Properties

Label 4650.2.d.d.3349.2
Level $4650$
Weight $2$
Character 4650.3349
Analytic conductor $37.130$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(3349,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.3349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1304369399\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3349.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4650.3349
Dual form 4650.2.d.d.3349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +1.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} -3.00000 q^{11} -1.00000i q^{12} +2.00000i q^{13} -1.00000 q^{14} +1.00000 q^{16} -1.00000i q^{18} -5.00000 q^{19} -1.00000 q^{21} -3.00000i q^{22} +9.00000i q^{23} +1.00000 q^{24} -2.00000 q^{26} -1.00000i q^{27} -1.00000i q^{28} +1.00000 q^{31} +1.00000i q^{32} -3.00000i q^{33} +1.00000 q^{36} -8.00000i q^{37} -5.00000i q^{38} -2.00000 q^{39} -1.00000i q^{42} +11.0000i q^{43} +3.00000 q^{44} -9.00000 q^{46} +6.00000i q^{47} +1.00000i q^{48} +6.00000 q^{49} -2.00000i q^{52} -9.00000i q^{53} +1.00000 q^{54} +1.00000 q^{56} -5.00000i q^{57} -6.00000 q^{59} -10.0000 q^{61} +1.00000i q^{62} -1.00000i q^{63} -1.00000 q^{64} +3.00000 q^{66} -14.0000i q^{67} -9.00000 q^{69} +9.00000 q^{71} +1.00000i q^{72} -1.00000i q^{73} +8.00000 q^{74} +5.00000 q^{76} -3.00000i q^{77} -2.00000i q^{78} +1.00000 q^{79} +1.00000 q^{81} -12.0000i q^{83} +1.00000 q^{84} -11.0000 q^{86} +3.00000i q^{88} +9.00000 q^{89} -2.00000 q^{91} -9.00000i q^{92} +1.00000i q^{93} -6.00000 q^{94} -1.00000 q^{96} -14.0000i q^{97} +6.00000i q^{98} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} - 6 q^{11} - 2 q^{14} + 2 q^{16} - 10 q^{19} - 2 q^{21} + 2 q^{24} - 4 q^{26} + 2 q^{31} + 2 q^{36} - 4 q^{39} + 6 q^{44} - 18 q^{46} + 12 q^{49} + 2 q^{54} + 2 q^{56}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 1.00000i 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 1.00000i 0.377964i 0.981981 + 0.188982i \(0.0605189\pi\)
−0.981981 + 0.188982i \(0.939481\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) − 1.00000i − 0.288675i
\(13\) 2.00000i 0.554700i 0.960769 + 0.277350i \(0.0894562\pi\)
−0.960769 + 0.277350i \(0.910544\pi\)
\(14\) −1.00000 −0.267261
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) −5.00000 −1.14708 −0.573539 0.819178i \(-0.694430\pi\)
−0.573539 + 0.819178i \(0.694430\pi\)
\(20\) 0 0
\(21\) −1.00000 −0.218218
\(22\) − 3.00000i − 0.639602i
\(23\) 9.00000i 1.87663i 0.345782 + 0.938315i \(0.387614\pi\)
−0.345782 + 0.938315i \(0.612386\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) − 1.00000i − 0.192450i
\(28\) − 1.00000i − 0.188982i
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 1.00000 0.179605
\(32\) 1.00000i 0.176777i
\(33\) − 3.00000i − 0.522233i
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 8.00000i − 1.31519i −0.753371 0.657596i \(-0.771573\pi\)
0.753371 0.657596i \(-0.228427\pi\)
\(38\) − 5.00000i − 0.811107i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) − 1.00000i − 0.154303i
\(43\) 11.0000i 1.67748i 0.544529 + 0.838742i \(0.316708\pi\)
−0.544529 + 0.838742i \(0.683292\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −9.00000 −1.32698
\(47\) 6.00000i 0.875190i 0.899172 + 0.437595i \(0.144170\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(48\) 1.00000i 0.144338i
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) − 2.00000i − 0.277350i
\(53\) − 9.00000i − 1.23625i −0.786082 0.618123i \(-0.787894\pi\)
0.786082 0.618123i \(-0.212106\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 1.00000 0.133631
\(57\) − 5.00000i − 0.662266i
\(58\) 0 0
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) −10.0000 −1.28037 −0.640184 0.768221i \(-0.721142\pi\)
−0.640184 + 0.768221i \(0.721142\pi\)
\(62\) 1.00000i 0.127000i
\(63\) − 1.00000i − 0.125988i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.00000 0.369274
\(67\) − 14.0000i − 1.71037i −0.518321 0.855186i \(-0.673443\pi\)
0.518321 0.855186i \(-0.326557\pi\)
\(68\) 0 0
\(69\) −9.00000 −1.08347
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 1.00000i 0.117851i
\(73\) − 1.00000i − 0.117041i −0.998286 0.0585206i \(-0.981362\pi\)
0.998286 0.0585206i \(-0.0186383\pi\)
\(74\) 8.00000 0.929981
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) − 3.00000i − 0.341882i
\(78\) − 2.00000i − 0.226455i
