Properties

Label 4650.2.d.ba.3349.2
Level $4650$
Weight $2$
Character 4650.3349
Analytic conductor $37.130$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(3349,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.3349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(37.1304369399\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3349.2
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 4650.3349
Dual form 4650.2.d.ba.3349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000i q^{3} -1.00000 q^{4} +1.00000 q^{6} -3.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} +3.00000 q^{11} +1.00000i q^{12} -2.00000i q^{13} +3.00000 q^{14} +1.00000 q^{16} -8.00000i q^{17} -1.00000i q^{18} +7.00000 q^{19} -3.00000 q^{21} +3.00000i q^{22} +7.00000i q^{23} -1.00000 q^{24} +2.00000 q^{26} +1.00000i q^{27} +3.00000i q^{28} +8.00000 q^{29} -1.00000 q^{31} +1.00000i q^{32} -3.00000i q^{33} +8.00000 q^{34} +1.00000 q^{36} +4.00000i q^{37} +7.00000i q^{38} -2.00000 q^{39} -3.00000i q^{42} +1.00000i q^{43} -3.00000 q^{44} -7.00000 q^{46} -6.00000i q^{47} -1.00000i q^{48} -2.00000 q^{49} -8.00000 q^{51} +2.00000i q^{52} +5.00000i q^{53} -1.00000 q^{54} -3.00000 q^{56} -7.00000i q^{57} +8.00000i q^{58} -6.00000 q^{59} +2.00000 q^{61} -1.00000i q^{62} +3.00000i q^{63} -1.00000 q^{64} +3.00000 q^{66} -10.0000i q^{67} +8.00000i q^{68} +7.00000 q^{69} +9.00000 q^{71} +1.00000i q^{72} +1.00000i q^{73} -4.00000 q^{74} -7.00000 q^{76} -9.00000i q^{77} -2.00000i q^{78} -13.0000 q^{79} +1.00000 q^{81} -16.0000i q^{83} +3.00000 q^{84} -1.00000 q^{86} -8.00000i q^{87} -3.00000i q^{88} +3.00000 q^{89} -6.00000 q^{91} -7.00000i q^{92} +1.00000i q^{93} +6.00000 q^{94} +1.00000 q^{96} -6.00000i q^{97} -2.00000i q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{6} - 2 q^{9} + 6 q^{11} + 6 q^{14} + 2 q^{16} + 14 q^{19} - 6 q^{21} - 2 q^{24} + 4 q^{26} + 16 q^{29} - 2 q^{31} + 16 q^{34} + 2 q^{36} - 4 q^{39} - 6 q^{44} - 14 q^{46} - 4 q^{49}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4650\mathbb{Z}\right)^\times\).

\(n\) \(1801\) \(2977\) \(3101\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) − 1.00000i − 0.577350i
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) − 3.00000i − 1.13389i −0.823754 0.566947i \(-0.808125\pi\)
0.823754 0.566947i \(-0.191875\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 1.00000i 0.288675i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 8.00000i − 1.94029i −0.242536 0.970143i \(-0.577979\pi\)
0.242536 0.970143i \(-0.422021\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 3.00000i 0.639602i
\(23\) 7.00000i 1.45960i 0.683660 + 0.729800i \(0.260387\pi\)
−0.683660 + 0.729800i \(0.739613\pi\)
\(24\) −1.00000 −0.204124
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 1.00000i 0.192450i
\(28\) 3.00000i 0.566947i
\(29\) 8.00000 1.48556 0.742781 0.669534i \(-0.233506\pi\)
0.742781 + 0.669534i \(0.233506\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 1.00000i 0.176777i
\(33\) − 3.00000i − 0.522233i
\(34\) 8.00000 1.37199
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 4.00000i 0.657596i 0.944400 + 0.328798i \(0.106644\pi\)
−0.944400 + 0.328798i \(0.893356\pi\)
\(38\) 7.00000i 1.13555i
\(39\) −2.00000 −0.320256
