Properties

Label 4650.2.d.c.3349.1
Level $4650$
Weight $2$
Character 4650.3349
Analytic conductor $37.130$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(3349,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.3349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1304369399\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3349.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4650.3349
Dual form 4650.2.d.c.3349.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} -1.00000 q^{6} +4.00000i q^{7} +1.00000i q^{8} -1.00000 q^{9} -4.00000 q^{11} +1.00000i q^{12} -2.00000i q^{13} +4.00000 q^{14} +1.00000 q^{16} +2.00000i q^{17} +1.00000i q^{18} -4.00000 q^{19} +4.00000 q^{21} +4.00000i q^{22} -4.00000i q^{23} +1.00000 q^{24} -2.00000 q^{26} +1.00000i q^{27} -4.00000i q^{28} +2.00000 q^{29} -1.00000 q^{31} -1.00000i q^{32} +4.00000i q^{33} +2.00000 q^{34} +1.00000 q^{36} -6.00000i q^{37} +4.00000i q^{38} -2.00000 q^{39} +10.0000 q^{41} -4.00000i q^{42} +4.00000i q^{43} +4.00000 q^{44} -4.00000 q^{46} +8.00000i q^{47} -1.00000i q^{48} -9.00000 q^{49} +2.00000 q^{51} +2.00000i q^{52} +6.00000i q^{53} +1.00000 q^{54} -4.00000 q^{56} +4.00000i q^{57} -2.00000i q^{58} -8.00000 q^{59} +10.0000 q^{61} +1.00000i q^{62} -4.00000i q^{63} -1.00000 q^{64} +4.00000 q^{66} -12.0000i q^{67} -2.00000i q^{68} -4.00000 q^{69} -1.00000i q^{72} -14.0000i q^{73} -6.00000 q^{74} +4.00000 q^{76} -16.0000i q^{77} +2.00000i q^{78} +8.00000 q^{79} +1.00000 q^{81} -10.0000i q^{82} -4.00000i q^{83} -4.00000 q^{84} +4.00000 q^{86} -2.00000i q^{87} -4.00000i q^{88} +6.00000 q^{89} +8.00000 q^{91} +4.00000i q^{92} +1.00000i q^{93} +8.00000 q^{94} -1.00000 q^{96} -6.00000i q^{97} +9.00000i q^{98} +4.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{6} - 2 q^{9} - 8 q^{11} + 8 q^{14} + 2 q^{16} - 8 q^{19} + 8 q^{21} + 2 q^{24} - 4 q^{26} + 4 q^{29} - 2 q^{31} + 4 q^{34} + 2 q^{36} - 4 q^{39} + 20 q^{41} + 8 q^{44} - 8 q^{46} - 18 q^{49}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −1.00000 −0.408248
\(7\) 4.00000i 1.51186i 0.654654 + 0.755929i \(0.272814\pi\)
−0.654654 + 0.755929i \(0.727186\pi\)
\(8\) 1.00000i 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 4.00000 1.06904
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 1.00000i 0.235702i
\(19\) −4.00000 −0.917663 −0.458831 0.888523i \(-0.651732\pi\)
−0.458831 + 0.888523i \(0.651732\pi\)
\(20\) 0 0
\(21\) 4.00000 0.872872
\(22\) 4.00000i 0.852803i
\(23\) − 4.00000i − 0.834058i −0.908893 0.417029i \(-0.863071\pi\)
0.908893 0.417029i \(-0.136929\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) −2.00000 −0.392232
\(27\) 1.00000i 0.192450i
\(28\) − 4.00000i − 0.755929i
\(29\) 2.00000 0.371391 0.185695 0.982607i \(-0.440546\pi\)
0.185695 + 0.982607i \(0.440546\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) − 1.00000i − 0.176777i
\(33\) 4.00000i 0.696311i
\(34\) 2.00000 0.342997
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 4.00000i 0.648886i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) − 4.00000i − 0.617213i
\(43\) 4.00000i 0.609994i 0.952353 + 0.304997i \(0.0986555\pi\)
−0.952353 + 0.304997i \(0.901344\pi\)
\(44\) 4.00000 0.603023
\(45\) 0 0
\(46\) −4.00000 −0.589768
\(47\) 8.00000i 1.16692i 0.812142 + 0.583460i \(0.198301\pi\)
−0.812142 + 0.583460i \(0.801699\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −9.00000 −1.28571
\(50\) 0 0
\(51\) 2.00000 0.280056
\(52\) 2.00000i 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −4.00000 −0.534522
\(57\) 4.00000i 0.529813i
\(58\) − 2.00000i − 0.262613i
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 1.00000i 0.127000i
\(63\) − 4.00000i − 0.503953i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 4.00000 0.492366
\(67\) − 12.0000i − 1.46603i −0.680211 0.733017i \(-0.738112\pi\)
0.680211 0.733017i \(-0.261888\pi\)
\(68\) − 2.00000i − 0.242536i
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) − 1.00000i − 0.117851i
\(73\) − 14.0000i − 1.63858i −0.573382 0.819288i \(-0.694369\pi\)
0.573382 0.819288i \(-0.305631\pi\)
\(74\) −6.00000 −0.697486
\(75\) 0 0
\(76\) 4.00000 0.458831
\(77\) − 16.0000i − 1.82337i
\(78\) 2.00000i 0.226455i
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) − 10.0000i − 1.10432i
\(83\) − 4.00000i − 0.439057i −0.975606 0.219529i \(-0.929548\pi\)
0.975606 0.219529i \(-0.0704519\pi\)
\(84\) −4.00000 −0.436436
\(85\) 0 0
\(86\) 4.00000 0.431331
\(87\) − 2.00000i − 0.214423i
\(88\) − 4.00000i − 0.426401i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 8.00000 0.838628