\(79\) 1.00000 0.112509 0.0562544 0.998416i \(-0.482084\pi\)
0.0562544 + 0.998416i \(0.482084\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 12.0000i − 1.31717i −0.752506 0.658586i \(-0.771155\pi\)
0.752506 0.658586i \(-0.228845\pi\)
\(84\) 1.00000 0.109109
\(85\) 0 0
\(86\) −11.0000 −1.18616
\(87\) 0 0
\(88\) 3.00000i 0.319801i
\(89\) 9.00000 0.953998 0.476999 0.878904i \(-0.341725\pi\)
0.476999 + 0.878904i \(0.341725\pi\)
\(90\) 0 0
\(91\) −2.00000 −0.209657
\(92\) − 9.00000i − 0.938315i
\(93\) 1.00000i 0.103695i
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) − 14.0000i − 1.42148i −0.703452 0.710742i \(-0.748359\pi\)
0.703452 0.710742i \(-0.251641\pi\)
\(98\) 6.00000i 0.606092i
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 9.00000 0.874157
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) 1.00000i 0.0962250i
\(109\) −8.00000 −0.766261 −0.383131 0.923694i \(-0.625154\pi\)
−0.383131 + 0.923694i \(0.625154\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) 1.00000i 0.0944911i
\(113\) − 3.00000i − 0.282216i −0.989994 0.141108i \(-0.954933\pi\)
0.989994 0.141108i \(-0.0450665\pi\)
\(114\) 5.00000 0.468293
\(115\) 0 0
\(116\) 0 0
\(117\) − 2.00000i − 0.184900i
\(118\) − 6.00000i − 0.552345i
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) − 10.0000i − 0.905357i
\(123\) 0 0
\(124\) −1.00000 −0.0898027
\(125\) 0 0
\(126\) 1.00000 0.0890871
\(127\) − 8.00000i − 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) −11.0000 −0.968496
\(130\) 0 0
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) 3.00000i 0.261116i
\(133\) − 5.00000i − 0.433555i
\(134\) 14.0000 1.20942
\(135\) 0 0
\(136\) 0 0
\(137\) − 18.0000i − 1.53784i −0.639343 0.768922i \(-0.720793\pi\)
0.639343 0.768922i \(-0.279207\pi\)
\(138\) − 9.00000i − 0.766131i
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 9.00000i 0.755263i
\(143\) − 6.00000i − 0.501745i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 1.00000 0.0827606
\(147\) 6.00000i 0.494872i
\(148\) 8.00000i 0.657596i
\(149\) −3.00000 −0.245770 −0.122885 0.992421i \(-0.539215\pi\)
−0.122885 + 0.992421i \(0.539215\pi\)
\(150\) 0 0
\(151\) −16.0000 −1.30206 −0.651031 0.759051i \(-0.725663\pi\)
−0.651031 + 0.759051i \(0.725663\pi\)
\(152\) 5.00000i 0.405554i
\(153\) 0 0
\(154\) 3.00000 0.241747
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 7.00000i 0.558661i 0.960195 + 0.279330i \(0.0901125\pi\)
−0.960195 + 0.279330i \(0.909888\pi\)
\(158\) 1.00000i 0.0795557i
\(159\) 9.00000 0.713746
\(160\) 0 0
\(161\) −9.00000 −0.709299
\(162\) 1.00000i 0.0785674i
\(163\) − 22.0000i − 1.72317i −0.507611 0.861586i \(-0.669471\pi\)
0.507611 0.861586i \(-0.330529\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 12.0000 0.931381
\(167\) − 9.00000i − 0.696441i −0.937413 0.348220i \(-0.886786\pi\)
0.937413 0.348220i \(-0.113214\pi\)
\(168\) 1.00000i 0.0771517i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 5.00000 0.382360
\(172\) − 11.0000i − 0.838742i
\(173\) 6.00000i 0.456172i 0.973641 + 0.228086i \(0.0732467\pi\)
−0.973641 + 0.228086i \(0.926753\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −3.00000 −0.226134
\(177\) − 6.00000i − 0.450988i
\(178\) 9.00000i 0.674579i
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) 5.00000 0.371647 0.185824 0.982583i \(-0.440505\pi\)
0.185824 + 0.982583i \(0.440505\pi\)
\(182\) − 2.00000i − 0.148250i
\(183\) − 10.0000i − 0.739221i
\(184\) 9.00000 0.663489
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) 0 0
\(188\) − 6.00000i − 0.437595i
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) − 1.00000i − 0.0721688i
\(193\) − 10.0000i − 0.719816i −0.932988 0.359908i \(-0.882808\pi\)
0.932988 0.359908i \(-0.117192\pi\)
\(194\) 14.0000 1.00514
\(195\) 0 0
\(196\) −6.00000 −0.428571
\(197\) 6.00000i 0.427482i 0.976890 + 0.213741i \(0.0685649\pi\)
−0.976890 + 0.213741i \(0.931435\pi\)
\(198\) 3.00000i 0.213201i
\(199\) 25.0000 1.77220 0.886102 0.463491i \(-0.153403\pi\)
0.886102 + 0.463491i \(0.153403\pi\)
\(200\) 0 0
\(201\) 14.0000 0.987484
\(202\) − 15.0000i − 1.05540i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) − 9.00000i − 0.625543i
\(208\) 2.00000i 0.138675i
\(209\) 15.0000 1.03757
\(210\) 0 0
\(211\) −19.0000 −1.30801 −0.654007 0.756489i \(-0.726913\pi\)
−0.654007 + 0.756489i \(0.726913\pi\)
\(212\) 9.00000i 0.618123i
\(213\) 9.00000i 0.616670i
\(214\) −3.00000 −0.205076