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) − 3.00000i − 0.462910i
\(43\) 1.00000i 0.152499i 0.997089 + 0.0762493i \(0.0242945\pi\)
−0.997089 + 0.0762493i \(0.975706\pi\)
\(44\) −3.00000 −0.452267
\(45\) 0 0
\(46\) −7.00000 −1.03209
\(47\) − 6.00000i − 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) − 1.00000i − 0.144338i
\(49\) −2.00000 −0.285714
\(50\) 0 0
\(51\) −8.00000 −1.12022
\(52\) 2.00000i 0.277350i
\(53\) 5.00000i 0.686803i 0.939189 + 0.343401i \(0.111579\pi\)
−0.939189 + 0.343401i \(0.888421\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) −3.00000 −0.400892
\(57\) − 7.00000i − 0.927173i
\(58\) 8.00000i 1.05045i
\(59\) −6.00000 −0.781133 −0.390567 0.920575i \(-0.627721\pi\)
−0.390567 + 0.920575i \(0.627721\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) − 1.00000i − 0.127000i
\(63\) 3.00000i 0.377964i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 3.00000 0.369274
\(67\) − 10.0000i − 1.22169i −0.791748 0.610847i \(-0.790829\pi\)
0.791748 0.610847i \(-0.209171\pi\)
\(68\) 8.00000i 0.970143i
\(69\) 7.00000 0.842701
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 1.00000i 0.117041i 0.998286 + 0.0585206i \(0.0186383\pi\)
−0.998286 + 0.0585206i \(0.981362\pi\)
\(74\) −4.00000 −0.464991
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) − 9.00000i − 1.02565i
\(78\) − 2.00000i − 0.226455i
\(79\) −13.0000 −1.46261 −0.731307 0.682048i \(-0.761089\pi\)
−0.731307 + 0.682048i \(0.761089\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) − 16.0000i − 1.75623i −0.478451 0.878114i \(-0.658802\pi\)
0.478451 0.878114i \(-0.341198\pi\)
\(84\) 3.00000 0.327327
\(85\) 0 0
\(86\) −1.00000 −0.107833
\(87\) − 8.00000i − 0.857690i
\(88\) − 3.00000i − 0.319801i
\(89\) 3.00000 0.317999 0.159000 0.987279i \(-0.449173\pi\)
0.159000 + 0.987279i \(0.449173\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) − 7.00000i − 0.729800i
\(93\) 1.00000i 0.103695i
\(94\) 6.00000 0.618853
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) − 6.00000i − 0.609208i −0.952479 0.304604i \(-0.901476\pi\)
0.952479 0.304604i \(-0.0985241\pi\)
\(98\) − 2.00000i − 0.202031i
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 5.00000 0.497519 0.248759 0.968565i \(-0.419977\pi\)
0.248759 + 0.968565i \(0.419977\pi\)
\(102\) − 8.00000i − 0.792118i
\(103\) 8.00000i 0.788263i 0.919054 + 0.394132i \(0.128955\pi\)
−0.919054 + 0.394132i \(0.871045\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −5.00000 −0.485643
\(107\) 3.00000i 0.290021i 0.989430 + 0.145010i \(0.0463216\pi\)
−0.989430 + 0.145010i \(0.953678\pi\)
\(108\) − 1.00000i − 0.0962250i
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) − 3.00000i − 0.283473i
\(113\) 1.00000i 0.0940721i 0.998893 + 0.0470360i \(0.0149776\pi\)
−0.998893 + 0.0470360i \(0.985022\pi\)
\(114\) 7.00000 0.655610
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) 2.00000i 0.184900i
\(118\) − 6.00000i − 0.552345i
\(119\) −24.0000 −2.20008
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 2.00000i 0.181071i
\(123\) 0 0
\(124\) 1.00000 0.0898027
\(125\) 0 0
\(126\) −3.00000 −0.267261
\(127\) 12.0000i 1.06483i 0.846484 + 0.532414i \(0.178715\pi\)
−0.846484 + 0.532414i \(0.821285\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 1.00000 0.0880451
