Properties

Label 4680.2.a.be
Level $4680$
Weight $2$
Character orbit 4680.a
Self dual yes
Analytic conductor $37.370$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4680,2,Mod(1,4680)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4680, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4680.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4680.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.3699881460\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 520)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{5} + 2 \beta q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{5} + 2 \beta q^{7} + (\beta + 3) q^{11} + q^{13} - 2 \beta q^{17} + (\beta - 5) q^{19} + (3 \beta + 3) q^{23} + q^{25} + (2 \beta + 2) q^{29} + ( - \beta - 3) q^{31} + 2 \beta q^{35} + ( - 4 \beta + 4) q^{37} + (2 \beta + 8) q^{41} + ( - \beta - 1) q^{43} + (2 \beta + 8) q^{47} + 5 q^{49} + ( - 2 \beta - 8) q^{53} + (\beta + 3) q^{55} + ( - 3 \beta + 7) q^{59} + ( - 2 \beta - 2) q^{61} + q^{65} + (8 \beta + 2) q^{67} + ( - 5 \beta - 3) q^{71} + (6 \beta + 6) q^{77} + ( - 2 \beta + 6) q^{79} + ( - 2 \beta - 8) q^{83} - 2 \beta q^{85} + (4 \beta - 2) q^{89} + 2 \beta q^{91} + (\beta - 5) q^{95} + ( - 8 \beta + 2) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{5} + 6 q^{11} + 2 q^{13} - 10 q^{19} + 6 q^{23} + 2 q^{25} + 4 q^{29} - 6 q^{31} + 8 q^{37} + 16 q^{41} - 2 q^{43} + 16 q^{47} + 10 q^{49} - 16 q^{53} + 6 q^{55} + 14 q^{59} - 4 q^{61} + 2 q^{65} + 4 q^{67} - 6 q^{71} + 12 q^{77} + 12 q^{79} - 16 q^{83} - 4 q^{89} - 10 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
0 0 0 1.00000 0 −3.46410 0 0 0
1.2 0 0 0 1.00000 0 3.46410 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4680.2.a.be 2
3.b odd 2 1 520.2.a.d 2
4.b odd 2 1 9360.2.a.cq 2
12.b even 2 1 1040.2.a.m 2
15.d odd 2 1 2600.2.a.u 2
15.e even 4 2 2600.2.d.l 4
24.f even 2 1 4160.2.a.v 2
24.h odd 2 1 4160.2.a.bl 2
39.d odd 2 1 6760.2.a.p 2
60.h even 2 1 5200.2.a.bo 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.2.a.d 2 3.b odd 2 1
1040.2.a.m 2 12.b even 2 1
2600.2.a.u 2 15.d odd 2 1
2600.2.d.l 4 15.e even 4 2
4160.2.a.v 2 24.f even 2 1
4160.2.a.bl 2 24.h odd 2 1
4680.2.a.be 2 1.a even 1 1 trivial
5200.2.a.bo 2 60.h even 2 1
6760.2.a.p 2 39.d odd 2 1
9360.2.a.cq 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(4680))\):

\( T_{7}^{2} - 12 \) Copy content Toggle raw display
\( T_{11}^{2} - 6T_{11} + 6 \) Copy content Toggle raw display
\( T_{17}^{2} - 12 \) Copy content Toggle raw display
\( T_{19}^{2} + 10T_{19} + 22 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 12 \) Copy content Toggle raw display
$11$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 12 \) Copy content Toggle raw display
$19$ \( T^{2} + 10T + 22 \) Copy content Toggle raw display
$23$ \( T^{2} - 6T - 18 \) Copy content Toggle raw display
$29$ \( T^{2} - 4T - 8 \) Copy content Toggle raw display
$31$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$37$ \( T^{2} - 8T - 32 \) Copy content Toggle raw display
$41$ \( T^{2} - 16T + 52 \) Copy content Toggle raw display
$43$ \( T^{2} + 2T - 2 \) Copy content Toggle raw display
$47$ \( T^{2} - 16T + 52 \) Copy content Toggle raw display
$53$ \( T^{2} + 16T + 52 \) Copy content Toggle raw display
$59$ \( T^{2} - 14T + 22 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T - 8 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T - 188 \) Copy content Toggle raw display
$71$ \( T^{2} + 6T - 66 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 12T + 24 \) Copy content Toggle raw display
$83$ \( T^{2} + 16T + 52 \) Copy content Toggle raw display
$89$ \( T^{2} + 4T - 44 \) Copy content Toggle raw display
$97$ \( T^{2} - 4T - 188 \) Copy content Toggle raw display
show more
show less