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) 1.00000i 0.0678844i
\(218\) − 8.00000i − 0.541828i
\(219\) 1.00000 0.0675737
\(220\) 0 0
\(221\) 0 0
\(222\) 8.00000i 0.536925i
\(223\) − 10.0000i − 0.669650i −0.942280 0.334825i \(-0.891323\pi\)
0.942280 0.334825i \(-0.108677\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 0 0
\(226\) 3.00000 0.199557
\(227\) 15.0000i 0.995585i 0.867296 + 0.497792i \(0.165856\pi\)
−0.867296 + 0.497792i \(0.834144\pi\)
\(228\) 5.00000i 0.331133i
\(229\) −5.00000 −0.330409 −0.165205 0.986259i \(-0.552828\pi\)
−0.165205 + 0.986259i \(0.552828\pi\)
\(230\) 0 0
\(231\) 3.00000 0.197386
\(232\) 0 0
\(233\) 3.00000i 0.196537i 0.995160 + 0.0982683i \(0.0313303\pi\)
−0.995160 + 0.0982683i \(0.968670\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 6.00000 0.390567
\(237\) 1.00000i 0.0649570i
\(238\) 0 0
\(239\) −12.0000 −0.776215 −0.388108 0.921614i \(-0.626871\pi\)
−0.388108 + 0.921614i \(0.626871\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) − 2.00000i − 0.128565i
\(243\) 1.00000i 0.0641500i
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) − 10.0000i − 0.636285i
\(248\) − 1.00000i − 0.0635001i
\(249\) 12.0000 0.760469
\(250\) 0 0
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 1.00000i 0.0629941i
\(253\) − 27.0000i − 1.69748i
\(254\) 8.00000 0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 27.0000i 1.68421i 0.539311 + 0.842107i \(0.318685\pi\)
−0.539311 + 0.842107i \(0.681315\pi\)
\(258\) − 11.0000i − 0.684830i
\(259\) 8.00000 0.497096
\(260\) 0 0
\(261\) 0 0
\(262\) − 6.00000i − 0.370681i
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) −3.00000 −0.184637
\(265\) 0 0
\(266\) 5.00000 0.306570
\(267\) 9.00000i 0.550791i
\(268\) 14.0000i 0.855186i
\(269\) −6.00000 −0.365826 −0.182913 0.983129i \(-0.558553\pi\)
−0.182913 + 0.983129i \(0.558553\pi\)
\(270\) 0 0
\(271\) 5.00000 0.303728 0.151864 0.988401i \(-0.451472\pi\)
0.151864 + 0.988401i \(0.451472\pi\)
\(272\) 0 0
\(273\) − 2.00000i − 0.121046i
\(274\) 18.0000 1.08742
\(275\) 0 0
\(276\) 9.00000 0.541736
\(277\) − 8.00000i − 0.480673i −0.970690 0.240337i \(-0.922742\pi\)
0.970690 0.240337i \(-0.0772579\pi\)
\(278\) − 14.0000i − 0.839664i
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) − 6.00000i − 0.357295i
\(283\) − 4.00000i − 0.237775i −0.992908 0.118888i \(-0.962067\pi\)
0.992908 0.118888i \(-0.0379328\pi\)
\(284\) −9.00000 −0.534052
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) 0 0
\(288\) − 1.00000i − 0.0589256i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 14.0000 0.820695
\(292\) 1.00000i 0.0585206i
\(293\) 18.0000i 1.05157i 0.850617 + 0.525786i \(0.176229\pi\)
−0.850617 + 0.525786i \(0.823771\pi\)
\(294\) −6.00000 −0.349927
\(295\) 0 0
\(296\) −8.00000 −0.464991
\(297\) 3.00000i 0.174078i
\(298\) − 3.00000i − 0.173785i
\(299\) −18.0000 −1.04097
\(300\) 0 0
\(301\) −11.0000 −0.634029
\(302\) − 16.0000i − 0.920697i
\(303\) − 15.0000i − 0.861727i
\(304\) −5.00000 −0.286770
\(305\) 0 0
\(306\) 0 0
\(307\) − 32.0000i − 1.82634i −0.407583 0.913168i \(-0.633628\pi\)
0.407583 0.913168i \(-0.366372\pi\)
\(308\) 3.00000i 0.170941i
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 2.00000i 0.113228i
\(313\) − 22.0000i − 1.24351i −0.783210 0.621757i \(-0.786419\pi\)
0.783210 0.621757i \(-0.213581\pi\)
\(314\) −7.00000 −0.395033
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) − 24.0000i − 1.34797i −0.738743 0.673987i \(-0.764580\pi\)
0.738743 0.673987i \(-0.235420\pi\)
\(318\) 9.00000i 0.504695i
\(319\) 0 0
\(320\) 0 0
\(321\) −3.00000 −0.167444
\(322\) − 9.00000i − 0.501550i
\(323\) 0 0
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) 22.0000 1.21847
\(327\) − 8.00000i − 0.442401i
\(328\) 0 0
\(329\) −6.00000 −0.330791
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 12.0000i 0.658586i
\(333\) 8.00000i 0.438397i
\(334\) 9.00000 0.492458
\(335\) 0 0
\(336\) −1.00000 −0.0545545
\(337\) 22.0000i 1.19842i 0.800593 + 0.599208i \(0.204518\pi\)
−0.800593 + 0.599208i \(0.795482\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 3.00000 0.162938
\(340\) 0 0
\(341\) −3.00000 −0.162459
\(342\) 5.00000i 0.270369i
\(343\) 13.0000i 0.701934i
\(344\) 11.0000 0.593080
\(345\) 0 0
\(346\) −6.00000 −0.322562
\(347\) 36.0000i 1.93258i 0.257454 + 0.966291i \(0.417117\pi\)
−0.257454 + 0.966291i \(0.582883\pi\)