\(92\) 4.00000i 0.417029i
\(93\) 1.00000i 0.103695i
\(94\) 8.00000 0.825137
\(95\) 0 0
\(96\) −1.00000 −0.102062
\(97\) − 6.00000i − 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) 9.00000i 0.909137i
\(99\) 4.00000 0.402015
\(100\) 0 0
\(101\) 18.0000 1.79107 0.895533 0.444994i \(-0.146794\pi\)
0.895533 + 0.444994i \(0.146794\pi\)
\(102\) − 2.00000i − 0.198030i
\(103\) − 4.00000i − 0.394132i −0.980390 0.197066i \(-0.936859\pi\)
0.980390 0.197066i \(-0.0631413\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) − 4.00000i − 0.386695i −0.981130 0.193347i \(-0.938066\pi\)
0.981130 0.193347i \(-0.0619344\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) 0 0
\(111\) −6.00000 −0.569495
\(112\) 4.00000i 0.377964i
\(113\) − 6.00000i − 0.564433i −0.959351 0.282216i \(-0.908930\pi\)
0.959351 0.282216i \(-0.0910696\pi\)
\(114\) 4.00000 0.374634
\(115\) 0 0
\(116\) −2.00000 −0.185695
\(117\) 2.00000i 0.184900i
\(118\) 8.00000i 0.736460i
\(119\) −8.00000 −0.733359
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) − 10.0000i − 0.905357i
\(123\) − 10.0000i − 0.901670i
\(124\) 1.00000 0.0898027
\(125\) 0 0
\(126\) −4.00000 −0.356348
\(127\) − 8.00000i − 0.709885i −0.934888 0.354943i \(-0.884500\pi\)
0.934888 0.354943i \(-0.115500\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 4.00000 0.352180
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) − 4.00000i − 0.348155i
\(133\) − 16.0000i − 1.38738i
\(134\) −12.0000 −1.03664
\(135\) 0 0
\(136\) −2.00000 −0.171499
\(137\) − 6.00000i − 0.512615i −0.966595 0.256307i \(-0.917494\pi\)
0.966595 0.256307i \(-0.0825059\pi\)
\(138\) 4.00000i 0.340503i
\(139\) −16.0000 −1.35710 −0.678551 0.734553i \(-0.737392\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 8.00000 0.673722
\(142\) 0 0
\(143\) 8.00000i 0.668994i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −14.0000 −1.15865
\(147\) 9.00000i 0.742307i
\(148\) 6.00000i 0.493197i
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) − 4.00000i − 0.324443i
\(153\) − 2.00000i − 0.161690i
\(154\) −16.0000 −1.28932
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) − 22.0000i − 1.75579i −0.478852 0.877896i \(-0.658947\pi\)
0.478852 0.877896i \(-0.341053\pi\)
\(158\) − 8.00000i − 0.636446i
\(159\) 6.00000 0.475831
\(160\) 0 0
\(161\) 16.0000 1.26098
\(162\) − 1.00000i − 0.0785674i
\(163\) − 12.0000i − 0.939913i −0.882690 0.469956i \(-0.844270\pi\)
0.882690 0.469956i \(-0.155730\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) − 20.0000i − 1.54765i −0.633402 0.773823i \(-0.718342\pi\)
0.633402 0.773823i \(-0.281658\pi\)
\(168\) 4.00000i 0.308607i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 4.00000 0.305888
\(172\) − 4.00000i − 0.304997i
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) −2.00000 −0.151620
\(175\) 0 0
\(176\) −4.00000 −0.301511
\(177\) 8.00000i 0.601317i
\(178\) − 6.00000i − 0.449719i
\(179\) 20.0000 1.49487 0.747435 0.664335i \(-0.231285\pi\)
0.747435 + 0.664335i \(0.231285\pi\)
\(180\) 0 0
\(181\) −6.00000 −0.445976 −0.222988 0.974821i \(-0.571581\pi\)
−0.222988 + 0.974821i \(0.571581\pi\)
\(182\) − 8.00000i − 0.592999i
\(183\) − 10.0000i − 0.739221i
\(184\) 4.00000 0.294884
\(185\) 0 0
\(186\) 1.00000 0.0733236
\(187\) − 8.00000i − 0.585018i
\(188\) − 8.00000i − 0.583460i
\(189\) −4.00000 −0.290957
\(190\) 0 0
\(191\) 24.0000 1.73658 0.868290 0.496058i \(-0.165220\pi\)
0.868290 + 0.496058i \(0.165220\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) 14.0000i 1.00774i 0.863779 + 0.503871i \(0.168091\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 9.00000 0.642857
\(197\) − 14.0000i − 0.997459i −0.866758 0.498729i \(-0.833800\pi\)
0.866758 0.498729i \(-0.166200\pi\)
\(198\) − 4.00000i − 0.284268i
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) −12.0000 −0.846415
\(202\) − 18.0000i − 1.26648i
\(203\) 8.00000i 0.561490i
\(204\) −2.00000 −0.140028
\(205\) 0 0
\(206\) −4.00000 −0.278693
\(207\) 4.00000i 0.278019i
\(208\) − 2.00000i − 0.138675i
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) −12.0000 −0.826114 −0.413057 0.910705i \(-0.635539\pi\)
−0.413057 + 0.910705i \(0.635539\pi\)
\(212\) − 6.00000i − 0.412082i
\(213\) 0 0
\(214\) −4.00000 −0.273434
\(215\) 0 0
\(216\) −1.00000 −0.0680414
\(217\) − 4.00000i − 0.271538i
\(218\) 6.00000i 0.406371i
\(219\) −14.0000 −0.946032
\(220\) 0 0
\(221\) 4.00000 0.269069
\(222\) 6.00000i 0.402694i
\(223\) − 16.0000i − 1.07144i −0.844396 0.535720i \(-0.820040\pi\)
