# Properties

 Label 4680.2.a.l Level $4680$ Weight $2$ Character orbit 4680.a Self dual yes Analytic conductor $37.370$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4680,2,Mod(1,4680)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4680, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4680.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4680.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$37.3699881460$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1560) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{5} + 4 q^{7}+O(q^{10})$$ q - q^5 + 4 * q^7 $$q - q^{5} + 4 q^{7} + q^{13} - 2 q^{17} + q^{25} + 2 q^{29} - 4 q^{31} - 4 q^{35} + 6 q^{37} + 6 q^{41} + 4 q^{43} + 4 q^{47} + 9 q^{49} + 10 q^{53} - 2 q^{61} - q^{65} + 8 q^{67} - 4 q^{71} - 6 q^{73} - 8 q^{79} - 8 q^{83} + 2 q^{85} + 6 q^{89} + 4 q^{91} - 14 q^{97}+O(q^{100})$$ q - q^5 + 4 * q^7 + q^13 - 2 * q^17 + q^25 + 2 * q^29 - 4 * q^31 - 4 * q^35 + 6 * q^37 + 6 * q^41 + 4 * q^43 + 4 * q^47 + 9 * q^49 + 10 * q^53 - 2 * q^61 - q^65 + 8 * q^67 - 4 * q^71 - 6 * q^73 - 8 * q^79 - 8 * q^83 + 2 * q^85 + 6 * q^89 + 4 * q^91 - 14 * q^97

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 0 0 −1.00000 0 4.00000 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4680.2.a.l 1
3.b odd 2 1 1560.2.a.l 1
4.b odd 2 1 9360.2.a.a 1
12.b even 2 1 3120.2.a.i 1
15.d odd 2 1 7800.2.a.a 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1560.2.a.l 1 3.b odd 2 1
3120.2.a.i 1 12.b even 2 1
4680.2.a.l 1 1.a even 1 1 trivial
7800.2.a.a 1 15.d odd 2 1
9360.2.a.a 1 4.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4680))$$:

 $$T_{7} - 4$$ T7 - 4 $$T_{11}$$ T11 $$T_{17} + 2$$ T17 + 2 $$T_{19}$$ T19

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T$$
$5$ $$T + 1$$
$7$ $$T - 4$$
$11$ $$T$$
$13$ $$T - 1$$
$17$ $$T + 2$$
$19$ $$T$$
$23$ $$T$$
$29$ $$T - 2$$
$31$ $$T + 4$$
$37$ $$T - 6$$
$41$ $$T - 6$$
$43$ $$T - 4$$
$47$ $$T - 4$$
$53$ $$T - 10$$
$59$ $$T$$
$61$ $$T + 2$$
$67$ $$T - 8$$
$71$ $$T + 4$$
$73$ $$T + 6$$
$79$ $$T + 8$$
$83$ $$T + 8$$
$89$ $$T - 6$$
$97$ $$T + 14$$