\(348\) 0 0
\(349\) 4.00000 0.214115 0.107058 0.994253i \(-0.465857\pi\)
0.107058 + 0.994253i \(0.465857\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) − 3.00000i − 0.159901i
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 6.00000 0.318896
\(355\) 0 0
\(356\) −9.00000 −0.476999
\(357\) 0 0
\(358\) 12.0000i 0.634220i
\(359\) −9.00000 −0.475002 −0.237501 0.971387i \(-0.576328\pi\)
−0.237501 + 0.971387i \(0.576328\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 5.00000i 0.262794i
\(363\) − 2.00000i − 0.104973i
\(364\) 2.00000 0.104828
\(365\) 0 0
\(366\) 10.0000 0.522708
\(367\) − 26.0000i − 1.35719i −0.734513 0.678594i \(-0.762589\pi\)
0.734513 0.678594i \(-0.237411\pi\)
\(368\) 9.00000i 0.469157i
\(369\) 0 0
\(370\) 0 0
\(371\) 9.00000 0.467257
\(372\) − 1.00000i − 0.0518476i
\(373\) − 19.0000i − 0.983783i −0.870657 0.491891i \(-0.836306\pi\)
0.870657 0.491891i \(-0.163694\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 6.00000 0.309426
\(377\) 0 0
\(378\) 1.00000i 0.0514344i
\(379\) 1.00000 0.0513665 0.0256833 0.999670i \(-0.491824\pi\)
0.0256833 + 0.999670i \(0.491824\pi\)
\(380\) 0 0
\(381\) 8.00000 0.409852
\(382\) 0 0
\(383\) 36.0000i 1.83951i 0.392488 + 0.919757i \(0.371614\pi\)
−0.392488 + 0.919757i \(0.628386\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 10.0000 0.508987
\(387\) − 11.0000i − 0.559161i
\(388\) 14.0000i 0.710742i
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 6.00000i − 0.303046i
\(393\) − 6.00000i − 0.302660i
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) −3.00000 −0.150756
\(397\) 7.00000i 0.351320i 0.984451 + 0.175660i \(0.0562059\pi\)
−0.984451 + 0.175660i \(0.943794\pi\)
\(398\) 25.0000i 1.25314i
\(399\) 5.00000 0.250313
\(400\) 0 0
\(401\) 15.0000 0.749064 0.374532 0.927214i \(-0.377803\pi\)
0.374532 + 0.927214i \(0.377803\pi\)
\(402\) 14.0000i 0.698257i
\(403\) 2.00000i 0.0996271i
\(404\) 15.0000 0.746278
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000i 1.18964i
\(408\) 0 0
\(409\) 28.0000 1.38451 0.692255 0.721653i \(-0.256617\pi\)
0.692255 + 0.721653i \(0.256617\pi\)
\(410\) 0 0
\(411\) 18.0000 0.887875
\(412\) − 8.00000i − 0.394132i
\(413\) − 6.00000i − 0.295241i
\(414\) 9.00000 0.442326
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) − 14.0000i − 0.685583i
\(418\) 15.0000i 0.733674i
\(419\) 24.0000 1.17248 0.586238 0.810139i \(-0.300608\pi\)
0.586238 + 0.810139i \(0.300608\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) − 19.0000i − 0.924906i
\(423\) − 6.00000i − 0.291730i
\(424\) −9.00000 −0.437079
\(425\) 0 0
\(426\) −9.00000 −0.436051
\(427\) − 10.0000i − 0.483934i
\(428\) − 3.00000i − 0.145010i
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) − 1.00000i − 0.0481125i
\(433\) 5.00000i 0.240285i 0.992757 + 0.120142i \(0.0383351\pi\)
−0.992757 + 0.120142i \(0.961665\pi\)
\(434\) −1.00000 −0.0480015
\(435\) 0 0
\(436\) 8.00000 0.383131
\(437\) − 45.0000i − 2.15264i
\(438\) 1.00000i 0.0477818i
\(439\) −14.0000 −0.668184 −0.334092 0.942541i \(-0.608430\pi\)
−0.334092 + 0.942541i \(0.608430\pi\)
\(440\) 0 0
\(441\) −6.00000 −0.285714
\(442\) 0 0
\(443\) 27.0000i 1.28281i 0.767203 + 0.641404i \(0.221648\pi\)
−0.767203 + 0.641404i \(0.778352\pi\)
\(444\) −8.00000 −0.379663
\(445\) 0 0
\(446\) 10.0000 0.473514
\(447\) − 3.00000i − 0.141895i
\(448\) − 1.00000i − 0.0472456i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3.00000i 0.141108i
\(453\) − 16.0000i − 0.751746i
\(454\) −15.0000 −0.703985
\(455\) 0 0
\(456\) −5.00000 −0.234146
\(457\) − 38.0000i − 1.77757i −0.458329 0.888783i \(-0.651552\pi\)
0.458329 0.888783i \(-0.348448\pi\)
\(458\) − 5.00000i − 0.233635i
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 3.00000i 0.139573i
\(463\) 32.0000i 1.48717i 0.668644 + 0.743583i \(0.266875\pi\)
−0.668644 + 0.743583i \(0.733125\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −3.00000 −0.138972
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 2.00000i 0.0924500i
\(469\) 14.0000 0.646460
\(470\) 0 0
\(471\) −7.00000 −0.322543
\(472\) 6.00000i 0.276172i
\(473\) − 33.0000i − 1.51734i
\(474\) −1.00000 −0.0459315
\(475\) 0 0
\(476\) 0 0
\(477\) 9.00000i 0.412082i
\(478\) − 12.0000i − 0.548867i
\(479\) −21.0000 −0.959514 −0.479757 0.877401i \(-0.659275\pi\)
−0.479757 + 0.877401i \(0.659275\pi\)
\(480\) 0 0
\(481\) 16.0000 0.729537
