Properties

Label 4680.2.l.e.2809.1
Level $4680$
Weight $2$
Character 4680.2809
Analytic conductor $37.370$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4680,2,Mod(2809,4680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4680.2809");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.3699881460\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5161984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1560)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2809.1
Root \(1.32001 - 1.32001i\) of defining polynomial
Character \(\chi\) \(=\) 4680.2809
Dual form 4680.2.l.e.2809.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32001 - 1.80487i) q^{5} +O(q^{10})\) \(q+(-1.32001 - 1.80487i) q^{5} +4.64002 q^{11} -1.00000i q^{13} -4.24977i q^{17} +6.24977 q^{19} +2.24977i q^{23} +(-1.51514 + 4.76491i) q^{25} -9.21949 q^{29} +9.28005 q^{31} +7.28005i q^{37} +5.67030 q^{41} +4.24977i q^{43} -2.88979i q^{47} +7.00000 q^{49} -9.21949i q^{53} +(-6.12489 - 8.37466i) q^{55} +5.92007 q^{59} +0.969724 q^{61} +(-1.80487 + 1.32001i) q^{65} -1.93945i q^{67} -5.60975 q^{71} +12.5601i q^{73} -12.2498 q^{79} -3.67030i q^{83} +(-7.67030 + 5.60975i) q^{85} -9.67030 q^{89} +(-8.24977 - 11.2800i) q^{95} -6.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 12 q^{11} + 4 q^{19} - 10 q^{25} - 20 q^{29} + 24 q^{31} + 20 q^{41} + 42 q^{49} - 20 q^{55} - 12 q^{59} + 4 q^{61} - 2 q^{65} - 16 q^{71} - 40 q^{79} - 32 q^{85} - 44 q^{89} - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4680\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(2081\) \(2341\) \(3511\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.32001 1.80487i −0.590327 0.807164i
\(6\) 0 0
\(7\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.64002 1.39902 0.699510 0.714623i \(-0.253402\pi\)
0.699510 + 0.714623i \(0.253402\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 4.24977i 1.03072i −0.856974 0.515360i \(-0.827658\pi\)
0.856974 0.515360i \(-0.172342\pi\)
\(18\) 0 0
\(19\) 6.24977 1.43380 0.716898 0.697178i \(-0.245561\pi\)
0.716898 + 0.697178i \(0.245561\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.24977i 0.469110i 0.972103 + 0.234555i \(0.0753632\pi\)
−0.972103 + 0.234555i \(0.924637\pi\)
\(24\) 0 0
\(25\) −1.51514 + 4.76491i −0.303028 + 0.952982i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −9.21949 −1.71202 −0.856009 0.516962i \(-0.827063\pi\)
−0.856009 + 0.516962i \(0.827063\pi\)
\(30\) 0 0
\(31\) 9.28005 1.66675 0.833373 0.552711i \(-0.186407\pi\)
0.833373 + 0.552711i \(0.186407\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.28005i 1.19683i 0.801185 + 0.598416i \(0.204203\pi\)
−0.801185 + 0.598416i \(0.795797\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.67030 0.885552 0.442776 0.896632i \(-0.353994\pi\)
0.442776 + 0.896632i \(0.353994\pi\)
\(42\) 0 0
\(43\) 4.24977i 0.648084i 0.946043 + 0.324042i \(0.105042\pi\)
−0.946043 + 0.324042i \(0.894958\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.88979i 0.421520i −0.977538 0.210760i \(-0.932406\pi\)
0.977538 0.210760i \(-0.0675938\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 9.21949i 1.26639i −0.773990 0.633197i \(-0.781742\pi\)
0.773990 0.633197i \(-0.218258\pi\)
\(54\) 0 0
\(55\) −6.12489 8.37466i −0.825879 1.12924i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.92007 0.770728 0.385364 0.922765i \(-0.374076\pi\)
0.385364 + 0.922765i \(0.374076\pi\)
\(60\) 0 0
\(61\) 0.969724 0.124160 0.0620802 0.998071i \(-0.480227\pi\)
0.0620802 + 0.998071i \(0.480227\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.80487 + 1.32001i −0.223867 + 0.163727i