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 3.00000i 0.261116i
\(133\) − 21.0000i − 1.82093i
\(134\) 10.0000 0.863868
\(135\) 0 0
\(136\) −8.00000 −0.685994
\(137\) − 10.0000i − 0.854358i −0.904167 0.427179i \(-0.859507\pi\)
0.904167 0.427179i \(-0.140493\pi\)
\(138\) 7.00000i 0.595880i
\(139\) 10.0000 0.848189 0.424094 0.905618i \(-0.360592\pi\)
0.424094 + 0.905618i \(0.360592\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 9.00000i 0.755263i
\(143\) − 6.00000i − 0.501745i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) −1.00000 −0.0827606
\(147\) 2.00000i 0.164957i
\(148\) − 4.00000i − 0.328798i
\(149\) 9.00000 0.737309 0.368654 0.929567i \(-0.379819\pi\)
0.368654 + 0.929567i \(0.379819\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) − 7.00000i − 0.567775i
\(153\) 8.00000i 0.646762i
\(154\) 9.00000 0.725241
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 7.00000i 0.558661i 0.960195 + 0.279330i \(0.0901125\pi\)
−0.960195 + 0.279330i \(0.909888\pi\)
\(158\) − 13.0000i − 1.03422i
\(159\) 5.00000 0.396526
\(160\) 0 0
\(161\) 21.0000 1.65503
\(162\) 1.00000i 0.0785674i
\(163\) 18.0000i 1.40987i 0.709273 + 0.704934i \(0.249024\pi\)
−0.709273 + 0.704934i \(0.750976\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) − 15.0000i − 1.16073i −0.814355 0.580367i \(-0.802909\pi\)
0.814355 0.580367i \(-0.197091\pi\)
\(168\) 3.00000i 0.231455i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) −7.00000 −0.535303
\(172\) − 1.00000i − 0.0762493i
\(173\) − 6.00000i − 0.456172i −0.973641 0.228086i \(-0.926753\pi\)
0.973641 0.228086i \(-0.0732467\pi\)
\(174\) 8.00000 0.606478
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 6.00000i 0.450988i
\(178\) 3.00000i 0.224860i
\(179\) −4.00000 −0.298974 −0.149487 0.988764i \(-0.547762\pi\)
−0.149487 + 0.988764i \(0.547762\pi\)
\(180\) 0 0
\(181\) −21.0000 −1.56092 −0.780459 0.625207i \(-0.785014\pi\)
−0.780459 + 0.625207i \(0.785014\pi\)
\(182\) − 6.00000i − 0.444750i
\(183\) − 2.00000i − 0.147844i
\(184\) 7.00000 0.516047
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) − 24.0000i − 1.75505i
\(188\) 6.00000i 0.437595i
\(189\) 3.00000 0.218218
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 1.00000i 0.0721688i
\(193\) − 14.0000i − 1.00774i −0.863779 0.503871i \(-0.831909\pi\)
0.863779 0.503871i \(-0.168091\pi\)
\(194\) 6.00000 0.430775
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) − 6.00000i − 0.427482i −0.976890 0.213741i \(-0.931435\pi\)
0.976890 0.213741i \(-0.0685649\pi\)
\(198\) − 3.00000i − 0.213201i
\(199\) 3.00000 0.212664 0.106332 0.994331i \(-0.466089\pi\)
0.106332 + 0.994331i \(0.466089\pi\)
\(200\) 0 0
\(201\) −10.0000 −0.705346
\(202\) 5.00000i 0.351799i
\(203\) − 24.0000i − 1.68447i
\(204\) 8.00000 0.560112
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) − 7.00000i − 0.486534i
\(208\) − 2.00000i − 0.138675i
\(209\) 21.0000 1.45260
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) − 5.00000i − 0.343401i
\(213\) − 9.00000i − 0.616670i
\(214\) −3.00000 −0.205076
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 3.00000i 0.203653i
\(218\) − 4.00000i − 0.270914i
\(219\) 1.00000 0.0675737
\(220\) 0 0
\(221\) −16.0000 −1.07628
