Properties

Label 4650.2.d.bd
Level $4650$
Weight $2$
Character orbit 4650.d
Analytic conductor $37.130$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(37.1304369399\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{17})\)
Defining polynomial: \( x^{4} + 9x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - \beta_{2} q^{3} - q^{4} - q^{6} + \beta_1 q^{7} + \beta_{2} q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{2} q^{2} - \beta_{2} q^{3} - q^{4} - q^{6} + \beta_1 q^{7} + \beta_{2} q^{8} - q^{9} + ( - \beta_{3} + 1) q^{11} + \beta_{2} q^{12} + 2 \beta_{2} q^{13} + (\beta_{3} - 1) q^{14} + q^{16} + ( - 2 \beta_{2} - 2 \beta_1) q^{17} + \beta_{2} q^{18} + ( - 3 \beta_{3} + 3) q^{19} + (\beta_{3} - 1) q^{21} + \beta_1 q^{22} + (4 \beta_{2} + \beta_1) q^{23} + q^{24} + 2 q^{26} + \beta_{2} q^{27} - \beta_1 q^{28} + (2 \beta_{3} - 4) q^{29} + q^{31} - \beta_{2} q^{32} + \beta_1 q^{33} - 2 \beta_{3} q^{34} + q^{36} + ( - 2 \beta_{2} - 2 \beta_1) q^{37} + 3 \beta_1 q^{38} + 2 q^{39} + ( - 2 \beta_{3} + 4) q^{41} - \beta_1 q^{42} - 5 \beta_1 q^{43} + (\beta_{3} - 1) q^{44} + (\beta_{3} + 3) q^{46} + 2 \beta_1 q^{47} - \beta_{2} q^{48} + (\beta_{3} + 2) q^{49} - 2 \beta_{3} q^{51} - 2 \beta_{2} q^{52} + (10 \beta_{2} + \beta_1) q^{53} + q^{54} + ( - \beta_{3} + 1) q^{56} + 3 \beta_1 q^{57} + (2 \beta_{2} - 2 \beta_1) q^{58} + ( - 2 \beta_{3} + 10) q^{59} + 6 q^{61} - \beta_{2} q^{62} - \beta_1 q^{63} - q^{64} + (\beta_{3} - 1) q^{66} - 6 \beta_1 q^{67} + (2 \beta_{2} + 2 \beta_1) q^{68} + (\beta_{3} + 3) q^{69} + (3 \beta_{3} - 3) q^{71} - \beta_{2} q^{72} + (2 \beta_{2} + 5 \beta_1) q^{73} - 2 \beta_{3} q^{74} + (3 \beta_{3} - 3) q^{76} + ( - 4 \beta_{2} + \beta_1) q^{77} - 2 \beta_{2} q^{78} + (3 \beta_{3} + 9) q^{79} + q^{81} + ( - 2 \beta_{2} + 2 \beta_1) q^{82} + (4 \beta_{2} - 4 \beta_1) q^{83} + ( - \beta_{3} + 1) q^{84} + ( - 5 \beta_{3} + 5) q^{86} + (2 \beta_{2} - 2 \beta_1) q^{87} - \beta_1 q^{88} + ( - 3 \beta_{3} + 9) q^{89} + ( - 2 \beta_{3} + 2) q^{91} + ( - 4 \beta_{2} - \beta_1) q^{92} - \beta_{2} q^{93} + (2 \beta_{3} - 2) q^{94} - q^{96} + 6 \beta_{2} q^{97} + ( - 3 \beta_{2} - \beta_1) q^{98} + (\beta_{3} - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{6} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{4} - 4 q^{6} - 4 q^{9} + 2 q^{11} - 2 q^{14} + 4 q^{16} + 6 q^{19} - 2 q^{21} + 4 q^{24} + 8 q^{26} - 12 q^{29} + 4 q^{31} - 4 q^{34} + 4 q^{36} + 8 q^{39} + 12 q^{41} - 2 q^{44} + 14 q^{46} + 10 q^{49} - 4 q^{51} + 4 q^{54} + 2 q^{56} + 36 q^{59} + 24 q^{61} - 4 q^{64} - 2 q^{66} + 14 q^{69} - 6 q^{71} - 4 q^{74} - 6 q^{76} + 42 q^{79} + 4 q^{81} + 2 q^{84} + 10 q^{86} + 30 q^{89} + 4 q^{91} - 4 q^{94} - 4 q^{96} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 4\beta_{2} - 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3349.1
2.56155i
1.56155i
1.56155i
2.56155i
1.00000i 1.00000i −1.00000 0 −1.00000 2.56155i 1.00000i −1.00000 0
3349.2 1.00000i 1.00000i −1.00000 0 −1.00000 1.56155i 1.00000i −1.00000 0
3349.3 1.00000i 1.00000i −1.00000 0 −1.00000 1.56155i 1.00000i −1.00000 0
3349.4 1.00000i 1.00000i −1.00000 0 −1.00000 2.56155i 1.00000i −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4650.2.d.bd 4
5.b even 2 1 inner 4650.2.d.bd 4
5.c odd 4 1 930.2.a.p 2
5.c odd 4 1 4650.2.a.ce 2
15.e even 4 1 2790.2.a.be 2
20.e even 4 1 7440.2.a.bl 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.a.p 2 5.c odd 4 1
2790.2.a.be 2 15.e even 4 1
4650.2.a.ce 2 5.c odd 4 1
4650.2.d.bd 4 1.a even 1 1 trivial
4650.2.d.bd 4 5.b even 2 1 inner
7440.2.a.bl 2 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(4650, [\chi])\):

\( T_{7}^{4} + 9T_{7}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} - 4 \) Copy content Toggle raw display
\( T_{13}^{2} + 4 \) Copy content Toggle raw display
\( T_{17}^{4} + 36T_{17}^{2} + 256 \) Copy content Toggle raw display
\( T_{19}^{2} - 3T_{19} - 36 \) Copy content Toggle raw display
\( T_{29}^{2} + 6T_{29} - 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 9T^{2} + 16 \) Copy content Toggle raw display
$11$ \( (T^{2} - T - 4)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$19$ \( (T^{2} - 3 T - 36)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 33T^{2} + 64 \) Copy content Toggle raw display
$29$ \( (T^{2} + 6 T - 8)^{2} \) Copy content Toggle raw display
$31$ \( (T - 1)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$41$ \( (T^{2} - 6 T - 8)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 225 T^{2} + 10000 \) Copy content Toggle raw display
$47$ \( T^{4} + 36T^{2} + 256 \) Copy content Toggle raw display
$53$ \( T^{4} + 189T^{2} + 7396 \) Copy content Toggle raw display
$59$ \( (T^{2} - 18 T + 64)^{2} \) Copy content Toggle raw display
$61$ \( (T - 6)^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + 324 T^{2} + 20736 \) Copy content Toggle raw display
$71$ \( (T^{2} + 3 T - 36)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 213 T^{2} + 11236 \) Copy content Toggle raw display
$79$ \( (T^{2} - 21 T + 72)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 208T^{2} + 1024 \) Copy content Toggle raw display
$89$ \( (T^{2} - 15 T + 18)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
show more
show less