\(66\) 0 0
\(67\) 1.93945i 0.236941i −0.992958 0.118471i \(-0.962201\pi\)
0.992958 0.118471i \(-0.0377991\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.60975 −0.665755 −0.332877 0.942970i \(-0.608019\pi\)
−0.332877 + 0.942970i \(0.608019\pi\)
\(72\) 0 0
\(73\) 12.5601i 1.47005i 0.678041 + 0.735024i \(0.262829\pi\)
−0.678041 + 0.735024i \(0.737171\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −12.2498 −1.37821 −0.689103 0.724663i \(-0.741995\pi\)
−0.689103 + 0.724663i \(0.741995\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.67030i 0.402868i −0.979502 0.201434i \(-0.935440\pi\)
0.979502 0.201434i \(-0.0645601\pi\)
\(84\) 0 0
\(85\) −7.67030 + 5.60975i −0.831961 + 0.608463i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.67030 −1.02505 −0.512525 0.858672i \(-0.671290\pi\)
−0.512525 + 0.858672i \(0.671290\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.24977 11.2800i −0.846409 1.15731i
\(96\) 0 0
\(97\) 6.00000i 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 15.2800 1.52042 0.760211 0.649677i \(-0.225096\pi\)
0.760211 + 0.649677i \(0.225096\pi\)
\(102\) 0 0
\(103\) 1.21949i 0.120160i −0.998194 0.0600802i \(-0.980864\pi\)
0.998194 0.0600802i \(-0.0191356\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.28005i 0.510441i 0.966883 + 0.255221i \(0.0821481\pi\)
−0.966883 + 0.255221i \(0.917852\pi\)
\(108\) 0 0
\(109\) 10.1892 0.975950 0.487975 0.872858i \(-0.337736\pi\)
0.487975 + 0.872858i \(0.337736\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.03028i 0.0969202i 0.998825 + 0.0484601i \(0.0154314\pi\)
−0.998825 + 0.0484601i \(0.984569\pi\)
\(114\) 0 0
\(115\) 4.06055 2.96972i 0.378648 0.276928i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.5298 0.957256
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 10.6001 3.55510i 0.948098 0.317978i
\(126\) 0 0
\(127\) 11.0303i 0.978779i −0.872065 0.489389i \(-0.837220\pi\)
0.872065 0.489389i \(-0.162780\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.21949 −0.630770 −0.315385 0.948964i \(-0.602134\pi\)
−0.315385 + 0.948964i \(0.602134\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.10929i 0.692823i −0.938083 0.346412i \(-0.887400\pi\)
0.938083 0.346412i \(-0.112600\pi\)
\(138\) 0 0
\(139\) 19.0596 1.61662 0.808309 0.588759i \(-0.200383\pi\)
0.808309 + 0.588759i \(0.200383\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.64002i 0.388018i
\(144\) 0 0
\(145\) 12.1698 + 16.6400i 1.01065 + 1.38188i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.92007 0.321145 0.160572 0.987024i \(-0.448666\pi\)
0.160572 + 0.987024i \(0.448666\pi\)
\(150\) 0 0
\(151\) 21.7796 1.77240 0.886199 0.463305i \(-0.153337\pi\)
0.886199 + 0.463305i \(0.153337\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −12.2498 16.7493i −0.983925 1.34534i
\(156\) 0 0
\(157\) 21.5904i 1.72310i −0.507673 0.861550i \(-0.669494\pi\)
0.507673 0.861550i \(-0.330506\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.28005i 0.100261i −0.998743 0.0501305i \(-0.984036\pi\)
0.998743 0.0501305i \(-0.0159637\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.8898i 1.46174i 0.682519 + 0.730868i \(0.260885\pi\)
−0.682519 + 0.730868i \(0.739115\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.9991i 1.74859i −0.485397 0.874294i \(-0.661325\pi\)
0.485397 0.874294i \(-0.338675\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.49954 −0.336312 −0.168156 0.985760i \(-0.553781\pi\)
−0.168156 + 0.985760i \(0.553781\pi\)
\(180\) 0 0
\(181\) −21.0596 −1.56535 −0.782675 0.622430i \(-0.786145\pi\)