\(222\) 4.00000i 0.268462i
\(223\) − 10.0000i − 0.669650i −0.942280 0.334825i \(-0.891323\pi\)
0.942280 0.334825i \(-0.108677\pi\)
\(224\) 3.00000 0.200446
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) − 25.0000i − 1.65931i −0.558278 0.829654i \(-0.688538\pi\)
0.558278 0.829654i \(-0.311462\pi\)
\(228\) 7.00000i 0.463586i
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 0 0
\(231\) −9.00000 −0.592157
\(232\) − 8.00000i − 0.525226i
\(233\) − 25.0000i − 1.63780i −0.573933 0.818902i \(-0.694583\pi\)
0.573933 0.818902i \(-0.305417\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) 6.00000 0.390567
\(237\) 13.0000i 0.844441i
\(238\) − 24.0000i − 1.55569i
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) − 2.00000i − 0.128565i
\(243\) − 1.00000i − 0.0641500i
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) − 14.0000i − 0.890799i
\(248\) 1.00000i 0.0635001i
\(249\) −16.0000 −1.01396
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) − 3.00000i − 0.188982i
\(253\) 21.0000i 1.32026i
\(254\) −12.0000 −0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 23.0000i 1.43470i 0.696713 + 0.717350i \(0.254645\pi\)
−0.696713 + 0.717350i \(0.745355\pi\)
\(258\) 1.00000i 0.0622573i
\(259\) 12.0000 0.745644
\(260\) 0 0
\(261\) −8.00000 −0.495188
\(262\) 6.00000i 0.370681i
\(263\) 24.0000i 1.47990i 0.672660 + 0.739952i \(0.265152\pi\)
−0.672660 + 0.739952i \(0.734848\pi\)
\(264\) −3.00000 −0.184637
\(265\) 0 0
\(266\) 21.0000 1.28759
\(267\) − 3.00000i − 0.183597i
\(268\) 10.0000i 0.610847i
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) 7.00000 0.425220 0.212610 0.977137i \(-0.431804\pi\)
0.212610 + 0.977137i \(0.431804\pi\)
\(272\) − 8.00000i − 0.485071i
\(273\) 6.00000i 0.363137i
\(274\) 10.0000 0.604122
\(275\) 0 0
\(276\) −7.00000 −0.421350
\(277\) 8.00000i 0.480673i 0.970690 + 0.240337i \(0.0772579\pi\)
−0.970690 + 0.240337i \(0.922742\pi\)
\(278\) 10.0000i 0.599760i
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) −28.0000 −1.67034 −0.835170 0.549992i \(-0.814631\pi\)
−0.835170 + 0.549992i \(0.814631\pi\)
\(282\) − 6.00000i − 0.357295i
\(283\) − 16.0000i − 0.951101i −0.879688 0.475551i \(-0.842249\pi\)
0.879688 0.475551i \(-0.157751\pi\)
\(284\) −9.00000 −0.534052
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) 0 0
\(288\) − 1.00000i − 0.0589256i
\(289\) −47.0000 −2.76471
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) − 1.00000i − 0.0585206i
\(293\) 14.0000i 0.817889i 0.912559 + 0.408944i \(0.134103\pi\)
−0.912559 + 0.408944i \(0.865897\pi\)
\(294\) −2.00000 −0.116642
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 3.00000i 0.174078i
\(298\) 9.00000i 0.521356i
\(299\) 14.0000 0.809641
\(300\) 0 0
\(301\) 3.00000 0.172917
\(302\) − 8.00000i − 0.460348i
\(303\) − 5.00000i − 0.287242i
\(304\) 7.00000 0.401478
\(305\) 0 0
\(306\) −8.00000 −0.457330
\(307\) 12.0000i 0.684876i 0.939540 + 0.342438i \(0.111253\pi\)
−0.939540 + 0.342438i \(0.888747\pi\)
\(308\) 9.00000i 0.512823i
\(309\) 8.00000 0.455104
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 2.00000i 0.113228i
\(313\) − 10.0000i − 0.565233i −0.959233 0.282617i \(-0.908798\pi\)
0.959233 0.282617i \(-0.0912024\pi\)
\(314\) −7.00000 −0.395033
\(315\) 0 0
\(316\) 13.0000 0.731307
