Properties

Label 4650.2.d.y
Level $4650$
Weight $2$
Character orbit 4650.d
Analytic conductor $37.130$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(37.1304369399\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + i q^{2} -i q^{3} - q^{4} + q^{6} + 3 i q^{7} -i q^{8} - q^{9} +O(q^{10})\) \( q + i q^{2} -i q^{3} - q^{4} + q^{6} + 3 i q^{7} -i q^{8} - q^{9} + 3 q^{11} + i q^{12} -2 i q^{13} -3 q^{14} + q^{16} + 4 i q^{17} -i q^{18} + 3 q^{19} + 3 q^{21} + 3 i q^{22} + 5 i q^{23} - q^{24} + 2 q^{26} + i q^{27} -3 i q^{28} -4 q^{29} + q^{31} + i q^{32} -3 i q^{33} -4 q^{34} + q^{36} + 3 i q^{38} -2 q^{39} + 4 q^{41} + 3 i q^{42} + i q^{43} -3 q^{44} -5 q^{46} -10 i q^{47} -i q^{48} -2 q^{49} + 4 q^{51} + 2 i q^{52} + 3 i q^{53} - q^{54} + 3 q^{56} -3 i q^{57} -4 i q^{58} -6 q^{59} -2 q^{61} + i q^{62} -3 i q^{63} - q^{64} + 3 q^{66} -2 i q^{67} -4 i q^{68} + 5 q^{69} + 7 q^{71} + i q^{72} + 5 i q^{73} -3 q^{76} + 9 i q^{77} -2 i q^{78} + q^{79} + q^{81} + 4 i q^{82} + 12 i q^{83} -3 q^{84} - q^{86} + 4 i q^{87} -3 i q^{88} - q^{89} + 6 q^{91} -5 i q^{92} -i q^{93} + 10 q^{94} + q^{96} + 10 i q^{97} -2 i q^{98} -3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{4} + 2q^{6} - 2q^{9} + O(q^{10}) \) \( 2q - 2q^{4} + 2q^{6} - 2q^{9} + 6q^{11} - 6q^{14} + 2q^{16} + 6q^{19} + 6q^{21} - 2q^{24} + 4q^{26} - 8q^{29} + 2q^{31} - 8q^{34} + 2q^{36} - 4q^{39} + 8q^{41} - 6q^{44} - 10q^{46} - 4q^{49} + 8q^{51} - 2q^{54} + 6q^{56} - 12q^{59} - 4q^{61} - 2q^{64} + 6q^{66} + 10q^{69} + 14q^{71} - 6q^{76} + 2q^{79} + 2q^{81} - 6q^{84} - 2q^{86} - 2q^{89} + 12q^{91} + 20q^{94} + 2q^{96} - 6q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3349.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 0 1.00000 3.00000i 1.00000i −1.00000 0
3349.2 1.00000i 1.00000i −1.00000 0 1.00000 3.00000i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4650.2.d.y 2
5.b even 2 1 inner 4650.2.d.y 2
5.c odd 4 1 930.2.a.a 1
5.c odd 4 1 4650.2.a.bv 1
15.e even 4 1 2790.2.a.y 1
20.e even 4 1 7440.2.a.v 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.a.a 1 5.c odd 4 1
2790.2.a.y 1 15.e even 4 1
4650.2.a.bv 1 5.c odd 4 1
4650.2.d.y 2 1.a even 1 1 trivial
4650.2.d.y 2 5.b even 2 1 inner
7440.2.a.v 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4650, [\chi])\):

\( T_{7}^{2} + 9 \)
\( T_{11} - 3 \)
\( T_{13}^{2} + 4 \)
\( T_{17}^{2} + 16 \)
\( T_{19} - 3 \)
\( T_{29} + 4 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 + T^{2} \)
$3$ \( 1 + T^{2} \)
$5$ \( T^{2} \)
$7$ \( 9 + T^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( 4 + T^{2} \)
$17$ \( 16 + T^{2} \)
$19$ \( ( -3 + T )^{2} \)
$23$ \( 25 + T^{2} \)
$29$ \( ( 4 + T )^{2} \)
$31$ \( ( -1 + T )^{2} \)
$37$ \( T^{2} \)
$41$ \( ( -4 + T )^{2} \)
$43$ \( 1 + T^{2} \)
$47$ \( 100 + T^{2} \)
$53$ \( 9 + T^{2} \)
$59$ \( ( 6 + T )^{2} \)
$61$ \( ( 2 + T )^{2} \)
$67$ \( 4 + T^{2} \)
$71$ \( ( -7 + T )^{2} \)
$73$ \( 25 + T^{2} \)
$79$ \( ( -1 + T )^{2} \)
$83$ \( 144 + T^{2} \)
$89$ \( ( 1 + T )^{2} \)
$97$ \( 100 + T^{2} \)
show more
show less