0.844396 0.535720i \(-0.179960\pi\)
\(224\) 4.00000 0.267261
\(225\) 0 0
\(226\) −6.00000 −0.399114
\(227\) 4.00000i 0.265489i 0.991150 + 0.132745i \(0.0423790\pi\)
−0.991150 + 0.132745i \(0.957621\pi\)
\(228\) − 4.00000i − 0.264906i
\(229\) 14.0000 0.925146 0.462573 0.886581i \(-0.346926\pi\)
0.462573 + 0.886581i \(0.346926\pi\)
\(230\) 0 0
\(231\) −16.0000 −1.05272
\(232\) 2.00000i 0.131306i
\(233\) 10.0000i 0.655122i 0.944830 + 0.327561i \(0.106227\pi\)
−0.944830 + 0.327561i \(0.893773\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 8.00000 0.520756
\(237\) − 8.00000i − 0.519656i
\(238\) 8.00000i 0.518563i
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −14.0000 −0.901819 −0.450910 0.892570i \(-0.648900\pi\)
−0.450910 + 0.892570i \(0.648900\pi\)
\(242\) − 5.00000i − 0.321412i
\(243\) − 1.00000i − 0.0641500i
\(244\) −10.0000 −0.640184
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 8.00000i 0.509028i
\(248\) − 1.00000i − 0.0635001i
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 4.00000i 0.251976i
\(253\) 16.0000i 1.00591i
\(254\) −8.00000 −0.501965
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.00000i 0.374270i 0.982334 + 0.187135i \(0.0599201\pi\)
−0.982334 + 0.187135i \(0.940080\pi\)
\(258\) − 4.00000i − 0.249029i
\(259\) 24.0000 1.49129
\(260\) 0 0
\(261\) −2.00000 −0.123797
\(262\) 8.00000i 0.494242i
\(263\) 12.0000i 0.739952i 0.929041 + 0.369976i \(0.120634\pi\)
−0.929041 + 0.369976i \(0.879366\pi\)
\(264\) −4.00000 −0.246183
\(265\) 0 0
\(266\) −16.0000 −0.981023
\(267\) − 6.00000i − 0.367194i
\(268\) 12.0000i 0.733017i
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) 2.00000i 0.121268i
\(273\) − 8.00000i − 0.484182i
\(274\) −6.00000 −0.362473
\(275\) 0 0
\(276\) 4.00000 0.240772
\(277\) − 22.0000i − 1.32185i −0.750451 0.660926i \(-0.770164\pi\)
0.750451 0.660926i \(-0.229836\pi\)
\(278\) 16.0000i 0.959616i
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −30.0000 −1.78965 −0.894825 0.446417i \(-0.852700\pi\)
−0.894825 + 0.446417i \(0.852700\pi\)
\(282\) − 8.00000i − 0.476393i
\(283\) − 20.0000i − 1.18888i −0.804141 0.594438i \(-0.797374\pi\)
0.804141 0.594438i \(-0.202626\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) 40.0000i 2.36113i
\(288\) 1.00000i 0.0589256i
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) 14.0000i 0.819288i
\(293\) 6.00000i 0.350524i 0.984522 + 0.175262i \(0.0560772\pi\)
−0.984522 + 0.175262i \(0.943923\pi\)
\(294\) 9.00000 0.524891
\(295\) 0 0
\(296\) 6.00000 0.348743
\(297\) − 4.00000i − 0.232104i
\(298\) − 6.00000i − 0.347571i
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) −16.0000 −0.922225
\(302\) − 8.00000i − 0.460348i
\(303\) − 18.0000i − 1.03407i
\(304\) −4.00000 −0.229416
\(305\) 0 0
\(306\) −2.00000 −0.114332
\(307\) − 20.0000i − 1.14146i −0.821138 0.570730i \(-0.806660\pi\)
0.821138 0.570730i \(-0.193340\pi\)
\(308\) 16.0000i 0.911685i
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) − 2.00000i − 0.113228i
\(313\) 34.0000i 1.92179i 0.276907 + 0.960897i \(0.410691\pi\)
−0.276907 + 0.960897i \(0.589309\pi\)
\(314\) −22.0000 −1.24153
\(315\) 0 0
\(316\) −8.00000 −0.450035
\(317\) 2.00000i 0.112331i 0.998421 + 0.0561656i \(0.0178875\pi\)
−0.998421 + 0.0561656i \(0.982113\pi\)
\(318\) − 6.00000i − 0.336463i
\(319\) −8.00000 −0.447914
\(320\) 0 0
\(321\) −4.00000 −0.223258
\(322\) − 16.0000i − 0.891645i
\(323\) − 8.00000i − 0.445132i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −12.0000 −0.664619
\(327\) 6.00000i 0.331801i
\(328\) 10.0000i 0.552158i
\(329\) −32.0000 −1.76422
\(330\) 0 0
\(331\) 24.0000 1.31916 0.659580 0.751635i \(-0.270734\pi\)
0.659580 + 0.751635i \(0.270734\pi\)
\(332\) 4.00000i 0.219529i
\(333\) 6.00000i 0.328798i
\(334\) −20.0000 −1.09435
\(335\) 0 0
\(336\) 4.00000 0.218218
\(337\) − 2.00000i − 0.108947i −0.998515 0.0544735i \(-0.982652\pi\)
0.998515 0.0544735i \(-0.0173480\pi\)
\(338\) − 9.00000i − 0.489535i
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) 4.00000 0.216612
\(342\) − 4.00000i − 0.216295i
\(343\) − 8.00000i − 0.431959i
\(344\) −4.00000 −0.215666
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) 20.0000i 1.07366i 0.843692 + 0.536828i \(0.180378\pi\)
−0.843692 + 0.536828i \(0.819622\pi\)
\(348\) 2.00000i 0.107211i
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 4.00000i 0.213201i
\(353\) − 10.0000i − 0.532246i −0.963939 0.266123i \(-0.914257\pi\)
0.963939 0.266123i \(-0.0857428\pi\)
\(354\) 8.00000 0.425195
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 8.00000i 0.423405i