−0.782675 + 0.622430i \(0.786145\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 13.1396 9.60975i 0.966040 0.706523i
\(186\) 0 0
\(187\) 19.7190i 1.44200i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 14.4390 1.04477 0.522384 0.852710i \(-0.325043\pi\)
0.522384 + 0.852710i \(0.325043\pi\)
\(192\) 0 0
\(193\) 21.7190i 1.56337i −0.623673 0.781685i \(-0.714360\pi\)
0.623673 0.781685i \(-0.285640\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.0109i 0.926988i 0.886100 + 0.463494i \(0.153404\pi\)
−0.886100 + 0.463494i \(0.846596\pi\)
\(198\) 0 0
\(199\) −18.6888 −1.32481 −0.662406 0.749145i \(-0.730464\pi\)
−0.662406 + 0.749145i \(0.730464\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −7.48486 10.2342i −0.522765 0.714786i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28.9991 2.00591
\(210\) 0 0
\(211\) −8.24977 −0.567938 −0.283969 0.958834i \(-0.591651\pi\)
−0.283969 + 0.958834i \(0.591651\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.67030 5.60975i 0.523110 0.382582i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.24977 −0.285871
\(222\) 0 0
\(223\) 9.77959i 0.654890i −0.944870 0.327445i \(-0.893812\pi\)
0.944870 0.327445i \(-0.106188\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 25.4499i 1.68917i −0.535423 0.844584i \(-0.679848\pi\)
0.535423 0.844584i \(-0.320152\pi\)
\(228\) 0 0
\(229\) 8.24977 0.545160 0.272580 0.962133i \(-0.412123\pi\)
0.272580 + 0.962133i \(0.412123\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 11.5904i 0.759310i 0.925128 + 0.379655i \(0.123957\pi\)
−0.925128 + 0.379655i \(0.876043\pi\)
\(234\) 0 0
\(235\) −5.21571 + 3.81456i −0.340236 + 0.248835i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.88979 −0.445664 −0.222832 0.974857i \(-0.571530\pi\)
−0.222832 + 0.974857i \(0.571530\pi\)
\(240\) 0 0
\(241\) 21.2195 1.36687 0.683434 0.730012i \(-0.260486\pi\)
0.683434 + 0.730012i \(0.260486\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.24008 12.6341i −0.590327 0.807164i
\(246\) 0 0
\(247\) 6.24977i 0.397663i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.3397 1.53631 0.768154 0.640266i \(-0.221176\pi\)
0.768154 + 0.640266i \(0.221176\pi\)
\(252\) 0 0
\(253\) 10.4390i 0.656294i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.4693i 1.46397i 0.681319 + 0.731986i \(0.261407\pi\)
−0.681319 + 0.731986i \(0.738593\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.6282i 1.39532i −0.716431 0.697658i \(-0.754226\pi\)
0.716431 0.697658i \(-0.245774\pi\)
\(264\) 0 0
\(265\) −16.6400 + 12.1698i −1.02219 + 0.747587i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 12.2791 0.748672 0.374336 0.927293i \(-0.377871\pi\)
0.374336 + 0.927293i \(0.377871\pi\)
\(270\) 0 0
\(271\) −22.9385 −1.39342 −0.696708 0.717355i \(-0.745353\pi\)
−0.696708 + 0.717355i \(0.745353\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −7.03028 + 22.1093i −0.423942 + 1.33324i
\(276\) 0 0
\(277\) 11.5298i 0.692760i 0.938094 + 0.346380i \(0.112589\pi\)
−0.938094 + 0.346380i \(0.887411\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 11.3288 0.675819 0.337909 0.941179i \(-0.390280\pi\)
0.337909 + 0.941179i \(0.390280\pi\)
\(282\) 0 0
\(283\) 20.9991i 1.24827i −0.781318 0.624133i \(-0.785452\pi\)
0.781318 0.624133i \(-0.214548\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.06055 −0.0623854
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.26915i 0.249406i −0.992194 0.124703i \(-0.960202\pi\)
0.992194 0.124703i \(-0.0397979\pi\)
\(294\) 0 0
\(295\) −7.81456 10.6850i −0.454981 0.622104i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2.24977 0.130108
