# Properties

 Label 4650.2.d.n Level $4650$ Weight $2$ Character orbit 4650.d Analytic conductor $37.130$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4650.d (of order $$2$$, degree $$1$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$37.1304369399$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ Defining polynomial: $$x^{2} + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 930) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{8} - q^{9} +O(q^{10})$$ $$q -i q^{2} + i q^{3} - q^{4} + q^{6} + i q^{8} - q^{9} -4 q^{11} -i q^{12} + 6 i q^{13} + q^{16} -2 i q^{17} + i q^{18} -4 q^{19} + 4 i q^{22} -8 i q^{23} - q^{24} + 6 q^{26} -i q^{27} -6 q^{29} - q^{31} -i q^{32} -4 i q^{33} -2 q^{34} + q^{36} + 2 i q^{37} + 4 i q^{38} -6 q^{39} + 10 q^{41} -4 i q^{43} + 4 q^{44} -8 q^{46} + i q^{48} + 7 q^{49} + 2 q^{51} -6 i q^{52} -10 i q^{53} - q^{54} -4 i q^{57} + 6 i q^{58} + 12 q^{59} -2 q^{61} + i q^{62} - q^{64} -4 q^{66} + 4 i q^{67} + 2 i q^{68} + 8 q^{69} -i q^{72} + 2 i q^{73} + 2 q^{74} + 4 q^{76} + 6 i q^{78} + q^{81} -10 i q^{82} + 4 i q^{83} -4 q^{86} -6 i q^{87} -4 i q^{88} + 14 q^{89} + 8 i q^{92} -i q^{93} + q^{96} -18 i q^{97} -7 i q^{98} + 4 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{4} + 2q^{6} - 2q^{9} + O(q^{10})$$ $$2q - 2q^{4} + 2q^{6} - 2q^{9} - 8q^{11} + 2q^{16} - 8q^{19} - 2q^{24} + 12q^{26} - 12q^{29} - 2q^{31} - 4q^{34} + 2q^{36} - 12q^{39} + 20q^{41} + 8q^{44} - 16q^{46} + 14q^{49} + 4q^{51} - 2q^{54} + 24q^{59} - 4q^{61} - 2q^{64} - 8q^{66} + 16q^{69} + 4q^{74} + 8q^{76} + 2q^{81} - 8q^{86} + 28q^{89} + 2q^{96} + 8q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times$$.

 $$n$$ $$1801$$ $$2977$$ $$3101$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
3349.1
 1.00000i − 1.00000i
1.00000i 1.00000i −1.00000 0 1.00000 0 1.00000i −1.00000 0
3349.2 1.00000i 1.00000i −1.00000 0 1.00000 0 1.00000i −1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4650.2.d.n 2
5.b even 2 1 inner 4650.2.d.n 2
5.c odd 4 1 930.2.a.o 1
5.c odd 4 1 4650.2.a.h 1
15.e even 4 1 2790.2.a.c 1
20.e even 4 1 7440.2.a.j 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.a.o 1 5.c odd 4 1
2790.2.a.c 1 15.e even 4 1
4650.2.a.h 1 5.c odd 4 1
4650.2.d.n 2 1.a even 1 1 trivial
4650.2.d.n 2 5.b even 2 1 inner
7440.2.a.j 1 20.e even 4 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(4650, [\chi])$$:

 $$T_{7}$$ $$T_{11} + 4$$ $$T_{13}^{2} + 36$$ $$T_{17}^{2} + 4$$ $$T_{19} + 4$$ $$T_{29} + 6$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$1 + T^{2}$$
$3$ $$1 + T^{2}$$
$5$ $$T^{2}$$
$7$ $$T^{2}$$
$11$ $$( 4 + T )^{2}$$
$13$ $$36 + T^{2}$$
$17$ $$4 + T^{2}$$
$19$ $$( 4 + T )^{2}$$
$23$ $$64 + T^{2}$$
$29$ $$( 6 + T )^{2}$$
$31$ $$( 1 + T )^{2}$$
$37$ $$4 + T^{2}$$
$41$ $$( -10 + T )^{2}$$
$43$ $$16 + T^{2}$$
$47$ $$T^{2}$$
$53$ $$100 + T^{2}$$
$59$ $$( -12 + T )^{2}$$
$61$ $$( 2 + T )^{2}$$
$67$ $$16 + T^{2}$$
$71$ $$T^{2}$$
$73$ $$4 + T^{2}$$
$79$ $$T^{2}$$
$83$ $$16 + T^{2}$$
$89$ $$( -14 + T )^{2}$$
$97$ $$324 + T^{2}$$