Properties

Label 4704.2.a.a
Level $4704$
Weight $2$
Character orbit 4704.a
Self dual yes
Analytic conductor $37.562$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4704 = 2^{5} \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4704.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(37.5616291108\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{3} - 4q^{5} + q^{9} + O(q^{10}) \) \( q - q^{3} - 4q^{5} + q^{9} + 6q^{11} + 5q^{13} + 4q^{15} + 2q^{17} + q^{19} - 6q^{23} + 11q^{25} - q^{27} - 3q^{31} - 6q^{33} + 3q^{37} - 5q^{39} - 6q^{41} + 5q^{43} - 4q^{45} - 4q^{47} - 2q^{51} - 6q^{53} - 24q^{55} - q^{57} - 6q^{59} - 2q^{61} - 20q^{65} + 7q^{67} + 6q^{69} + 16q^{71} - 3q^{73} - 11q^{75} + 11q^{79} + q^{81} + 12q^{83} - 8q^{85} + 4q^{89} + 3q^{93} - 4q^{95} - 6q^{97} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −1.00000 0 −4.00000 0 0 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4704.2.a.a 1
4.b odd 2 1 4704.2.a.r 1
7.b odd 2 1 4704.2.a.bh 1
7.c even 3 2 672.2.q.j yes 2
8.b even 2 1 9408.2.a.dd 1
8.d odd 2 1 9408.2.a.bp 1
21.h odd 6 2 2016.2.s.a 2
28.d even 2 1 4704.2.a.p 1
28.g odd 6 2 672.2.q.e 2
56.e even 2 1 9408.2.a.bs 1
56.h odd 2 1 9408.2.a.a 1
56.k odd 6 2 1344.2.q.l 2
56.p even 6 2 1344.2.q.a 2
84.n even 6 2 2016.2.s.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.2.q.e 2 28.g odd 6 2
672.2.q.j yes 2 7.c even 3 2
1344.2.q.a 2 56.p even 6 2
1344.2.q.l 2 56.k odd 6 2
2016.2.s.a 2 21.h odd 6 2
2016.2.s.b 2 84.n even 6 2
4704.2.a.a 1 1.a even 1 1 trivial
4704.2.a.p 1 28.d even 2 1
4704.2.a.r 1 4.b odd 2 1
4704.2.a.bh 1 7.b odd 2 1
9408.2.a.a 1 56.h odd 2 1
9408.2.a.bp 1 8.d odd 2 1
9408.2.a.bs 1 56.e even 2 1
9408.2.a.dd 1 8.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4704))\):

\( T_{5} + 4 \)
\( T_{11} - 6 \)
\( T_{13} - 5 \)
\( T_{19} - 1 \)
\( T_{31} + 3 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 + T \)
$5$ \( 1 + 4 T + 5 T^{2} \)
$7$ 1
$11$ \( 1 - 6 T + 11 T^{2} \)
$13$ \( 1 - 5 T + 13 T^{2} \)
$17$ \( 1 - 2 T + 17 T^{2} \)
$19$ \( 1 - T + 19 T^{2} \)
$23$ \( 1 + 6 T + 23 T^{2} \)
$29$ \( 1 + 29 T^{2} \)
$31$ \( 1 + 3 T + 31 T^{2} \)
$37$ \( 1 - 3 T + 37 T^{2} \)
$41$ \( 1 + 6 T + 41 T^{2} \)
$43$ \( 1 - 5 T + 43 T^{2} \)
$47$ \( 1 + 4 T + 47 T^{2} \)
$53$ \( 1 + 6 T + 53 T^{2} \)
$59$ \( 1 + 6 T + 59 T^{2} \)
$61$ \( 1 + 2 T + 61 T^{2} \)
$67$ \( 1 - 7 T + 67 T^{2} \)
$71$ \( 1 - 16 T + 71 T^{2} \)
$73$ \( 1 + 3 T + 73 T^{2} \)
$79$ \( 1 - 11 T + 79 T^{2} \)
$83$ \( 1 - 12 T + 83 T^{2} \)
$89$ \( 1 - 4 T + 89 T^{2} \)
$97$ \( 1 + 6 T + 97 T^{2} \)
show more
show less