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.28005 1.75023i −0.0732953 0.100218i
\(306\) 0 0
\(307\) 20.0000i 1.14146i −0.821138 0.570730i \(-0.806660\pi\)
0.821138 0.570730i \(-0.193340\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.71904 −0.210887 −0.105444 0.994425i \(-0.533626\pi\)
−0.105444 + 0.994425i \(0.533626\pi\)
\(312\) 0 0
\(313\) 1.52982i 0.0864704i −0.999065 0.0432352i \(-0.986234\pi\)
0.999065 0.0432352i \(-0.0137665\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 16.1093i 0.904788i −0.891818 0.452394i \(-0.850570\pi\)
0.891818 0.452394i \(-0.149430\pi\)
\(318\) 0 0
\(319\) −42.7787 −2.39515
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.5601i 1.47784i
\(324\) 0 0
\(325\) 4.76491 + 1.51514i 0.264310 + 0.0840447i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 15.5298 0.853596 0.426798 0.904347i \(-0.359642\pi\)
0.426798 + 0.904347i \(0.359642\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.50046 + 2.56009i −0.191250 + 0.139873i
\(336\) 0 0
\(337\) 21.4087i 1.16621i −0.812398 0.583103i \(-0.801838\pi\)
0.812398 0.583103i \(-0.198162\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 43.0596 2.33181
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.62065i 0.248049i 0.992279 + 0.124025i \(0.0395802\pi\)
−0.992279 + 0.124025i \(0.960420\pi\)
\(348\) 0 0
\(349\) −23.9688 −1.28302 −0.641510 0.767114i \(-0.721692\pi\)
−0.641510 + 0.767114i \(0.721692\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.511357i 0.0272168i −0.999907 0.0136084i \(-0.995668\pi\)
0.999907 0.0136084i \(-0.00433182\pi\)
\(354\) 0 0
\(355\) 7.40493 + 10.1249i 0.393013 + 0.537373i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −12.6694 −0.668664 −0.334332 0.942455i \(-0.608511\pi\)
−0.334332 + 0.942455i \(0.608511\pi\)
\(360\) 0 0
\(361\) 20.0596 1.05577
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.6694 16.5795i 1.18657 0.867809i
\(366\) 0 0
\(367\) 0.841057i 0.0439028i −0.999759 0.0219514i \(-0.993012\pi\)
0.999759 0.0219514i \(-0.00698792\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 29.0596i 1.50465i 0.658792 + 0.752325i \(0.271068\pi\)
−0.658792 + 0.752325i \(0.728932\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.21949i 0.474828i
\(378\) 0 0
\(379\) −9.75023 −0.500836 −0.250418 0.968138i \(-0.580568\pi\)
−0.250418 + 0.968138i \(0.580568\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 7.38934i 0.377577i −0.982018 0.188789i \(-0.939544\pi\)
0.982018 0.188789i \(-0.0604561\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −14.0000 −0.709828 −0.354914 0.934899i \(-0.615490\pi\)
−0.354914 + 0.934899i \(0.615490\pi\)
\(390\) 0 0
\(391\) 9.56101 0.483521
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 16.1698 + 22.1093i 0.813593 + 1.11244i
\(396\) 0 0
\(397\) 26.2186i 1.31587i 0.753074 + 0.657936i \(0.228570\pi\)
−0.753074 + 0.657936i \(0.771430\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −10.2909 −0.513905 −0.256953 0.966424i \(-0.582718\pi\)
−0.256953 + 0.966424i \(0.582718\pi\)
\(402\) 0 0
\(403\) 9.28005i 0.462272i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 33.7796i 1.67439i
\(408\) 0 0
\(409\) 11.9007 0.588451 0.294226 0.955736i \(-0.404938\pi\)
0.294226 + 0.955736i \(0.404938\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.62443 + 4.84484i −0.325180 + 0.237824i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 26.2791 1.28382 0.641910 0.766780i \(-0.278142\pi\)
0.641910 + 0.766780i \(0.278142\pi\)
\(420\) 0 0
\(421\) 22.3103 1.08734 0.543669 0.839300i \(-0.317035\pi\)