\(317\) − 24.0000i − 1.34797i −0.738743 0.673987i \(-0.764580\pi\)
0.738743 0.673987i \(-0.235420\pi\)
\(318\) 5.00000i 0.280386i
\(319\) 24.0000 1.34374
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 21.0000i 1.17028i
\(323\) − 56.0000i − 3.11592i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −18.0000 −0.996928
\(327\) 4.00000i 0.221201i
\(328\) 0 0
\(329\) −18.0000 −0.992372
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 16.0000i 0.878114i
\(333\) − 4.00000i − 0.219199i
\(334\) 15.0000 0.820763
\(335\) 0 0
\(336\) −3.00000 −0.163663
\(337\) 10.0000i 0.544735i 0.962193 + 0.272367i \(0.0878066\pi\)
−0.962193 + 0.272367i \(0.912193\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 1.00000 0.0543125
\(340\) 0 0
\(341\) −3.00000 −0.162459
\(342\) − 7.00000i − 0.378517i
\(343\) − 15.0000i − 0.809924i
\(344\) 1.00000 0.0539164
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 12.0000i 0.644194i 0.946707 + 0.322097i \(0.104388\pi\)
−0.946707 + 0.322097i \(0.895612\pi\)
\(348\) 8.00000i 0.428845i
\(349\) −20.0000 −1.07058 −0.535288 0.844670i \(-0.679797\pi\)
−0.535288 + 0.844670i \(0.679797\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 3.00000i 0.159901i
\(353\) − 18.0000i − 0.958043i −0.877803 0.479022i \(-0.840992\pi\)
0.877803 0.479022i \(-0.159008\pi\)
\(354\) −6.00000 −0.318896
\(355\) 0 0
\(356\) −3.00000 −0.159000
\(357\) 24.0000i 1.27021i
\(358\) − 4.00000i − 0.211407i
\(359\) −1.00000 −0.0527780 −0.0263890 0.999652i \(-0.508401\pi\)
−0.0263890 + 0.999652i \(0.508401\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) − 21.0000i − 1.10374i
\(363\) 2.00000i 0.104973i
\(364\) 6.00000 0.314485
\(365\) 0 0
\(366\) 2.00000 0.104542
\(367\) 18.0000i 0.939592i 0.882775 + 0.469796i \(0.155673\pi\)
−0.882775 + 0.469796i \(0.844327\pi\)
\(368\) 7.00000i 0.364900i
\(369\) 0 0
\(370\) 0 0
\(371\) 15.0000 0.778761
\(372\) − 1.00000i − 0.0518476i
\(373\) 13.0000i 0.673114i 0.941663 + 0.336557i \(0.109263\pi\)
−0.941663 + 0.336557i \(0.890737\pi\)
\(374\) 24.0000 1.24101
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) − 16.0000i − 0.824042i
\(378\) 3.00000i 0.154303i
\(379\) −19.0000 −0.975964 −0.487982 0.872854i \(-0.662267\pi\)
−0.487982 + 0.872854i \(0.662267\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) − 24.0000i − 1.22795i
\(383\) − 36.0000i − 1.83951i −0.392488 0.919757i \(-0.628386\pi\)
0.392488 0.919757i \(-0.371614\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) − 1.00000i − 0.0508329i
\(388\) 6.00000i 0.304604i
\(389\) 22.0000 1.11544 0.557722 0.830028i \(-0.311675\pi\)
0.557722 + 0.830028i \(0.311675\pi\)
\(390\) 0 0
\(391\) 56.0000 2.83204
\(392\) 2.00000i 0.101015i
\(393\) − 6.00000i − 0.302660i
\(394\) 6.00000 0.302276
\(395\) 0 0
\(396\) 3.00000 0.150756
\(397\) − 25.0000i − 1.25471i −0.778732 0.627357i \(-0.784137\pi\)
0.778732 0.627357i \(-0.215863\pi\)
\(398\) 3.00000i 0.150376i
\(399\) −21.0000 −1.05131
\(400\) 0 0
\(401\) −35.0000 −1.74782 −0.873908 0.486091i \(-0.838422\pi\)
−0.873908 + 0.486091i \(0.838422\pi\)
\(402\) − 10.0000i − 0.498755i
\(403\) 2.00000i 0.0996271i
\(404\) −5.00000 −0.248759
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) 12.0000i 0.594818i
\(408\) 8.00000i 0.396059i
