Properties

Label 4704.2.a.bs
Level $4704$
Weight $2$
Character orbit 4704.a
Self dual yes
Analytic conductor $37.562$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4704 = 2^{5} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4704.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(37.5616291108\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.621.1
Defining polynomial: \(x^{3} - 6 x - 3\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta_{2} q^{5} + q^{9} +O(q^{10})\) \( q - q^{3} + \beta_{2} q^{5} + q^{9} + ( \beta_{1} + \beta_{2} ) q^{11} + ( -1 - \beta_{1} + \beta_{2} ) q^{13} -\beta_{2} q^{15} + ( 2 + 2 \beta_{2} ) q^{17} + ( -1 - \beta_{1} + \beta_{2} ) q^{19} + ( 2 + 2 \beta_{2} ) q^{23} + ( 1 - \beta_{1} - \beta_{2} ) q^{25} - q^{27} + ( 4 - \beta_{2} ) q^{29} + ( -1 + \beta_{1} ) q^{31} + ( -\beta_{1} - \beta_{2} ) q^{33} + ( 1 + \beta_{1} + 3 \beta_{2} ) q^{37} + ( 1 + \beta_{1} - \beta_{2} ) q^{39} + ( -2 + 2 \beta_{1} + 2 \beta_{2} ) q^{41} + ( -5 - \beta_{1} - \beta_{2} ) q^{43} + \beta_{2} q^{45} + ( -4 - 2 \beta_{2} ) q^{47} + ( -2 - 2 \beta_{2} ) q^{51} + ( 2 + 2 \beta_{1} + \beta_{2} ) q^{53} + ( 4 - 3 \beta_{2} ) q^{55} + ( 1 + \beta_{1} - \beta_{2} ) q^{57} + ( -4 + \beta_{1} + \beta_{2} ) q^{59} + ( -6 + 2 \beta_{1} ) q^{61} + ( 8 - 2 \beta_{1} ) q^{65} + ( -3 - \beta_{1} + \beta_{2} ) q^{67} + ( -2 - 2 \beta_{2} ) q^{69} + 2 \beta_{2} q^{71} + ( 11 - \beta_{1} - \beta_{2} ) q^{73} + ( -1 + \beta_{1} + \beta_{2} ) q^{75} + ( 9 - \beta_{1} - 2 \beta_{2} ) q^{79} + q^{81} + ( -6 - \beta_{1} + 3 \beta_{2} ) q^{83} + ( 12 - 2 \beta_{1} ) q^{85} + ( -4 + \beta_{2} ) q^{87} + ( -4 - 2 \beta_{2} ) q^{89} + ( 1 - \beta_{1} ) q^{93} + ( 8 - 2 \beta_{1} ) q^{95} + ( -\beta_{1} - \beta_{2} ) q^{97} + ( \beta_{1} + \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - 3q^{3} + 3q^{9} + O(q^{10}) \) \( 3q - 3q^{3} + 3q^{9} - 3q^{13} + 6q^{17} - 3q^{19} + 6q^{23} + 3q^{25} - 3q^{27} + 12q^{29} - 3q^{31} + 3q^{37} + 3q^{39} - 6q^{41} - 15q^{43} - 12q^{47} - 6q^{51} + 6q^{53} + 12q^{55} + 3q^{57} - 12q^{59} - 18q^{61} + 24q^{65} - 9q^{67} - 6q^{69} + 33q^{73} - 3q^{75} + 27q^{79} + 3q^{81} - 18q^{83} + 36q^{85} - 12q^{87} - 12q^{89} + 3q^{93} + 24q^{95} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - 6 x - 3\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( 2 \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - \nu - 4 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)\(/2\)
\(\nu^{2}\)\(=\)\((\)\(2 \beta_{2} + \beta_{1} + 8\)\()/2\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.523976
2.66908
−2.14510
0 −1.00000 0 −3.20147 0 0 0 1.00000 0
1.2 0 −1.00000 0 0.454904 0 0 0 1.00000 0
1.3 0 −1.00000 0 2.74657 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4704.2.a.bs 3
4.b odd 2 1 4704.2.a.bu 3
7.b odd 2 1 4704.2.a.bv 3
7.c even 3 2 672.2.q.l yes 6
8.b even 2 1 9408.2.a.ej 3
8.d odd 2 1 9408.2.a.eh 3
21.h odd 6 2 2016.2.s.v 6
28.d even 2 1 4704.2.a.bt 3
28.g odd 6 2 672.2.q.k 6
56.e even 2 1 9408.2.a.ei 3
56.h odd 2 1 9408.2.a.eg 3
56.k odd 6 2 1344.2.q.z 6
56.p even 6 2 1344.2.q.y 6
84.n even 6 2 2016.2.s.u 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.k 6 28.g odd 6 2
672.2.q.l yes 6 7.c even 3 2
1344.2.q.y 6 56.p even 6 2
1344.2.q.z 6 56.k odd 6 2
2016.2.s.u 6 84.n even 6 2
2016.2.s.v 6 21.h odd 6 2
4704.2.a.bs 3 1.a even 1 1 trivial
4704.2.a.bt 3 28.d even 2 1
4704.2.a.bu 3 4.b odd 2 1
4704.2.a.bv 3 7.b odd 2 1
9408.2.a.eg 3 56.h odd 2 1
9408.2.a.eh 3 8.d odd 2 1
9408.2.a.ei 3 56.e even 2 1
9408.2.a.ej 3 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4704))\):

\( T_{5}^{3} - 9 T_{5} + 4 \)
\( T_{11}^{3} - 27 T_{11} - 38 \)
\( T_{13}^{3} + 3 T_{13}^{2} - 36 T_{13} - 112 \)
\( T_{19}^{3} + 3 T_{19}^{2} - 36 T_{19} - 112 \)
\( T_{31}^{3} + 3 T_{31}^{2} - 21 T_{31} - 47 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( 4 - 9 T + T^{3} \)
$7$ \( T^{3} \)
$11$ \( -38 - 27 T + T^{3} \)
$13$ \( -112 - 36 T + 3 T^{2} + T^{3} \)
$17$ \( 96 - 24 T - 6 T^{2} + T^{3} \)
$19$ \( -112 - 36 T + 3 T^{2} + T^{3} \)
$23$ \( 96 - 24 T - 6 T^{2} + T^{3} \)
$29$ \( -32 + 39 T - 12 T^{2} + T^{3} \)
$31$ \( -47 - 21 T + 3 T^{2} + T^{3} \)
$37$ \( 368 - 84 T - 3 T^{2} + T^{3} \)
$41$ \( -512 - 96 T + 6 T^{2} + T^{3} \)
$43$ \( 28 + 48 T + 15 T^{2} + T^{3} \)
$47$ \( -112 + 12 T + 12 T^{2} + T^{3} \)
$53$ \( -166 - 81 T - 6 T^{2} + T^{3} \)
$59$ \( -82 + 21 T + 12 T^{2} + T^{3} \)
$61$ \( -552 + 12 T + 18 T^{2} + T^{3} \)
$67$ \( -164 - 12 T + 9 T^{2} + T^{3} \)
$71$ \( 32 - 36 T + T^{3} \)
$73$ \( -996 + 336 T - 33 T^{2} + T^{3} \)
$79$ \( -353 + 195 T - 27 T^{2} + T^{3} \)
$83$ \( -948 - 15 T + 18 T^{2} + T^{3} \)
$89$ \( -112 + 12 T + 12 T^{2} + T^{3} \)
$97$ \( 38 - 27 T + T^{3} \)
show more
show less