\(358\) − 20.0000i − 1.05703i
\(359\) −16.0000 −0.844448 −0.422224 0.906492i \(-0.638750\pi\)
−0.422224 + 0.906492i \(0.638750\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 6.00000i 0.315353i
\(363\) − 5.00000i − 0.262432i
\(364\) −8.00000 −0.419314
\(365\) 0 0
\(366\) −10.0000 −0.522708
\(367\) − 8.00000i − 0.417597i −0.977959 0.208798i \(-0.933045\pi\)
0.977959 0.208798i \(-0.0669552\pi\)
\(368\) − 4.00000i − 0.208514i
\(369\) −10.0000 −0.520579
\(370\) 0 0
\(371\) −24.0000 −1.24602
\(372\) − 1.00000i − 0.0518476i
\(373\) 14.0000i 0.724893i 0.932005 + 0.362446i \(0.118058\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) −8.00000 −0.413670
\(375\) 0 0
\(376\) −8.00000 −0.412568
\(377\) − 4.00000i − 0.206010i
\(378\) 4.00000i 0.205738i
\(379\) −4.00000 −0.205466 −0.102733 0.994709i \(-0.532759\pi\)
−0.102733 + 0.994709i \(0.532759\pi\)
\(380\) 0 0
\(381\) −8.00000 −0.409852
\(382\) − 24.0000i − 1.22795i
\(383\) 4.00000i 0.204390i 0.994764 + 0.102195i \(0.0325866\pi\)
−0.994764 + 0.102195i \(0.967413\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) − 4.00000i − 0.203331i
\(388\) 6.00000i 0.304604i
\(389\) 10.0000 0.507020 0.253510 0.967333i \(-0.418415\pi\)
0.253510 + 0.967333i \(0.418415\pi\)
\(390\) 0 0
\(391\) 8.00000 0.404577
\(392\) − 9.00000i − 0.454569i
\(393\) 8.00000i 0.403547i
\(394\) −14.0000 −0.705310
\(395\) 0 0
\(396\) −4.00000 −0.201008
\(397\) 2.00000i 0.100377i 0.998740 + 0.0501886i \(0.0159822\pi\)
−0.998740 + 0.0501886i \(0.984018\pi\)
\(398\) − 8.00000i − 0.401004i
\(399\) −16.0000 −0.801002
\(400\) 0 0
\(401\) 34.0000 1.69788 0.848939 0.528490i \(-0.177242\pi\)
0.848939 + 0.528490i \(0.177242\pi\)
\(402\) 12.0000i 0.598506i
\(403\) 2.00000i 0.0996271i
\(404\) −18.0000 −0.895533
\(405\) 0 0
\(406\) 8.00000 0.397033
\(407\) 24.0000i 1.18964i
\(408\) 2.00000i 0.0990148i
\(409\) −18.0000 −0.890043 −0.445021 0.895520i \(-0.646804\pi\)
−0.445021 + 0.895520i \(0.646804\pi\)
\(410\) 0 0
\(411\) −6.00000 −0.295958
\(412\) 4.00000i 0.197066i
\(413\) − 32.0000i − 1.57462i
\(414\) 4.00000 0.196589
\(415\) 0 0
\(416\) −2.00000 −0.0980581
\(417\) 16.0000i 0.783523i
\(418\) − 16.0000i − 0.782586i
\(419\) −8.00000 −0.390826 −0.195413 0.980721i \(-0.562605\pi\)
−0.195413 + 0.980721i \(0.562605\pi\)
\(420\) 0 0
\(421\) 14.0000 0.682318 0.341159 0.940006i \(-0.389181\pi\)
0.341159 + 0.940006i \(0.389181\pi\)
\(422\) 12.0000i 0.584151i
\(423\) − 8.00000i − 0.388973i
\(424\) −6.00000 −0.291386
\(425\) 0 0
\(426\) 0 0
\(427\) 40.0000i 1.93574i
\(428\) 4.00000i 0.193347i
\(429\) 8.00000 0.386244
\(430\) 0 0
\(431\) −24.0000 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 26.0000i 1.24948i 0.780833 + 0.624740i \(0.214795\pi\)
−0.780833 + 0.624740i \(0.785205\pi\)
\(434\) −4.00000 −0.192006
\(435\) 0 0
\(436\) 6.00000 0.287348
\(437\) 16.0000i 0.765384i
\(438\) 14.0000i 0.668946i
\(439\) −32.0000 −1.52728 −0.763638 0.645644i \(-0.776589\pi\)
−0.763638 + 0.645644i \(0.776589\pi\)
\(440\) 0 0
\(441\) 9.00000 0.428571
\(442\) − 4.00000i − 0.190261i
\(443\) − 28.0000i − 1.33032i −0.746701 0.665160i \(-0.768363\pi\)
0.746701 0.665160i \(-0.231637\pi\)
\(444\) 6.00000 0.284747
\(445\) 0 0
\(446\) −16.0000 −0.757622
\(447\) − 6.00000i − 0.283790i
\(448\) − 4.00000i − 0.188982i
\(449\) 14.0000 0.660701 0.330350 0.943858i \(-0.392833\pi\)
0.330350 + 0.943858i \(0.392833\pi\)
\(450\) 0 0
\(451\) −40.0000 −1.88353
\(452\) 6.00000i 0.282216i
\(453\) − 8.00000i − 0.375873i
\(454\) 4.00000 0.187729
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) − 18.0000i − 0.842004i −0.907060 0.421002i \(-0.861678\pi\)
0.907060 0.421002i \(-0.138322\pi\)
\(458\) − 14.0000i − 0.654177i
\(459\) −2.00000 −0.0933520
\(460\) 0 0
\(461\) 38.0000 1.76984 0.884918 0.465746i \(-0.154214\pi\)
0.884918 + 0.465746i \(0.154214\pi\)
\(462\) 16.0000i 0.744387i
\(463\) 24.0000i 1.11537i 0.830051 + 0.557687i \(0.188311\pi\)
−0.830051 + 0.557687i \(0.811689\pi\)
\(464\) 2.00000 0.0928477
\(465\) 0 0
\(466\) 10.0000 0.463241
\(467\) − 12.0000i − 0.555294i −0.960683 0.277647i \(-0.910445\pi\)
0.960683 0.277647i \(-0.0895545\pi\)
\(468\) − 2.00000i − 0.0924500i
\(469\) 48.0000 2.21643
\(470\) 0 0
\(471\) −22.0000 −1.01371
\(472\) − 8.00000i − 0.368230i
\(473\) − 16.0000i − 0.735681i
\(474\) −8.00000 −0.367452
\(475\) 0 0
\(476\) 8.00000 0.366679
\(477\) − 6.00000i − 0.274721i
\(478\) 8.00000i 0.365911i
\(479\) 16.0000 0.731059 0.365529 0.930800i \(-0.380888\pi\)
0.365529 + 0.930800i \(0.380888\pi\)
\(480\) 0 0
