Defining parameters
| Level: | \( N \) | \(=\) | \( 4680 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4680.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 38 \) | ||
| Sturm bound: | \(2016\) | ||
| Trace bound: | \(19\) | ||
| Distinguishing \(T_p\): | \(7\), \(11\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4680))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 1040 | 60 | 980 |
| Cusp forms | 977 | 60 | 917 |
| Eisenstein series | 63 | 0 | 63 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(5\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(60\) | \(3\) | \(57\) | \(57\) | \(3\) | \(54\) | \(3\) | \(0\) | \(3\) | |||
| \(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(68\) | \(3\) | \(65\) | \(64\) | \(3\) | \(61\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(64\) | \(4\) | \(60\) | \(60\) | \(4\) | \(56\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(68\) | \(2\) | \(66\) | \(64\) | \(2\) | \(62\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(67\) | \(5\) | \(62\) | \(63\) | \(5\) | \(58\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(65\) | \(4\) | \(61\) | \(61\) | \(4\) | \(57\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(63\) | \(4\) | \(59\) | \(59\) | \(4\) | \(55\) | \(4\) | \(0\) | \(4\) | |||
| \(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(65\) | \(6\) | \(59\) | \(61\) | \(6\) | \(55\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(70\) | \(4\) | \(66\) | \(66\) | \(4\) | \(62\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(62\) | \(2\) | \(60\) | \(58\) | \(2\) | \(56\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(66\) | \(3\) | \(63\) | \(62\) | \(3\) | \(59\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(62\) | \(3\) | \(59\) | \(58\) | \(3\) | \(55\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(63\) | \(4\) | \(59\) | \(59\) | \(4\) | \(55\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(65\) | \(4\) | \(61\) | \(61\) | \(4\) | \(57\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(67\) | \(4\) | \(63\) | \(63\) | \(4\) | \(59\) | \(4\) | \(0\) | \(4\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(65\) | \(5\) | \(60\) | \(61\) | \(5\) | \(56\) | \(4\) | \(0\) | \(4\) | |||
| Plus space | \(+\) | \(512\) | \(27\) | \(485\) | \(481\) | \(27\) | \(454\) | \(31\) | \(0\) | \(31\) | ||||||
| Minus space | \(-\) | \(528\) | \(33\) | \(495\) | \(496\) | \(33\) | \(463\) | \(32\) | \(0\) | \(32\) | ||||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4680))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4680))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4680)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(117))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(234))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(468))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(585))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(936))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1170))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1560))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2340))\)\(^{\oplus 2}\)