\(409\) −12.0000 −0.593362 −0.296681 0.954977i \(-0.595880\pi\)
−0.296681 + 0.954977i \(0.595880\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) − 8.00000i − 0.394132i
\(413\) 18.0000i 0.885722i
\(414\) 7.00000 0.344031
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) − 10.0000i − 0.489702i
\(418\) 21.0000i 1.02714i
\(419\) −16.0000 −0.781651 −0.390826 0.920465i \(-0.627810\pi\)
−0.390826 + 0.920465i \(0.627810\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 17.0000i 0.827547i
\(423\) 6.00000i 0.291730i
\(424\) 5.00000 0.242821
\(425\) 0 0
\(426\) 9.00000 0.436051
\(427\) − 6.00000i − 0.290360i
\(428\) − 3.00000i − 0.145010i
\(429\) −6.00000 −0.289683
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 1.00000i 0.0481125i
\(433\) 19.0000i 0.913082i 0.889702 + 0.456541i \(0.150912\pi\)
−0.889702 + 0.456541i \(0.849088\pi\)
\(434\) −3.00000 −0.144005
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) 49.0000i 2.34399i
\(438\) 1.00000i 0.0477818i
\(439\) 26.0000 1.24091 0.620456 0.784241i \(-0.286947\pi\)
0.620456 + 0.784241i \(0.286947\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) − 16.0000i − 0.761042i
\(443\) 19.0000i 0.902717i 0.892343 + 0.451359i \(0.149060\pi\)
−0.892343 + 0.451359i \(0.850940\pi\)
\(444\) −4.00000 −0.189832
\(445\) 0 0
\(446\) 10.0000 0.473514
\(447\) − 9.00000i − 0.425685i
\(448\) 3.00000i 0.141737i
\(449\) −34.0000 −1.60456 −0.802280 0.596948i \(-0.796380\pi\)
−0.802280 + 0.596948i \(0.796380\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) − 1.00000i − 0.0470360i
\(453\) 8.00000i 0.375873i
\(454\) 25.0000 1.17331
\(455\) 0 0
\(456\) −7.00000 −0.327805
\(457\) 38.0000i 1.77757i 0.458329 + 0.888783i \(0.348448\pi\)
−0.458329 + 0.888783i \(0.651552\pi\)
\(458\) 13.0000i 0.607450i
\(459\) 8.00000 0.373408
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) − 9.00000i − 0.418718i
\(463\) − 40.0000i − 1.85896i −0.368875 0.929479i \(-0.620257\pi\)
0.368875 0.929479i \(-0.379743\pi\)
\(464\) 8.00000 0.371391
\(465\) 0 0
\(466\) 25.0000 1.15810
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) − 2.00000i − 0.0924500i
\(469\) −30.0000 −1.38527
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 6.00000i 0.276172i
\(473\) 3.00000i 0.137940i
\(474\) −13.0000 −0.597110
\(475\) 0 0
\(476\) 24.0000 1.10004
\(477\) − 5.00000i − 0.228934i
\(478\) − 8.00000i − 0.365911i
\(479\) 27.0000 1.23366 0.616831 0.787096i \(-0.288416\pi\)
0.616831 + 0.787096i \(0.288416\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) − 22.0000i − 1.00207i
\(483\) − 21.0000i − 0.955533i
\(484\) 2.00000 0.0909091
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 20.0000i 0.906287i 0.891438 + 0.453143i \(0.149697\pi\)
−0.891438 + 0.453143i \(0.850303\pi\)
\(488\) − 2.00000i − 0.0905357i
\(489\) 18.0000 0.813988
\(490\) 0 0
\(491\) −29.0000 −1.30875 −0.654376 0.756169i \(-0.727069\pi\)
−0.654376 + 0.756169i \(0.727069\pi\)
\(492\) 0 0
\(493\) − 64.0000i − 2.88242i
\(494\) 14.0000 0.629890
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) − 27.0000i − 1.21112i
\(498\) − 16.0000i − 0.716977i
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) −15.0000 −0.670151
\(502\) 20.0000i 0.892644i
\(503\) 32.0000i 1.42681i 0.700752 + 0.713405i \(0.252848\pi\)