\(481\) −12.0000 −0.547153
\(482\) 14.0000i 0.637683i
\(483\) − 16.0000i − 0.728025i
\(484\) −5.00000 −0.227273
\(485\) 0 0
\(486\) −1.00000 −0.0453609
\(487\) 24.0000i 1.08754i 0.839233 + 0.543772i \(0.183004\pi\)
−0.839233 + 0.543772i \(0.816996\pi\)
\(488\) 10.0000i 0.452679i
\(489\) −12.0000 −0.542659
\(490\) 0 0
\(491\) −20.0000 −0.902587 −0.451294 0.892375i \(-0.649037\pi\)
−0.451294 + 0.892375i \(0.649037\pi\)
\(492\) 10.0000i 0.450835i
\(493\) 4.00000i 0.180151i
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) 0 0
\(498\) 4.00000i 0.179244i
\(499\) 24.0000 1.07439 0.537194 0.843459i \(-0.319484\pi\)
0.537194 + 0.843459i \(0.319484\pi\)
\(500\) 0 0
\(501\) −20.0000 −0.893534
\(502\) 28.0000i 1.24970i
\(503\) − 24.0000i − 1.07011i −0.844818 0.535054i \(-0.820291\pi\)
0.844818 0.535054i \(-0.179709\pi\)
\(504\) 4.00000 0.178174
\(505\) 0 0
\(506\) 16.0000 0.711287
\(507\) − 9.00000i − 0.399704i
\(508\) 8.00000i 0.354943i
\(509\) −22.0000 −0.975133 −0.487566 0.873086i \(-0.662115\pi\)
−0.487566 + 0.873086i \(0.662115\pi\)
\(510\) 0 0
\(511\) 56.0000 2.47729
\(512\) − 1.00000i − 0.0441942i
\(513\) − 4.00000i − 0.176604i
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) −4.00000 −0.176090
\(517\) − 32.0000i − 1.40736i
\(518\) − 24.0000i − 1.05450i
\(519\) 14.0000 0.614532
\(520\) 0 0
\(521\) −30.0000 −1.31432 −0.657162 0.753749i \(-0.728243\pi\)
−0.657162 + 0.753749i \(0.728243\pi\)
\(522\) 2.00000i 0.0875376i
\(523\) − 36.0000i − 1.57417i −0.616844 0.787085i \(-0.711589\pi\)
0.616844 0.787085i \(-0.288411\pi\)
\(524\) 8.00000 0.349482
\(525\) 0 0
\(526\) 12.0000 0.523225
\(527\) − 2.00000i − 0.0871214i
\(528\) 4.00000i 0.174078i
\(529\) 7.00000 0.304348
\(530\) 0 0
\(531\) 8.00000 0.347170
\(532\) 16.0000i 0.693688i
\(533\) − 20.0000i − 0.866296i
\(534\) −6.00000 −0.259645
\(535\) 0 0
\(536\) 12.0000 0.518321
\(537\) − 20.0000i − 0.863064i
\(538\) − 18.0000i − 0.776035i
\(539\) 36.0000 1.55063
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) − 8.00000i − 0.343629i
\(543\) 6.00000i 0.257485i
\(544\) 2.00000 0.0857493
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) − 28.0000i − 1.19719i −0.801050 0.598597i \(-0.795725\pi\)
0.801050 0.598597i \(-0.204275\pi\)
\(548\) 6.00000i 0.256307i
\(549\) −10.0000 −0.426790
\(550\) 0 0
\(551\) −8.00000 −0.340811
\(552\) − 4.00000i − 0.170251i
\(553\) 32.0000i 1.36078i
\(554\) −22.0000 −0.934690
\(555\) 0 0
\(556\) 16.0000 0.678551
\(557\) 42.0000i 1.77960i 0.456354 + 0.889799i \(0.349155\pi\)
−0.456354 + 0.889799i \(0.650845\pi\)
\(558\) − 1.00000i − 0.0423334i
\(559\) 8.00000 0.338364
\(560\) 0 0
\(561\) −8.00000 −0.337760
\(562\) 30.0000i 1.26547i
\(563\) 36.0000i 1.51722i 0.651546 + 0.758610i \(0.274121\pi\)
−0.651546 + 0.758610i \(0.725879\pi\)
\(564\) −8.00000 −0.336861
\(565\) 0 0
\(566\) −20.0000 −0.840663
\(567\) 4.00000i 0.167984i
\(568\) 0 0
\(569\) −26.0000 −1.08998 −0.544988 0.838444i \(-0.683466\pi\)
−0.544988 + 0.838444i \(0.683466\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) − 8.00000i − 0.334497i
\(573\) − 24.0000i − 1.00261i
\(574\) 40.0000 1.66957
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) − 30.0000i − 1.24892i −0.781058 0.624458i \(-0.785320\pi\)
0.781058 0.624458i \(-0.214680\pi\)
\(578\) − 13.0000i − 0.540729i
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) 16.0000 0.663792
\(582\) 6.00000i 0.248708i
\(583\) − 24.0000i − 0.993978i
\(584\) 14.0000 0.579324
\(585\) 0 0
\(586\) 6.00000 0.247858
\(587\) 28.0000i 1.15568i 0.816149 + 0.577842i \(0.196105\pi\)
−0.816149 + 0.577842i \(0.803895\pi\)
\(588\) − 9.00000i − 0.371154i
\(589\) 4.00000 0.164817
\(590\) 0 0
\(591\) −14.0000 −0.575883
\(592\) − 6.00000i − 0.246598i
\(593\) 18.0000i 0.739171i 0.929197 + 0.369586i \(0.120500\pi\)
−0.929197 + 0.369586i \(0.879500\pi\)
\(594\) −4.00000 −0.164122
\(595\) 0 0
\(596\) −6.00000 −0.245770
\(597\) − 8.00000i − 0.327418i
\(598\) 8.00000i 0.327144i
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 34.0000 1.38689 0.693444 0.720510i \(-0.256092\pi\)
0.693444 + 0.720510i \(0.256092\pi\)
\(602\) 16.0000i 0.652111i
\(603\) 12.0000i 0.488678i
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) −18.0000 −0.731200
\(607\) 28.0000i 1.13648i 0.822861 + 0.568242i \(0.192376\pi\)
−0.822861 + 0.568242i \(0.807624\pi\)
\(608\) 4.00000i 0.162221i
\(609\) 8.00000 0.324176
\(610\) 0 0
\(611\) 16.0000 0.647291
\(612\) 2.00000i 0.0808452i
\(613\) − 26.0000i − 1.05013i −0.851062 0.525065i \(-0.824041\pi\)
0.851062 0.525065i \(-0.175959\pi\)
