Properties

Label 47190.2.a.bs
Level $47190$
Weight $2$
Character orbit 47190.a
Self dual yes
Analytic conductor $376.814$
Dimension $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [47190,2,Mod(1,47190)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("47190.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(47190, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 47190 = 2 \cdot 3 \cdot 5 \cdot 11^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 47190.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,-1,1,-1,-1,0,1,1,-1,0,-1,1,0,1,1,-6,1,0,-1,0,0,-4,-1,1,1, -1,0,-2,1,0,1,0,-6,0,1,6,0,-1,-1,10,0,-8,0,-1,-4,12,-1,-7,1,6,1,-6,-1, 0,0,0,-2,-12,1,6,0,0,1,-1,0,4,-6,4,0,4,1,-10,6,-1,0,0,-1,0,-1,1,10,-4, 0,6,-8,2,0,-6,-1,0,-4,0,12,0,-1,2,-7,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(376.814047138\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + q^{8} + q^{9} - q^{10} - q^{12} + q^{13} + q^{15} + q^{16} - 6 q^{17} + q^{18} - q^{20} - 4 q^{23} - q^{24} + q^{25} + q^{26} - q^{27} - 2 q^{29}+ \cdots - 7 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(11\) \( -1 \)
\(13\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.