0.543669 + 0.839300i \(0.317035\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 20.2498 + 6.43899i 0.982258 + 0.312337i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −12.0487 −0.580367 −0.290184 0.956971i \(-0.593716\pi\)
−0.290184 + 0.956971i \(0.593716\pi\)
\(432\) 0 0
\(433\) 27.5904i 1.32591i −0.748660 0.662954i \(-0.769302\pi\)
0.748660 0.662954i \(-0.230698\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 14.0606i 0.672607i
\(438\) 0 0
\(439\) −19.8789 −0.948768 −0.474384 0.880318i \(-0.657329\pi\)
−0.474384 + 0.880318i \(0.657329\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.9007i 0.850488i 0.905079 + 0.425244i \(0.139812\pi\)
−0.905079 + 0.425244i \(0.860188\pi\)
\(444\) 0 0
\(445\) 12.7649 + 17.4537i 0.605115 + 0.827383i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −17.2682 −0.814938 −0.407469 0.913219i \(-0.633589\pi\)
−0.407469 + 0.913219i \(0.633589\pi\)
\(450\) 0 0
\(451\) 26.3103 1.23890
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 30.4995i 1.42671i −0.700804 0.713354i \(-0.747175\pi\)
0.700804 0.713354i \(-0.252825\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.64002 0.122958 0.0614791 0.998108i \(-0.480418\pi\)
0.0614791 + 0.998108i \(0.480418\pi\)
\(462\) 0 0
\(463\) 16.0000i 0.743583i 0.928316 + 0.371792i \(0.121256\pi\)
−0.928316 + 0.371792i \(0.878744\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.78051i 0.221215i 0.993864 + 0.110608i \(0.0352797\pi\)
−0.993864 + 0.110608i \(0.964720\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 19.7190i 0.906682i
\(474\) 0 0
\(475\) −9.46927 + 29.7796i −0.434480 + 1.36638i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.11021 0.416256 0.208128 0.978102i \(-0.433263\pi\)
0.208128 + 0.978102i \(0.433263\pi\)
\(480\) 0 0
\(481\) 7.28005 0.331942
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −10.8292 + 7.92007i −0.491731 + 0.359632i
\(486\) 0 0
\(487\) 26.2791i 1.19082i −0.803422 0.595411i \(-0.796989\pi\)
0.803422 0.595411i \(-0.203011\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −5.40115 −0.243751 −0.121875 0.992545i \(-0.538891\pi\)
−0.121875 + 0.992545i \(0.538891\pi\)
\(492\) 0 0
\(493\) 39.1807i 1.76461i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −22.9092 −1.02556 −0.512778 0.858521i \(-0.671383\pi\)
−0.512778 + 0.858521i \(0.671383\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 37.3094i 1.66354i 0.555117 + 0.831772i \(0.312673\pi\)
−0.555117 + 0.831772i \(0.687327\pi\)
\(504\) 0 0
\(505\) −20.1698 27.5786i −0.897546 1.22723i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.700576 −0.0310525 −0.0155262 0.999879i \(-0.504942\pi\)
−0.0155262 + 0.999879i \(0.504942\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.20103 + 1.60975i −0.0969891 + 0.0709339i
\(516\) 0 0
\(517\) 13.4087i 0.589715i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.8401 −0.606348 −0.303174 0.952935i \(-0.598046\pi\)
−0.303174 + 0.952935i \(0.598046\pi\)
\(522\) 0 0
\(523\) 43.6878i 1.91034i 0.296064 + 0.955168i \(0.404326\pi\)
−0.296064 + 0.955168i \(0.595674\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 39.4381i 1.71795i
\(528\) 0 0
\(529\) 17.9385 0.779936
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 5.67030i 0.245608i
\(534\) 0 0
\(535\) 9.52982 6.96972i 0.412010 0.301327i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 32.4802 1.39902
\(540\) 0 0
\(541\) 14.1892 0.610042 0.305021 0.952346i \(-0.401336\pi\)
0.305021 + 0.952346i \(0.401336\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.4499 18.3903i −0.576130 0.787752i
\(546\) 0 0
\(547\) 44.3085i 1.89449i 0.320504 + 0.947247i \(0.396148\pi\)
−0.320504 + 0.947247i \(0.603852\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −57.6197 −2.45468