−0.700752 + 0.713405i \(0.747152\pi\)
\(504\) 3.00000 0.133631
\(505\) 0 0
\(506\) −21.0000 −0.933564
\(507\) − 9.00000i − 0.399704i
\(508\) − 12.0000i − 0.532414i
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 3.00000 0.132712
\(512\) 1.00000i 0.0441942i
\(513\) 7.00000i 0.309058i
\(514\) −23.0000 −1.01449
\(515\) 0 0
\(516\) −1.00000 −0.0440225
\(517\) − 18.0000i − 0.791639i
\(518\) 12.0000i 0.527250i
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) − 8.00000i − 0.350150i
\(523\) 29.0000i 1.26808i 0.773300 + 0.634041i \(0.218605\pi\)
−0.773300 + 0.634041i \(0.781395\pi\)
\(524\) −6.00000 −0.262111
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 8.00000i 0.348485i
\(528\) − 3.00000i − 0.130558i
\(529\) −26.0000 −1.13043
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 21.0000i 0.910465i
\(533\) 0 0
\(534\) 3.00000 0.129823
\(535\) 0 0
\(536\) −10.0000 −0.431934
\(537\) 4.00000i 0.172613i
\(538\) 18.0000i 0.776035i
\(539\) −6.00000 −0.258438
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 7.00000i 0.300676i
\(543\) 21.0000i 0.901196i
\(544\) 8.00000 0.342997
\(545\) 0 0
\(546\) −6.00000 −0.256776
\(547\) 14.0000i 0.598597i 0.954160 + 0.299298i \(0.0967526\pi\)
−0.954160 + 0.299298i \(0.903247\pi\)
\(548\) 10.0000i 0.427179i
\(549\) −2.00000 −0.0853579
\(550\) 0 0
\(551\) 56.0000 2.38568
\(552\) − 7.00000i − 0.297940i
\(553\) 39.0000i 1.65845i
\(554\) −8.00000 −0.339887
\(555\) 0 0
\(556\) −10.0000 −0.424094
\(557\) − 17.0000i − 0.720313i −0.932892 0.360157i \(-0.882723\pi\)
0.932892 0.360157i \(-0.117277\pi\)
\(558\) 1.00000i 0.0423334i
\(559\) 2.00000 0.0845910
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) − 28.0000i − 1.18111i
\(563\) − 36.0000i − 1.51722i −0.651546 0.758610i \(-0.725879\pi\)
0.651546 0.758610i \(-0.274121\pi\)
\(564\) 6.00000 0.252646
\(565\) 0 0
\(566\) 16.0000 0.672530
\(567\) − 3.00000i − 0.125988i
\(568\) − 9.00000i − 0.377632i
\(569\) −37.0000 −1.55112 −0.775560 0.631273i \(-0.782533\pi\)
−0.775560 + 0.631273i \(0.782533\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 6.00000i 0.250873i
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 8.00000i 0.333044i 0.986038 + 0.166522i \(0.0532537\pi\)
−0.986038 + 0.166522i \(0.946746\pi\)
\(578\) − 47.0000i − 1.95494i
\(579\) −14.0000 −0.581820
\(580\) 0 0
\(581\) −48.0000 −1.99138
\(582\) − 6.00000i − 0.248708i
\(583\) 15.0000i 0.621237i
\(584\) 1.00000 0.0413803
\(585\) 0 0
\(586\) −14.0000 −0.578335
\(587\) − 16.0000i − 0.660391i −0.943913 0.330195i \(-0.892885\pi\)
0.943913 0.330195i \(-0.107115\pi\)
\(588\) − 2.00000i − 0.0824786i
\(589\) −7.00000 −0.288430
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 4.00000i 0.164399i
\(593\) 30.0000i 1.23195i 0.787765 + 0.615976i \(0.211238\pi\)
−0.787765 + 0.615976i \(0.788762\pi\)
\(594\) −3.00000 −0.123091
\(595\) 0 0
\(596\) −9.00000 −0.368654
\(597\) − 3.00000i − 0.122782i
\(598\) 14.0000i 0.572503i
\(599\) −35.0000 −1.43006 −0.715031 0.699093i \(-0.753587\pi\)
−0.715031 + 0.699093i \(0.753587\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 3.00000i 0.122271i
\(603\) 10.0000i 0.407231i
\(604\) 8.00000 0.325515
\(605\) 0 0
\(606\) 5.00000 0.203111
\(607\) 13.0000i 0.527654i 0.964570 + 0.263827i \(0.0849848\pi\)