\(614\) −20.0000 −0.807134
\(615\) 0 0
\(616\) 16.0000 0.644658
\(617\) − 18.0000i − 0.724653i −0.932051 0.362326i \(-0.881983\pi\)
0.932051 0.362326i \(-0.118017\pi\)
\(618\) 4.00000i 0.160904i
\(619\) 32.0000 1.28619 0.643094 0.765787i \(-0.277650\pi\)
0.643094 + 0.765787i \(0.277650\pi\)
\(620\) 0 0
\(621\) 4.00000 0.160514
\(622\) − 24.0000i − 0.962312i
\(623\) 24.0000i 0.961540i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) 34.0000 1.35891
\(627\) − 16.0000i − 0.638978i
\(628\) 22.0000i 0.877896i
\(629\) 12.0000 0.478471
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 8.00000i 0.318223i
\(633\) 12.0000i 0.476957i
\(634\) 2.00000 0.0794301
\(635\) 0 0
\(636\) −6.00000 −0.237915
\(637\) 18.0000i 0.713186i
\(638\) 8.00000i 0.316723i
\(639\) 0 0
\(640\) 0 0
\(641\) 2.00000 0.0789953 0.0394976 0.999220i \(-0.487424\pi\)
0.0394976 + 0.999220i \(0.487424\pi\)
\(642\) 4.00000i 0.157867i
\(643\) 20.0000i 0.788723i 0.918955 + 0.394362i \(0.129034\pi\)
−0.918955 + 0.394362i \(0.870966\pi\)
\(644\) −16.0000 −0.630488
\(645\) 0 0
\(646\) −8.00000 −0.314756
\(647\) − 28.0000i − 1.10079i −0.834903 0.550397i \(-0.814476\pi\)
0.834903 0.550397i \(-0.185524\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 32.0000 1.25611
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) 12.0000i 0.469956i
\(653\) − 18.0000i − 0.704394i −0.935926 0.352197i \(-0.885435\pi\)
0.935926 0.352197i \(-0.114565\pi\)
\(654\) 6.00000 0.234619
\(655\) 0 0
\(656\) 10.0000 0.390434
\(657\) 14.0000i 0.546192i
\(658\) 32.0000i 1.24749i
\(659\) 8.00000 0.311636 0.155818 0.987786i \(-0.450199\pi\)
0.155818 + 0.987786i \(0.450199\pi\)
\(660\) 0 0
\(661\) 46.0000 1.78919 0.894596 0.446875i \(-0.147463\pi\)
0.894596 + 0.446875i \(0.147463\pi\)
\(662\) − 24.0000i − 0.932786i
\(663\) − 4.00000i − 0.155347i
\(664\) 4.00000 0.155230
\(665\) 0 0
\(666\) 6.00000 0.232495
\(667\) − 8.00000i − 0.309761i
\(668\) 20.0000i 0.773823i
\(669\) −16.0000 −0.618596
\(670\) 0 0
\(671\) −40.0000 −1.54418
\(672\) − 4.00000i − 0.154303i
\(673\) − 14.0000i − 0.539660i −0.962908 0.269830i \(-0.913032\pi\)
0.962908 0.269830i \(-0.0869676\pi\)
\(674\) −2.00000 −0.0770371
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 18.0000i 0.691796i 0.938272 + 0.345898i \(0.112426\pi\)
−0.938272 + 0.345898i \(0.887574\pi\)
\(678\) 6.00000i 0.230429i
\(679\) 24.0000 0.921035
\(680\) 0 0
\(681\) 4.00000 0.153280
\(682\) − 4.00000i − 0.153168i
\(683\) − 28.0000i − 1.07139i −0.844411 0.535695i \(-0.820050\pi\)
0.844411 0.535695i \(-0.179950\pi\)
\(684\) −4.00000 −0.152944
\(685\) 0 0
\(686\) −8.00000 −0.305441
\(687\) − 14.0000i − 0.534133i
\(688\) 4.00000i 0.152499i
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) − 14.0000i − 0.532200i
\(693\) 16.0000i 0.607790i
\(694\) 20.0000 0.759190
\(695\) 0 0
\(696\) 2.00000 0.0758098
\(697\) 20.0000i 0.757554i
\(698\) 30.0000i 1.13552i
\(699\) 10.0000 0.378235
\(700\) 0 0
\(701\) −46.0000 −1.73740 −0.868698 0.495342i \(-0.835043\pi\)
−0.868698 + 0.495342i \(0.835043\pi\)
\(702\) − 2.00000i − 0.0754851i
\(703\) 24.0000i 0.905177i
\(704\) 4.00000 0.150756
\(705\) 0 0
\(706\) −10.0000 −0.376355
\(707\) 72.0000i 2.70784i
\(708\) − 8.00000i − 0.300658i
\(709\) −42.0000 −1.57734 −0.788672 0.614815i \(-0.789231\pi\)
−0.788672 + 0.614815i \(0.789231\pi\)
\(710\) 0 0
\(711\) −8.00000 −0.300023
\(712\) 6.00000i 0.224860i
\(713\) 4.00000i 0.149801i
\(714\) 8.00000 0.299392
\(715\) 0 0
\(716\) −20.0000 −0.747435
\(717\) 8.00000i 0.298765i
\(718\) 16.0000i 0.597115i
\(719\) −24.0000 −0.895049 −0.447524 0.894272i \(-0.647694\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 16.0000 0.595871
\(722\) 3.00000i 0.111648i
\(723\) 14.0000i 0.520666i
\(724\) 6.00000 0.222988
\(725\) 0 0
\(726\) −5.00000 −0.185567
\(727\) 4.00000i 0.148352i 0.997245 + 0.0741759i \(0.0236326\pi\)
−0.997245 + 0.0741759i \(0.976367\pi\)
\(728\) 8.00000i 0.296500i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −8.00000 −0.295891
\(732\) 10.0000i 0.369611i
\(733\) − 18.0000i − 0.664845i −0.943131 0.332423i \(-0.892134\pi\)
0.943131 0.332423i \(-0.107866\pi\)
\(734\) −8.00000 −0.295285
\(735\) 0 0
\(736\) −4.00000 −0.147442
\(737\) 48.0000i 1.76810i
\(738\) 10.0000i 0.368105i
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) 8.00000 0.293887
\(742\) 24.0000i 0.881068i
\(743\) 4.00000i 0.146746i 0.997305 + 0.0733729i \(0.0233763\pi\)
−0.997305 + 0.0733729i \(0.976624\pi\)
\(744\) −1.00000 −0.0366618
\(745\) 0 0
\(746\) 14.0000 0.512576
