Defining parameters
Level: | \( N \) | \(=\) | \( 4655 = 5 \cdot 7^{2} \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4655.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 45 \) | ||
Sturm bound: | \(1120\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(2\), \(3\), \(11\), \(13\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(4655))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 576 | 246 | 330 |
Cusp forms | 545 | 246 | 299 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(7\) | \(19\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(23\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(39\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(36\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(24\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(37\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(21\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(27\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(39\) |
Plus space | \(+\) | \(95\) | ||
Minus space | \(-\) | \(151\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(4655))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(4655))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(4655)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(35))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(133))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(245))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(665))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(931))\)\(^{\oplus 2}\)