\(482\) − 22.0000i − 1.00207i
\(483\) − 9.00000i − 0.409514i
\(484\) 2.00000 0.0909091
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 40.0000i 1.81257i 0.422664 + 0.906287i \(0.361095\pi\)
−0.422664 + 0.906287i \(0.638905\pi\)
\(488\) 10.0000i 0.452679i
\(489\) 22.0000 0.994874
\(490\) 0 0
\(491\) 21.0000 0.947717 0.473858 0.880601i \(-0.342861\pi\)
0.473858 + 0.880601i \(0.342861\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 10.0000 0.449921
\(495\) 0 0
\(496\) 1.00000 0.0449013
\(497\) 9.00000i 0.403705i
\(498\) 12.0000i 0.537733i
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 9.00000 0.402090
\(502\) 12.0000i 0.535586i
\(503\) − 24.0000i − 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) −1.00000 −0.0445435
\(505\) 0 0
\(506\) 27.0000 1.20030
\(507\) 9.00000i 0.399704i
\(508\) 8.00000i 0.354943i
\(509\) −36.0000 −1.59567 −0.797836 0.602875i \(-0.794022\pi\)
−0.797836 + 0.602875i \(0.794022\pi\)
\(510\) 0 0
\(511\) 1.00000 0.0442374
\(512\) 1.00000i 0.0441942i
\(513\) 5.00000i 0.220755i
\(514\) −27.0000 −1.19092
\(515\) 0 0
\(516\) 11.0000 0.484248
\(517\) − 18.0000i − 0.791639i
\(518\) 8.00000i 0.351500i
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) 18.0000 0.788594 0.394297 0.918983i \(-0.370988\pi\)
0.394297 + 0.918983i \(0.370988\pi\)
\(522\) 0 0
\(523\) − 25.0000i − 1.09317i −0.837402 0.546587i \(-0.815927\pi\)
0.837402 0.546587i \(-0.184073\pi\)
\(524\) 6.00000 0.262111
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) − 3.00000i − 0.130558i
\(529\) −58.0000 −2.52174
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 5.00000i 0.216777i
\(533\) 0 0
\(534\) −9.00000 −0.389468
\(535\) 0 0
\(536\) −14.0000 −0.604708
\(537\) 12.0000i 0.517838i
\(538\) − 6.00000i − 0.258678i
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −34.0000 −1.46177 −0.730887 0.682498i \(-0.760893\pi\)
−0.730887 + 0.682498i \(0.760893\pi\)
\(542\) 5.00000i 0.214768i
\(543\) 5.00000i 0.214571i
\(544\) 0 0
\(545\) 0 0
\(546\) 2.00000 0.0855921
\(547\) 34.0000i 1.45374i 0.686778 + 0.726868i \(0.259025\pi\)
−0.686778 + 0.726868i \(0.740975\pi\)
\(548\) 18.0000i 0.768922i
\(549\) 10.0000 0.426790
\(550\) 0 0
\(551\) 0 0
\(552\) 9.00000i 0.383065i
\(553\) 1.00000i 0.0425243i
\(554\) 8.00000 0.339887
\(555\) 0 0
\(556\) 14.0000 0.593732
\(557\) − 3.00000i − 0.127114i −0.997978 0.0635570i \(-0.979756\pi\)
0.997978 0.0635570i \(-0.0202445\pi\)
\(558\) − 1.00000i − 0.0423334i
\(559\) −22.0000 −0.930501
\(560\) 0 0
\(561\) 0 0
\(562\) − 24.0000i − 1.01238i
\(563\) − 12.0000i − 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 6.00000 0.252646
\(565\) 0 0
\(566\) 4.00000 0.168133
\(567\) 1.00000i 0.0419961i
\(568\) − 9.00000i − 0.377632i
\(569\) −15.0000 −0.628833 −0.314416 0.949285i \(-0.601809\pi\)
−0.314416 + 0.949285i \(0.601809\pi\)
\(570\) 0 0
\(571\) 14.0000 0.585882 0.292941 0.956131i \(-0.405366\pi\)
0.292941 + 0.956131i \(0.405366\pi\)
\(572\) 6.00000i 0.250873i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 16.0000i 0.666089i 0.942911 + 0.333044i \(0.108076\pi\)
−0.942911 + 0.333044i \(0.891924\pi\)
\(578\) 17.0000i 0.707107i
\(579\) 10.0000 0.415586
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 14.0000i 0.580319i
\(583\) 27.0000i 1.11823i
\(584\) −1.00000 −0.0413803
\(585\) 0 0
\(586\) −18.0000 −0.743573
\(587\) 24.0000i 0.990586i 0.868726 + 0.495293i \(0.164939\pi\)
−0.868726 + 0.495293i \(0.835061\pi\)
\(588\) − 6.00000i − 0.247436i
\(589\) −5.00000 −0.206021
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) − 8.00000i − 0.328798i
\(593\) 6.00000i 0.246390i 0.992382 + 0.123195i \(0.0393141\pi\)
−0.992382 + 0.123195i \(0.960686\pi\)
\(594\) −3.00000 −0.123091
\(595\) 0 0
\(596\) 3.00000 0.122885
\(597\) 25.0000i 1.02318i
\(598\) − 18.0000i − 0.736075i
\(599\) −27.0000 −1.10319 −0.551595 0.834112i \(-0.685981\pi\)
−0.551595 + 0.834112i \(0.685981\pi\)
\(600\) 0 0
\(601\) −10.0000 −0.407909 −0.203954 0.978980i \(-0.565379\pi\)
−0.203954 + 0.978980i \(0.565379\pi\)
\(602\) − 11.0000i − 0.448327i
\(603\) 14.0000i 0.570124i
\(604\) 16.0000 0.651031
\(605\) 0 0
\(606\) 15.0000 0.609333
\(607\) 1.00000i 0.0405887i 0.999794 + 0.0202944i \(0.00646034\pi\)
−0.999794 + 0.0202944i \(0.993540\pi\)
\(608\) − 5.00000i − 0.202777i
\(609\) 0 0
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) 0 0
\(613\) − 22.0000i − 0.888572i −0.895885 0.444286i \(-0.853457\pi\)