\(747\) 4.00000i 0.146352i
\(748\) 8.00000i 0.292509i
\(749\) 16.0000 0.584627
\(750\) 0 0
\(751\) 40.0000 1.45962 0.729810 0.683650i \(-0.239608\pi\)
0.729810 + 0.683650i \(0.239608\pi\)
\(752\) 8.00000i 0.291730i
\(753\) 28.0000i 1.02038i
\(754\) −4.00000 −0.145671
\(755\) 0 0
\(756\) 4.00000 0.145479
\(757\) − 54.0000i − 1.96266i −0.192323 0.981332i \(-0.561602\pi\)
0.192323 0.981332i \(-0.438398\pi\)
\(758\) 4.00000i 0.145287i
\(759\) 16.0000 0.580763
\(760\) 0 0
\(761\) 10.0000 0.362500 0.181250 0.983437i \(-0.441986\pi\)
0.181250 + 0.983437i \(0.441986\pi\)
\(762\) 8.00000i 0.289809i
\(763\) − 24.0000i − 0.868858i
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) 4.00000 0.144526
\(767\) 16.0000i 0.577727i
\(768\) − 1.00000i − 0.0360844i
\(769\) 46.0000 1.65880 0.829401 0.558653i \(-0.188682\pi\)
0.829401 + 0.558653i \(0.188682\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) − 14.0000i − 0.503871i
\(773\) − 26.0000i − 0.935155i −0.883952 0.467578i \(-0.845127\pi\)
0.883952 0.467578i \(-0.154873\pi\)
\(774\) −4.00000 −0.143777
\(775\) 0 0
\(776\) 6.00000 0.215387
\(777\) − 24.0000i − 0.860995i
\(778\) − 10.0000i − 0.358517i
\(779\) −40.0000 −1.43315
\(780\) 0 0
\(781\) 0 0
\(782\) − 8.00000i − 0.286079i
\(783\) 2.00000i 0.0714742i
\(784\) −9.00000 −0.321429
\(785\) 0 0
\(786\) 8.00000 0.285351
\(787\) 4.00000i 0.142585i 0.997455 + 0.0712923i \(0.0227123\pi\)
−0.997455 + 0.0712923i \(0.977288\pi\)
\(788\) 14.0000i 0.498729i
\(789\) 12.0000 0.427211
\(790\) 0 0
\(791\) 24.0000 0.853342
\(792\) 4.00000i 0.142134i
\(793\) − 20.0000i − 0.710221i
\(794\) 2.00000 0.0709773
\(795\) 0 0
\(796\) −8.00000 −0.283552
\(797\) − 30.0000i − 1.06265i −0.847167 0.531327i \(-0.821693\pi\)
0.847167 0.531327i \(-0.178307\pi\)
\(798\) 16.0000i 0.566394i
\(799\) −16.0000 −0.566039
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) − 34.0000i − 1.20058i
\(803\) 56.0000i 1.97620i
\(804\) 12.0000 0.423207
\(805\) 0 0
\(806\) 2.00000 0.0704470
\(807\) − 18.0000i − 0.633630i
\(808\) 18.0000i 0.633238i
\(809\) 38.0000 1.33601 0.668004 0.744157i \(-0.267149\pi\)
0.668004 + 0.744157i \(0.267149\pi\)
\(810\) 0 0
\(811\) −28.0000 −0.983213 −0.491606 0.870817i \(-0.663590\pi\)
−0.491606 + 0.870817i \(0.663590\pi\)
\(812\) − 8.00000i − 0.280745i
\(813\) − 8.00000i − 0.280572i
\(814\) 24.0000 0.841200
\(815\) 0 0
\(816\) 2.00000 0.0700140
\(817\) − 16.0000i − 0.559769i
\(818\) 18.0000i 0.629355i
\(819\) −8.00000 −0.279543
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 6.00000i 0.209274i
\(823\) − 40.0000i − 1.39431i −0.716919 0.697156i \(-0.754448\pi\)
0.716919 0.697156i \(-0.245552\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −32.0000 −1.11342
\(827\) − 12.0000i − 0.417281i −0.977992 0.208640i \(-0.933096\pi\)
0.977992 0.208640i \(-0.0669038\pi\)
\(828\) − 4.00000i − 0.139010i
\(829\) 46.0000 1.59765 0.798823 0.601566i \(-0.205456\pi\)
0.798823 + 0.601566i \(0.205456\pi\)
\(830\) 0 0
\(831\) −22.0000 −0.763172
\(832\) 2.00000i 0.0693375i
\(833\) − 18.0000i − 0.623663i
\(834\) 16.0000 0.554035
\(835\) 0 0
\(836\) −16.0000 −0.553372
\(837\) − 1.00000i − 0.0345651i
\(838\) 8.00000i 0.276355i
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) − 14.0000i − 0.482472i
\(843\) 30.0000i 1.03325i
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) −8.00000 −0.275046
\(847\) 20.0000i 0.687208i
\(848\) 6.00000i 0.206041i
\(849\) −20.0000 −0.686398
\(850\) 0 0
\(851\) −24.0000 −0.822709
\(852\) 0 0
\(853\) − 26.0000i − 0.890223i −0.895475 0.445112i \(-0.853164\pi\)
0.895475 0.445112i \(-0.146836\pi\)
\(854\) 40.0000 1.36877
\(855\) 0 0
\(856\) 4.00000 0.136717
\(857\) 22.0000i 0.751506i 0.926720 + 0.375753i \(0.122616\pi\)
−0.926720 + 0.375753i \(0.877384\pi\)
\(858\) − 8.00000i − 0.273115i
\(859\) −40.0000 −1.36478 −0.682391 0.730987i \(-0.739060\pi\)
−0.682391 + 0.730987i \(0.739060\pi\)
\(860\) 0 0
\(861\) 40.0000 1.36320
\(862\) 24.0000i 0.817443i
\(863\) − 4.00000i − 0.136162i −0.997680 0.0680808i \(-0.978312\pi\)
0.997680 0.0680808i \(-0.0216876\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) 26.0000 0.883516
\(867\) − 13.0000i − 0.441503i
\(868\) 4.00000i 0.135769i
\(869\) −32.0000 −1.08553
\(870\) 0 0
\(871\) −24.0000 −0.813209
\(872\) − 6.00000i − 0.203186i
\(873\) 6.00000i 0.203069i
\(874\) 16.0000 0.541208
\(875\) 0 0
\(876\) 14.0000 0.473016
\(877\) − 38.0000i − 1.28317i −0.767052 0.641584i \(-0.778277\pi\)
0.767052 0.641584i \(-0.221723\pi\)
\(878\) 32.0000i 1.07995i
\(879\) 6.00000 0.202375
\(880\) 0 0
