Properties

Label 4680.2.l.e
Level $4680$
Weight $2$
Character orbit 4680.l
Analytic conductor $37.370$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4680,2,Mod(2809,4680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4680.2809");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4680.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.3699881460\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.5161984.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1560)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{5}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{4} q^{5} + ( - \beta_{5} - \beta_{4} + 2) q^{11} - \beta_{3} q^{13} + ( - \beta_{5} + \beta_{4} + \cdots - \beta_1) q^{17}+ \cdots - 6 \beta_{3} q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 12 q^{11} + 4 q^{19} - 10 q^{25} - 20 q^{29} + 24 q^{31} + 20 q^{41} + 42 q^{49} - 20 q^{55} - 12 q^{59} + 4 q^{61} - 2 q^{65} - 16 q^{71} - 40 q^{79} - 32 q^{85} - 44 q^{89} - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 4x^{3} + 25x^{2} - 20x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 2\nu^{5} + 25\nu^{4} + 10\nu^{3} - 4\nu^{2} - 121\nu + 323 ) / 121 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -7\nu^{5} - 27\nu^{4} - 35\nu^{3} + 14\nu^{2} - 121\nu - 223 ) / 121 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -25\nu^{5} - 10\nu^{4} - 4\nu^{3} + 50\nu^{2} - 605\nu + 258 ) / 242 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -65\nu^{5} - 26\nu^{4} + 38\nu^{3} + 372\nu^{2} - 1573\nu + 574 ) / 242 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 75\nu^{5} + 30\nu^{4} + 12\nu^{3} - 392\nu^{2} + 1573\nu - 774 ) / 242 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{5} - \beta_{4} - \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{5} + \beta_{4} - 6\beta_{3} + \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{5} + 5\beta_{4} + 4\beta_{3} - 5\beta_{2} - 5\beta _1 + 4 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -9\beta_{5} - 9\beta_{4} - 5\beta_{2} + 5\beta _1 - 30 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 25\beta_{5} + 29\beta_{4} - 32\beta_{3} + 29\beta_{2} + 25\beta _1 + 32 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4680\mathbb{Z}\right)^\times\).

\(n\) \(937\) \(1081\) \(2081\) \(2341\) \(3511\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2809.1
1.32001 1.32001i
1.32001 + 1.32001i
0.432320 + 0.432320i
0.432320 0.432320i
−1.75233 + 1.75233i
−1.75233 1.75233i
0 0 0 −1.32001 1.80487i 0 0 0 0 0
2809.2 0 0 0 −1.32001 + 1.80487i 0 0 0 0 0
2809.3 0 0 0 −0.432320 2.19388i 0 0 0 0 0
2809.4 0 0 0 −0.432320 + 2.19388i 0 0 0 0 0
2809.5 0 0 0 1.75233 1.38900i 0 0 0 0 0
2809.6 0 0 0 1.75233 + 1.38900i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2809.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4680.2.l.e 6
3.b odd 2 1 1560.2.l.c 6
5.b even 2 1 inner 4680.2.l.e 6
12.b even 2 1 3120.2.l.m 6
15.d odd 2 1 1560.2.l.c 6
15.e even 4 1 7800.2.a.bj 3
15.e even 4 1 7800.2.a.bp 3
60.h even 2 1 3120.2.l.m 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1560.2.l.c 6 3.b odd 2 1
1560.2.l.c 6 15.d odd 2 1
3120.2.l.m 6 12.b even 2 1
3120.2.l.m 6 60.h even 2 1
4680.2.l.e 6 1.a even 1 1 trivial
4680.2.l.e 6 5.b even 2 1 inner
7800.2.a.bj 3 15.e even 4 1
7800.2.a.bp 3 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4680, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11}^{3} - 6T_{11}^{2} + 2T_{11} + 20 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 5 T^{4} + \cdots + 125 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( (T^{3} - 6 T^{2} + 2 T + 20)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{6} + 56 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$19$ \( (T^{3} - 2 T^{2} - 24 T - 16)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + 84 T^{4} + \cdots + 6400 \) Copy content Toggle raw display
$29$ \( (T^{3} + 10 T^{2} + \cdots - 472)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} - 12 T^{2} + \cdots + 160)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + 92 T^{4} + \cdots + 18496 \) Copy content Toggle raw display
$41$ \( (T^{3} - 10 T^{2} + \cdots + 332)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + 56 T^{4} + \cdots + 4096 \) Copy content Toggle raw display
$47$ \( T^{6} + 188 T^{4} + \cdots + 65536 \) Copy content Toggle raw display
$53$ \( T^{6} + 188 T^{4} + \cdots + 222784 \) Copy content Toggle raw display
$59$ \( (T^{3} + 6 T^{2} - 78 T + 44)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 2 T^{2} - 32 T + 32)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + 272 T^{4} + \cdots + 65536 \) Copy content Toggle raw display
$71$ \( (T^{3} + 8 T^{2} + 2 T - 64)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 332 T^{4} + \cdots + 678976 \) Copy content Toggle raw display
$79$ \( (T^{3} + 20 T^{2} + \cdots + 160)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + 140 T^{4} + \cdots + 53824 \) Copy content Toggle raw display
$89$ \( (T^{3} + 22 T^{2} + \cdots - 244)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 36)^{3} \) Copy content Toggle raw display
show more
show less