0.895885 0.444286i \(-0.146543\pi\)
\(614\) 32.0000 1.29141
\(615\) 0 0
\(616\) −3.00000 −0.120873
\(617\) 15.0000i 0.603877i 0.953327 + 0.301939i \(0.0976338\pi\)
−0.953327 + 0.301939i \(0.902366\pi\)
\(618\) − 8.00000i − 0.321807i
\(619\) −14.0000 −0.562708 −0.281354 0.959604i \(-0.590783\pi\)
−0.281354 + 0.959604i \(0.590783\pi\)
\(620\) 0 0
\(621\) 9.00000 0.361158
\(622\) 0 0
\(623\) 9.00000i 0.360577i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) 22.0000 0.879297
\(627\) 15.0000i 0.599042i
\(628\) − 7.00000i − 0.279330i
\(629\) 0 0
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) − 1.00000i − 0.0397779i
\(633\) − 19.0000i − 0.755182i
\(634\) 24.0000 0.953162
\(635\) 0 0
\(636\) −9.00000 −0.356873
\(637\) 12.0000i 0.475457i
\(638\) 0 0
\(639\) −9.00000 −0.356034
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) − 3.00000i − 0.118401i
\(643\) − 31.0000i − 1.22252i −0.791430 0.611260i \(-0.790663\pi\)
0.791430 0.611260i \(-0.209337\pi\)
\(644\) 9.00000 0.354650
\(645\) 0 0
\(646\) 0 0
\(647\) 33.0000i 1.29736i 0.761060 + 0.648682i \(0.224679\pi\)
−0.761060 + 0.648682i \(0.775321\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) −1.00000 −0.0391931
\(652\) 22.0000i 0.861586i
\(653\) 30.0000i 1.17399i 0.809590 + 0.586995i \(0.199689\pi\)
−0.809590 + 0.586995i \(0.800311\pi\)
\(654\) 8.00000 0.312825
\(655\) 0 0
\(656\) 0 0
\(657\) 1.00000i 0.0390137i
\(658\) − 6.00000i − 0.233904i
\(659\) 48.0000 1.86981 0.934907 0.354892i \(-0.115482\pi\)
0.934907 + 0.354892i \(0.115482\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 8.00000i 0.310929i
\(663\) 0 0
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) −8.00000 −0.309994
\(667\) 0 0
\(668\) 9.00000i 0.348220i
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) 30.0000 1.15814
\(672\) − 1.00000i − 0.0385758i
\(673\) − 10.0000i − 0.385472i −0.981251 0.192736i \(-0.938264\pi\)
0.981251 0.192736i \(-0.0617360\pi\)
\(674\) −22.0000 −0.847408
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 33.0000i 1.26829i 0.773213 + 0.634147i \(0.218648\pi\)
−0.773213 + 0.634147i \(0.781352\pi\)
\(678\) 3.00000i 0.115214i
\(679\) 14.0000 0.537271
\(680\) 0 0
\(681\) −15.0000 −0.574801
\(682\) − 3.00000i − 0.114876i
\(683\) − 15.0000i − 0.573959i −0.957937 0.286980i \(-0.907349\pi\)
0.957937 0.286980i \(-0.0926512\pi\)
\(684\) −5.00000 −0.191180
\(685\) 0 0
\(686\) −13.0000 −0.496342
\(687\) − 5.00000i − 0.190762i
\(688\) 11.0000i 0.419371i
\(689\) 18.0000 0.685745
\(690\) 0 0
\(691\) 17.0000 0.646710 0.323355 0.946278i \(-0.395189\pi\)
0.323355 + 0.946278i \(0.395189\pi\)
\(692\) − 6.00000i − 0.228086i
\(693\) 3.00000i 0.113961i
\(694\) −36.0000 −1.36654
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 4.00000i 0.151402i
\(699\) −3.00000 −0.113470
\(700\) 0 0
\(701\) −3.00000 −0.113308 −0.0566542 0.998394i \(-0.518043\pi\)
−0.0566542 + 0.998394i \(0.518043\pi\)
\(702\) 2.00000i 0.0754851i
\(703\) 40.0000i 1.50863i
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) −6.00000 −0.225813
\(707\) − 15.0000i − 0.564133i
\(708\) 6.00000i 0.225494i
\(709\) −23.0000 −0.863783 −0.431892 0.901926i \(-0.642154\pi\)
−0.431892 + 0.901926i \(0.642154\pi\)
\(710\) 0 0
\(711\) −1.00000 −0.0375029
\(712\) − 9.00000i − 0.337289i
\(713\) 9.00000i 0.337053i
\(714\) 0 0
\(715\) 0 0
\(716\) −12.0000 −0.448461
\(717\) − 12.0000i − 0.448148i
\(718\) − 9.00000i − 0.335877i
\(719\) −18.0000 −0.671287 −0.335643 0.941989i \(-0.608954\pi\)
−0.335643 + 0.941989i \(0.608954\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 6.00000i 0.223297i
\(723\) − 22.0000i − 0.818189i
\(724\) −5.00000 −0.185824
\(725\) 0 0
\(726\) 2.00000 0.0742270
\(727\) − 23.0000i − 0.853023i −0.904482 0.426511i \(-0.859742\pi\)
0.904482 0.426511i \(-0.140258\pi\)
\(728\) 2.00000i 0.0741249i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 0 0
\(732\) 10.0000i 0.369611i
\(733\) 26.0000i 0.960332i 0.877178 + 0.480166i \(0.159424\pi\)
−0.877178 + 0.480166i \(0.840576\pi\)
\(734\) 26.0000 0.959678
\(735\) 0 0
\(736\) −9.00000 −0.331744
\(737\) 42.0000i 1.54709i
\(738\) 0 0
\(739\) −32.0000 −1.17714 −0.588570 0.808447i \(-0.700309\pi\)
−0.588570 + 0.808447i \(0.700309\pi\)
\(740\) 0 0
\(741\) 10.0000 0.367359
\(742\) 9.00000i 0.330400i
\(743\) − 9.00000i − 0.330178i −0.986279 0.165089i \(-0.947209\pi\)