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 39.2077i 1.66128i 0.556808 + 0.830641i \(0.312026\pi\)
−0.556808 + 0.830641i \(0.687974\pi\)
\(558\) 0 0
\(559\) 4.24977 0.179746
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0606i 0.761162i −0.924748 0.380581i \(-0.875724\pi\)
0.924748 0.380581i \(-0.124276\pi\)
\(564\) 0 0
\(565\) 1.85952 1.35998i 0.0782305 0.0572146i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −42.3397 −1.77497 −0.887486 0.460835i \(-0.847550\pi\)
−0.887486 + 0.460835i \(0.847550\pi\)
\(570\) 0 0
\(571\) −39.9301 −1.67102 −0.835510 0.549475i \(-0.814828\pi\)
−0.835510 + 0.549475i \(0.814828\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −10.7200 3.40871i −0.447053 0.142153i
\(576\) 0 0
\(577\) 21.3406i 0.888421i 0.895923 + 0.444210i \(0.146516\pi\)
−0.895923 + 0.444210i \(0.853484\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 42.7787i 1.77171i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 32.7905i 1.35341i −0.736255 0.676704i \(-0.763408\pi\)
0.736255 0.676704i \(-0.236592\pi\)
\(588\) 0 0
\(589\) 57.9982 2.38977
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.66938i 0.273879i 0.990579 + 0.136939i \(0.0437265\pi\)
−0.990579 + 0.136939i \(0.956273\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.40115 0.0572495 0.0286247 0.999590i \(-0.490887\pi\)
0.0286247 + 0.999590i \(0.490887\pi\)
\(600\) 0 0
\(601\) 0.349078 0.0142392 0.00711959 0.999975i \(-0.497734\pi\)
0.00711959 + 0.999975i \(0.497734\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.8995 19.0050i −0.565094 0.772663i
\(606\) 0 0
\(607\) 27.2800i 1.10726i −0.832762 0.553631i \(-0.813242\pi\)
0.832762 0.553631i \(-0.186758\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.88979 −0.116909
\(612\) 0 0
\(613\) 9.34060i 0.377263i −0.982048 0.188632i \(-0.939595\pi\)
0.982048 0.188632i \(-0.0604052\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 34.6694i 1.39574i 0.716226 + 0.697868i \(0.245868\pi\)
−0.716226 + 0.697868i \(0.754132\pi\)
\(618\) 0 0
\(619\) −19.6509 −0.789837 −0.394919 0.918716i \(-0.629227\pi\)
−0.394919 + 0.918716i \(0.629227\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −20.4087 14.4390i −0.816349 0.577560i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 30.9385 1.23360
\(630\) 0 0
\(631\) −43.3993 −1.72770 −0.863850 0.503749i \(-0.831953\pi\)
−0.863850 + 0.503749i \(0.831953\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −19.9083 + 14.5601i −0.790035 + 0.577800i
\(636\) 0 0
\(637\) 7.00000i 0.277350i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 4.56009 0.180113 0.0900564 0.995937i \(-0.471295\pi\)
0.0900564 + 0.995937i \(0.471295\pi\)
\(642\) 0 0
\(643\) 8.62065i 0.339965i 0.985447 + 0.169983i \(0.0543711\pi\)
−0.985447 + 0.169983i \(0.945629\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.40871i 0.291267i 0.989339 + 0.145633i \(0.0465220\pi\)
−0.989339 + 0.145633i \(0.953478\pi\)
\(648\) 0 0
\(649\) 27.4693 1.07826
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.00000i 0.0782660i −0.999234 0.0391330i \(-0.987540\pi\)
0.999234 0.0391330i \(-0.0124596\pi\)
\(654\) 0 0
\(655\) 9.52982 + 13.0303i 0.372361 + 0.509135i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.3784 1.57292 0.786460 0.617641i \(-0.211911\pi\)
0.786460 + 0.617641i \(0.211911\pi\)
\(660\) 0 0
\(661\) 39.0284 1.51803 0.759015 0.651073i \(-0.225681\pi\)
0.759015 + 0.651073i \(0.225681\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.7418i 0.803124i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 4.49954 0.173703
