.0770263
\(932\) 114.203 3.74083
\(933\) 0 0
\(934\) 53.0440 1.73565
\(935\) 0 0
\(936\) 0 0
\(937\) −15.1261 −0.494147 −0.247074 0.968997i \(-0.579469\pi\)
−0.247074 + 0.968997i \(0.579469\pi\)
\(938\) 24.7721 0.808837
\(939\) 0 0
\(940\) 0 0
\(941\) −15.2462 −0.497011 −0.248506 0.968630i \(-0.579939\pi\)
−0.248506 + 0.968630i \(0.579939\pi\)
\(942\) 0 0
\(943\) 27.3958 0.892129
\(944\) 63.7665 2.07542
\(945\) 0 0
\(946\) 13.7095 0.445733
\(947\) 25.7132 0.835567 0.417783 0.908547i \(-0.362807\pi\)
0.417783 + 0.908547i \(0.362807\pi\)
\(948\) 0 0
\(949\) 5.31370 0.172490
\(950\) 0 0
\(951\) 0 0
\(952\) −22.3137 −0.723191
\(953\) −9.92724 −0.321575 −0.160787 0.986989i \(-0.551403\pi\)
−0.160787 + 0.986989i \(0.551403\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −23.3163 −0.754102
\(957\) 0 0
\(958\) 100.020 3.23151
\(959\) −6.30847 −0.203711
\(960\) 0 0
\(961\) 2.16669 0.0698932
\(962\) 5.09510 0.164273
\(963\) 0 0
\(964\) 53.5453 1.72458
\(965\) 0 0
\(966\) 0 0
\(967\) −3.17716 −0.102171 −0.0510853 0.998694i \(-0.516268\pi\)
−0.0510853 + 0.998694i \(0.516268\pi\)
\(968\) 57.6039 1.85146
\(969\) 0 0
\(970\) 0 0
\(971\) −33.1440 −1.06364 −0.531821 0.846857i \(-0.678492\pi\)
−0.531821 + 0.846857i \(0.678492\pi\)
\(972\) 0 0
\(973\) 13.8176 0.442972
\(974\) −23.5755 −0.755408
\(975\) 0 0
\(976\) 7.08580 0.226811
\(977\) −4.63521 −0.148294 −0.0741468 0.997247i \(-0.523623\pi\)
−0.0741468 + 0.997247i \(0.523623\pi\)
\(978\) 0 0
\(979\) 1.51811 0.0485189
\(980\) 0 0
\(981\) 0 0
\(982\) 48.3902 1.54419
\(983\) −22.2552 −0.709829 −0.354915 0.934899i \(-0.615490\pi\)
−0.354915 + 0.934899i \(0.615490\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 32.4360 1.03297
\(987\) 0 0
\(988\) −7.68106 −0.244367
\(989\) −24.7173 −0.785964
\(990\) 0 0
\(991\) −0.610635 −0.0193975 −0.00969873 0.999953i \(-0.503087\pi\)
−0.00969873 + 0.999953i \(0.503087\pi\)
\(992\) −12.3279 −0.391411
\(993\) 0 0
\(994\) −1.41404 −0.0448505
\(995\) 0 0
\(996\) 0 0
\(997\) 35.9101 1.13729 0.568643 0.822585i \(-0.307469\pi\)
0.568643 + 0.822585i \(0.307469\pi\)
\(998\) −30.3085 −0.959398
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4725.2.a.bi.1.1 3
3.2 odd 2 4725.2.a.bj.1.3 yes 3
5.4 even 2 4725.2.a.bl.1.3 yes 3
15.14 odd 2 4725.2.a.bk.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4725.2.a.bi.1.1 3 1.1 even 1 trivial
4725.2.a.bj.1.3 yes 3 3.2 odd 2
4725.2.a.bk.1.1 yes 3 15.14 odd 2
4725.2.a.bl.1.3 yes 3 5.4 even 2