0.986279 0.165089i \(-0.0527911\pi\)
\(744\) 1.00000 0.0366618
\(745\) 0 0
\(746\) 19.0000 0.695639
\(747\) 12.0000i 0.439057i
\(748\) 0 0
\(749\) −3.00000 −0.109618
\(750\) 0 0
\(751\) 26.0000 0.948753 0.474377 0.880322i \(-0.342673\pi\)
0.474377 + 0.880322i \(0.342673\pi\)
\(752\) 6.00000i 0.218797i
\(753\) 12.0000i 0.437304i
\(754\) 0 0
\(755\) 0 0
\(756\) −1.00000 −0.0363696
\(757\) − 2.00000i − 0.0726912i −0.999339 0.0363456i \(-0.988428\pi\)
0.999339 0.0363456i \(-0.0115717\pi\)
\(758\) 1.00000i 0.0363216i
\(759\) 27.0000 0.980038
\(760\) 0 0
\(761\) −21.0000 −0.761249 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(762\) 8.00000i 0.289809i
\(763\) − 8.00000i − 0.289619i
\(764\) 0 0
\(765\) 0 0
\(766\) −36.0000 −1.30073
\(767\) − 12.0000i − 0.433295i
\(768\) 1.00000i 0.0360844i
\(769\) 31.0000 1.11789 0.558944 0.829205i \(-0.311207\pi\)
0.558944 + 0.829205i \(0.311207\pi\)
\(770\) 0 0
\(771\) −27.0000 −0.972381
\(772\) 10.0000i 0.359908i
\(773\) − 27.0000i − 0.971123i −0.874203 0.485561i \(-0.838615\pi\)
0.874203 0.485561i \(-0.161385\pi\)
\(774\) 11.0000 0.395387
\(775\) 0 0
\(776\) −14.0000 −0.502571
\(777\) 8.00000i 0.286998i
\(778\) 30.0000i 1.07555i
\(779\) 0 0
\(780\) 0 0
\(781\) −27.0000 −0.966136
\(782\) 0 0
\(783\) 0 0
\(784\) 6.00000 0.214286
\(785\) 0 0
\(786\) 6.00000 0.214013
\(787\) 25.0000i 0.891154i 0.895244 + 0.445577i \(0.147001\pi\)
−0.895244 + 0.445577i \(0.852999\pi\)
\(788\) − 6.00000i − 0.213741i
\(789\) 0 0
\(790\) 0 0
\(791\) 3.00000 0.106668
\(792\) − 3.00000i − 0.106600i
\(793\) − 20.0000i − 0.710221i
\(794\) −7.00000 −0.248421
\(795\) 0 0
\(796\) −25.0000 −0.886102
\(797\) − 18.0000i − 0.637593i −0.947823 0.318796i \(-0.896721\pi\)
0.947823 0.318796i \(-0.103279\pi\)
\(798\) 5.00000i 0.176998i
\(799\) 0 0
\(800\) 0 0
\(801\) −9.00000 −0.317999
\(802\) 15.0000i 0.529668i
\(803\) 3.00000i 0.105868i
\(804\) −14.0000 −0.493742
\(805\) 0 0
\(806\) −2.00000 −0.0704470
\(807\) − 6.00000i − 0.211210i
\(808\) 15.0000i 0.527698i
\(809\) −39.0000 −1.37117 −0.685583 0.727994i \(-0.740453\pi\)
−0.685583 + 0.727994i \(0.740453\pi\)
\(810\) 0 0
\(811\) −43.0000 −1.50993 −0.754967 0.655763i \(-0.772347\pi\)
−0.754967 + 0.655763i \(0.772347\pi\)
\(812\) 0 0
\(813\) 5.00000i 0.175358i
\(814\) −24.0000 −0.841200
\(815\) 0 0
\(816\) 0 0
\(817\) − 55.0000i − 1.92421i
\(818\) 28.0000i 0.978997i
\(819\) 2.00000 0.0698857
\(820\) 0 0
\(821\) 24.0000 0.837606 0.418803 0.908077i \(-0.362450\pi\)
0.418803 + 0.908077i \(0.362450\pi\)
\(822\) 18.0000i 0.627822i
\(823\) − 22.0000i − 0.766872i −0.923567 0.383436i \(-0.874741\pi\)
0.923567 0.383436i \(-0.125259\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) 6.00000 0.208767
\(827\) 36.0000i 1.25184i 0.779886 + 0.625921i \(0.215277\pi\)
−0.779886 + 0.625921i \(0.784723\pi\)
\(828\) 9.00000i 0.312772i
\(829\) −29.0000 −1.00721 −0.503606 0.863934i \(-0.667994\pi\)
−0.503606 + 0.863934i \(0.667994\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) − 2.00000i − 0.0693375i
\(833\) 0 0
\(834\) 14.0000 0.484780
\(835\) 0 0
\(836\) −15.0000 −0.518786
\(837\) − 1.00000i − 0.0345651i
\(838\) 24.0000i 0.829066i
\(839\) −21.0000 −0.725001 −0.362500 0.931984i \(-0.618077\pi\)
−0.362500 + 0.931984i \(0.618077\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) − 10.0000i − 0.344623i
\(843\) − 24.0000i − 0.826604i
\(844\) 19.0000 0.654007
\(845\) 0 0
\(846\) 6.00000 0.206284
\(847\) − 2.00000i − 0.0687208i
\(848\) − 9.00000i − 0.309061i
\(849\) 4.00000 0.137280
\(850\) 0 0
\(851\) 72.0000 2.46813
\(852\) − 9.00000i − 0.308335i
\(853\) − 19.0000i − 0.650548i −0.945620 0.325274i \(-0.894544\pi\)
0.945620 0.325274i \(-0.105456\pi\)
\(854\) 10.0000 0.342193
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) 6.00000i 0.204837i
\(859\) −8.00000 −0.272956 −0.136478 0.990643i \(-0.543578\pi\)
−0.136478 + 0.990643i \(0.543578\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 15.0000i 0.510606i 0.966861 + 0.255303i \(0.0821752\pi\)
−0.966861 + 0.255303i \(0.917825\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −5.00000 −0.169907
\(867\) 17.0000i 0.577350i
\(868\) − 1.00000i − 0.0339422i
\(869\) −3.00000 −0.101768
\(870\) 0 0
\(871\) 28.0000 0.948744
\(872\) 8.00000i 0.270914i
\(873\) 14.0000i 0.473828i
\(874\) 45.0000 1.52215
\(875\) 0 0
\(876\) −1.00000 −0.0337869
\(877\) 22.0000i 0.742887i 0.928456 + 0.371444i \(0.121137\pi\)