\(881\) −30.0000 −1.01073 −0.505363 0.862907i \(-0.668641\pi\)
−0.505363 + 0.862907i \(0.668641\pi\)
\(882\) − 9.00000i − 0.303046i
\(883\) 52.0000i 1.74994i 0.484178 + 0.874970i \(0.339119\pi\)
−0.484178 + 0.874970i \(0.660881\pi\)
\(884\) −4.00000 −0.134535
\(885\) 0 0
\(886\) −28.0000 −0.940678
\(887\) 40.0000i 1.34307i 0.740973 + 0.671534i \(0.234364\pi\)
−0.740973 + 0.671534i \(0.765636\pi\)
\(888\) − 6.00000i − 0.201347i
\(889\) 32.0000 1.07325
\(890\) 0 0
\(891\) −4.00000 −0.134005
\(892\) 16.0000i 0.535720i
\(893\) − 32.0000i − 1.07084i
\(894\) −6.00000 −0.200670
\(895\) 0 0
\(896\) −4.00000 −0.133631
\(897\) 8.00000i 0.267112i
\(898\) − 14.0000i − 0.467186i
\(899\) −2.00000 −0.0667037
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 40.0000i 1.33185i
\(903\) 16.0000i 0.532447i
\(904\) 6.00000 0.199557
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) − 28.0000i − 0.929725i −0.885383 0.464862i \(-0.846104\pi\)
0.885383 0.464862i \(-0.153896\pi\)
\(908\) − 4.00000i − 0.132745i
\(909\) −18.0000 −0.597022
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 4.00000i 0.132453i
\(913\) 16.0000i 0.529523i
\(914\) −18.0000 −0.595387
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) − 32.0000i − 1.05673i
\(918\) 2.00000i 0.0660098i
\(919\) 8.00000 0.263896 0.131948 0.991257i \(-0.457877\pi\)
0.131948 + 0.991257i \(0.457877\pi\)
\(920\) 0 0
\(921\) −20.0000 −0.659022
\(922\) − 38.0000i − 1.25146i
\(923\) 0 0
\(924\) 16.0000 0.526361
\(925\) 0 0
\(926\) 24.0000 0.788689
\(927\) 4.00000i 0.131377i
\(928\) − 2.00000i − 0.0656532i
\(929\) 46.0000 1.50921 0.754606 0.656179i \(-0.227828\pi\)
0.754606 + 0.656179i \(0.227828\pi\)
\(930\) 0 0
\(931\) 36.0000 1.17985
\(932\) − 10.0000i − 0.327561i
\(933\) − 24.0000i − 0.785725i
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) −2.00000 −0.0653720
\(937\) − 14.0000i − 0.457360i −0.973502 0.228680i \(-0.926559\pi\)
0.973502 0.228680i \(-0.0734410\pi\)
\(938\) − 48.0000i − 1.56726i
\(939\) 34.0000 1.10955
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) 22.0000i 0.716799i
\(943\) − 40.0000i − 1.30258i
\(944\) −8.00000 −0.260378
\(945\) 0 0
\(946\) −16.0000 −0.520205
\(947\) 52.0000i 1.68977i 0.534946 + 0.844886i \(0.320332\pi\)
−0.534946 + 0.844886i \(0.679668\pi\)
\(948\) 8.00000i 0.259828i
\(949\) −28.0000 −0.908918
\(950\) 0 0
\(951\) 2.00000 0.0648544
\(952\) − 8.00000i − 0.259281i
\(953\) 38.0000i 1.23094i 0.788160 + 0.615470i \(0.211034\pi\)
−0.788160 + 0.615470i \(0.788966\pi\)
\(954\) −6.00000 −0.194257
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) 8.00000i 0.258603i
\(958\) − 16.0000i − 0.516937i
\(959\) 24.0000 0.775000
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 12.0000i 0.386896i
\(963\) 4.00000i 0.128898i
\(964\) 14.0000 0.450910
\(965\) 0 0
\(966\) −16.0000 −0.514792
\(967\) 48.0000i 1.54358i 0.635880 + 0.771788i \(0.280637\pi\)
−0.635880 + 0.771788i \(0.719363\pi\)
\(968\) 5.00000i 0.160706i
\(969\) −8.00000 −0.256997
\(970\) 0 0
\(971\) 40.0000 1.28366 0.641831 0.766846i \(-0.278175\pi\)
0.641831 + 0.766846i \(0.278175\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 64.0000i − 2.05175i
\(974\) 24.0000 0.769010
\(975\) 0 0
\(976\) 10.0000 0.320092
\(977\) − 10.0000i − 0.319928i −0.987123 0.159964i \(-0.948862\pi\)
0.987123 0.159964i \(-0.0511379\pi\)
\(978\) 12.0000i 0.383718i
\(979\) −24.0000 −0.767043
\(980\) 0 0
\(981\) 6.00000 0.191565
\(982\) 20.0000i 0.638226i
\(983\) 36.0000i 1.14822i 0.818778 + 0.574111i \(0.194652\pi\)
−0.818778 + 0.574111i \(0.805348\pi\)
\(984\) 10.0000 0.318788
\(985\) 0 0
\(986\) 4.00000 0.127386
\(987\) 32.0000i 1.01857i
\(988\) − 8.00000i − 0.254514i
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) 16.0000 0.508257 0.254128 0.967170i \(-0.418211\pi\)
0.254128 + 0.967170i \(0.418211\pi\)
\(992\) 1.00000i 0.0317500i
\(993\) − 24.0000i − 0.761617i
\(994\) 0 0
\(995\) 0 0
\(996\) 4.00000 0.126745
\(997\) 18.0000i 0.570066i 0.958518 + 0.285033i \(0.0920045\pi\)
−0.958518 + 0.285033i \(0.907995\pi\)
\(998\) − 24.0000i − 0.759707i
\(999\) 6.00000 0.189832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.d.c.3349.1 2
5.2 odd 4 4650.2.a.w.1.1 1
5.3 odd 4 930.2.a.g.1.1 1
5.4 even 2 inner 4650.2.d.c.3349.2 2
15.8 even 4 2790.2.a.bc.1.1 1
20.3 even 4 7440.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.a.g.1.1 1 5.3 odd 4
2790.2.a.bc.1.1 1 15.8 even 4
4650.2.a.w.1.1 1 5.2 odd 4
4650.2.d.c.3349.1 2 1.1 even 1 trivial
4650.2.d.c.3349.2 2 5.4 even 2 inner
7440.2.a.a.1.1 1 20.3 even 4