\(672\) 0 0
\(673\) 11.1807i 0.430986i 0.976505 + 0.215493i \(0.0691358\pi\)
−0.976505 + 0.215493i \(0.930864\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 33.3406i 1.28138i 0.767798 + 0.640692i \(0.221352\pi\)
−0.767798 + 0.640692i \(0.778648\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 31.8889i 1.22019i −0.792327 0.610097i \(-0.791130\pi\)
0.792327 0.610097i \(-0.208870\pi\)
\(684\) 0 0
\(685\) −14.6362 + 10.7044i −0.559222 + 0.408992i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.21949 −0.351235
\(690\) 0 0
\(691\) 39.0303 1.48478 0.742391 0.669967i \(-0.233692\pi\)
0.742391 + 0.669967i \(0.233692\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −25.1589 34.4002i −0.954333 1.30488i
\(696\) 0 0
\(697\) 24.0975i 0.912757i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 44.5601 1.68301 0.841506 0.540248i \(-0.181670\pi\)
0.841506 + 0.540248i \(0.181670\pi\)
\(702\) 0 0
\(703\) 45.4986i 1.71601i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −23.4305 −0.879951 −0.439976 0.898010i \(-0.645013\pi\)
−0.439976 + 0.898010i \(0.645013\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 20.8780i 0.781886i
\(714\) 0 0
\(715\) −8.37466 + 6.12489i −0.313194 + 0.229058i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −15.0984 −0.563075 −0.281537 0.959550i \(-0.590844\pi\)
−0.281537 + 0.959550i \(0.590844\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 13.9688 43.9301i 0.518788 1.63152i
\(726\) 0 0
\(727\) 3.40871i 0.126422i 0.998000 + 0.0632111i \(0.0201341\pi\)
−0.998000 + 0.0632111i \(0.979866\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.0606 0.667994
\(732\) 0 0
\(733\) 12.4390i 0.459445i −0.973256 0.229722i \(-0.926218\pi\)
0.973256 0.229722i \(-0.0737818\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.99908i 0.331485i
\(738\) 0 0
\(739\) 13.4693 0.495475 0.247737 0.968827i \(-0.420313\pi\)
0.247737 + 0.968827i \(0.420313\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 45.4111i 1.66597i −0.553293 0.832986i \(-0.686629\pi\)
0.553293 0.832986i \(-0.313371\pi\)
\(744\) 0 0
\(745\) −5.17454 7.07523i −0.189580 0.259216i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.56101 0.0569621 0.0284810 0.999594i \(-0.490933\pi\)
0.0284810 + 0.999594i \(0.490933\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −28.7493 39.3094i −1.04629 1.43062i
\(756\) 0 0
\(757\) 38.8780i 1.41304i 0.707691 + 0.706522i \(0.249737\pi\)
−0.707691 + 0.706522i \(0.750263\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −5.42809 −0.196768 −0.0983841 0.995149i \(-0.531367\pi\)
−0.0983841 + 0.995149i \(0.531367\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.92007i 0.213761i
\(768\) 0 0
\(769\) −16.4390 −0.592805 −0.296403 0.955063i \(-0.595787\pi\)
−0.296403 + 0.955063i \(0.595787\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 42.3884i 1.52461i 0.647221 + 0.762303i \(0.275931\pi\)
−0.647221 + 0.762303i \(0.724069\pi\)
\(774\) 0 0
\(775\) −14.0606 + 44.2186i −0.505070 + 1.58838i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 35.4381 1.26970
\(780\) 0 0
\(781\) −26.0294 −0.931404
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −38.9679 + 28.4995i −1.39082 + 1.01719i
\(786\) 0 0
\(787\) 15.5592i 0.554625i −0.960780 0.277312i \(-0.910556\pi\)
0.960780 0.277312i \(-0.0894437\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.969724i 0.0344359i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 36.4002i 1.28936i −0.764452 0.644681i \(-0.776990\pi\)
0.764452 0.644681i \(-0.223010\pi\)
\(798\) 0 0
\(799\) −12.2810 −0.434469
\(800\) 0 0
\(801\) 0 0
\(802\) 0