−0.928456 + 0.371444i \(0.878863\pi\)
\(878\) − 14.0000i − 0.472477i
\(879\) −18.0000 −0.607125
\(880\) 0 0
\(881\) −18.0000 −0.606435 −0.303218 0.952921i \(-0.598061\pi\)
−0.303218 + 0.952921i \(0.598061\pi\)
\(882\) − 6.00000i − 0.202031i
\(883\) − 31.0000i − 1.04323i −0.853180 0.521617i \(-0.825329\pi\)
0.853180 0.521617i \(-0.174671\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −27.0000 −0.907083
\(887\) 18.0000i 0.604381i 0.953248 + 0.302190i \(0.0977178\pi\)
−0.953248 + 0.302190i \(0.902282\pi\)
\(888\) − 8.00000i − 0.268462i
\(889\) 8.00000 0.268311
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) 10.0000i 0.334825i
\(893\) − 30.0000i − 1.00391i
\(894\) 3.00000 0.100335
\(895\) 0 0
\(896\) 1.00000 0.0334077
\(897\) − 18.0000i − 0.601003i
\(898\) − 6.00000i − 0.200223i
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) − 11.0000i − 0.366057i
\(904\) −3.00000 −0.0997785
\(905\) 0 0
\(906\) 16.0000 0.531564
\(907\) − 8.00000i − 0.265636i −0.991140 0.132818i \(-0.957597\pi\)
0.991140 0.132818i \(-0.0424025\pi\)
\(908\) − 15.0000i − 0.497792i
\(909\) 15.0000 0.497519
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) − 5.00000i − 0.165567i
\(913\) 36.0000i 1.19143i
\(914\) 38.0000 1.25693
\(915\) 0 0
\(916\) 5.00000 0.165205
\(917\) − 6.00000i − 0.198137i
\(918\) 0 0
\(919\) −26.0000 −0.857661 −0.428830 0.903385i \(-0.641074\pi\)
−0.428830 + 0.903385i \(0.641074\pi\)
\(920\) 0 0
\(921\) 32.0000 1.05444
\(922\) 0 0
\(923\) 18.0000i 0.592477i
\(924\) −3.00000 −0.0986928
\(925\) 0 0
\(926\) −32.0000 −1.05159
\(927\) − 8.00000i − 0.262754i
\(928\) 0 0
\(929\) 15.0000 0.492134 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(930\) 0 0
\(931\) −30.0000 −0.983210
\(932\) − 3.00000i − 0.0982683i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) − 20.0000i − 0.653372i −0.945133 0.326686i \(-0.894068\pi\)
0.945133 0.326686i \(-0.105932\pi\)
\(938\) 14.0000i 0.457116i
\(939\) 22.0000 0.717943
\(940\) 0 0
\(941\) −12.0000 −0.391189 −0.195594 0.980685i \(-0.562664\pi\)
−0.195594 + 0.980685i \(0.562664\pi\)
\(942\) − 7.00000i − 0.228072i
\(943\) 0 0
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) 33.0000 1.07292
\(947\) − 54.0000i − 1.75476i −0.479792 0.877382i \(-0.659288\pi\)
0.479792 0.877382i \(-0.340712\pi\)
\(948\) − 1.00000i − 0.0324785i
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) 24.0000 0.778253
\(952\) 0 0
\(953\) − 12.0000i − 0.388718i −0.980930 0.194359i \(-0.937737\pi\)
0.980930 0.194359i \(-0.0622627\pi\)
\(954\) −9.00000 −0.291386
\(955\) 0 0
\(956\) 12.0000 0.388108
\(957\) 0 0
\(958\) − 21.0000i − 0.678479i
\(959\) 18.0000 0.581250
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 16.0000i 0.515861i
\(963\) − 3.00000i − 0.0966736i
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 9.00000 0.289570
\(967\) 4.00000i 0.128631i 0.997930 + 0.0643157i \(0.0204865\pi\)
−0.997930 + 0.0643157i \(0.979514\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) 0 0
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) − 1.00000i − 0.0320750i
\(973\) − 14.0000i − 0.448819i
\(974\) −40.0000 −1.28168
\(975\) 0 0
\(976\) −10.0000 −0.320092
\(977\) 18.0000i 0.575871i 0.957650 + 0.287936i \(0.0929689\pi\)
−0.957650 + 0.287936i \(0.907031\pi\)
\(978\) 22.0000i 0.703482i
\(979\) −27.0000 −0.862924
\(980\) 0 0
\(981\) 8.00000 0.255420
\(982\) 21.0000i 0.670137i
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) − 6.00000i − 0.190982i
\(988\) 10.0000i 0.318142i
\(989\) −99.0000 −3.14802
\(990\) 0 0
\(991\) 23.0000 0.730619 0.365310 0.930886i \(-0.380963\pi\)
0.365310 + 0.930886i \(0.380963\pi\)
\(992\) 1.00000i 0.0317500i
\(993\) 8.00000i 0.253872i
\(994\) −9.00000 −0.285463
\(995\) 0 0
\(996\) −12.0000 −0.380235
\(997\) − 26.0000i − 0.823428i −0.911313 0.411714i \(-0.864930\pi\)
0.911313 0.411714i \(-0.135070\pi\)
\(998\) − 32.0000i − 1.01294i
\(999\) −8.00000 −0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.d.d.3349.2 2
5.2 odd 4 930.2.a.i.1.1 1
5.3 odd 4 4650.2.a.bd.1.1 1
5.4 even 2 inner 4650.2.d.d.3349.1 2
15.2 even 4 2790.2.a.r.1.1 1
20.7 even 4 7440.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.a.i.1.1 1 5.2 odd 4
2790.2.a.r.1.1 1 15.2 even 4
4650.2.a.bd.1.1 1 5.3 odd 4
4650.2.d.d.3349.1 2 5.4 even 2 inner
4650.2.d.d.3349.2 2 1.1 even 1 trivial
7440.2.a.k.1.1 1 20.7 even 4