−0.964570 + 0.263827i \(0.915015\pi\)
\(608\) 7.00000i 0.283887i
\(609\) −24.0000 −0.972529
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) − 8.00000i − 0.323381i
\(613\) 26.0000i 1.05013i 0.851062 + 0.525065i \(0.175959\pi\)
−0.851062 + 0.525065i \(0.824041\pi\)
\(614\) −12.0000 −0.484281
\(615\) 0 0
\(616\) −9.00000 −0.362620
\(617\) 3.00000i 0.120775i 0.998175 + 0.0603877i \(0.0192337\pi\)
−0.998175 + 0.0603877i \(0.980766\pi\)
\(618\) 8.00000i 0.321807i
\(619\) 18.0000 0.723481 0.361741 0.932279i \(-0.382183\pi\)
0.361741 + 0.932279i \(0.382183\pi\)
\(620\) 0 0
\(621\) −7.00000 −0.280900
\(622\) − 16.0000i − 0.641542i
\(623\) − 9.00000i − 0.360577i
\(624\) −2.00000 −0.0800641
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) − 21.0000i − 0.838659i
\(628\) − 7.00000i − 0.279330i
\(629\) 32.0000 1.27592
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 13.0000i 0.517112i
\(633\) − 17.0000i − 0.675689i
\(634\) 24.0000 0.953162
\(635\) 0 0
\(636\) −5.00000 −0.198263
\(637\) 4.00000i 0.158486i
\(638\) 24.0000i 0.950169i
\(639\) −9.00000 −0.356034
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 3.00000i 0.118401i
\(643\) 19.0000i 0.749287i 0.927169 + 0.374643i \(0.122235\pi\)
−0.927169 + 0.374643i \(0.877765\pi\)
\(644\) −21.0000 −0.827516
\(645\) 0 0
\(646\) 56.0000 2.20329
\(647\) − 49.0000i − 1.92639i −0.268806 0.963194i \(-0.586629\pi\)
0.268806 0.963194i \(-0.413371\pi\)
\(648\) − 1.00000i − 0.0392837i
\(649\) −18.0000 −0.706562
\(650\) 0 0
\(651\) 3.00000 0.117579
\(652\) − 18.0000i − 0.704934i
\(653\) − 6.00000i − 0.234798i −0.993085 0.117399i \(-0.962544\pi\)
0.993085 0.117399i \(-0.0374557\pi\)
\(654\) −4.00000 −0.156412
\(655\) 0 0
\(656\) 0 0
\(657\) − 1.00000i − 0.0390137i
\(658\) − 18.0000i − 0.701713i
\(659\) 32.0000 1.24654 0.623272 0.782006i \(-0.285803\pi\)
0.623272 + 0.782006i \(0.285803\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 32.0000i 1.24372i
\(663\) 16.0000i 0.621389i
\(664\) −16.0000 −0.620920
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) 56.0000i 2.16833i
\(668\) 15.0000i 0.580367i
\(669\) −10.0000 −0.386622
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) − 3.00000i − 0.115728i
\(673\) − 46.0000i − 1.77317i −0.462566 0.886585i \(-0.653071\pi\)
0.462566 0.886585i \(-0.346929\pi\)
\(674\) −10.0000 −0.385186
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 43.0000i 1.65262i 0.563212 + 0.826312i \(0.309565\pi\)
−0.563212 + 0.826312i \(0.690435\pi\)
\(678\) 1.00000i 0.0384048i
\(679\) −18.0000 −0.690777
\(680\) 0 0
\(681\) −25.0000 −0.958002
\(682\) − 3.00000i − 0.114876i
\(683\) − 15.0000i − 0.573959i −0.957937 0.286980i \(-0.907349\pi\)
0.957937 0.286980i \(-0.0926512\pi\)
\(684\) 7.00000 0.267652
\(685\) 0 0
\(686\) 15.0000 0.572703
\(687\) − 13.0000i − 0.495981i
\(688\) 1.00000i 0.0381246i
\(689\) 10.0000 0.380970
\(690\) 0 0
\(691\) 5.00000 0.190209 0.0951045 0.995467i \(-0.469681\pi\)
0.0951045 + 0.995467i \(0.469681\pi\)
\(692\) 6.00000i 0.228086i
\(693\) 9.00000i 0.341882i
\(694\) −12.0000 −0.455514
\(695\) 0 0
\(696\) −8.00000 −0.303239
\(697\) 0 0
\(698\) − 20.0000i − 0.757011i
\(699\) −25.0000 −0.945587
\(700\) 0 0
\(701\) 33.0000 1.24639 0.623196 0.782065i \(-0.285834\pi\)
0.623196 + 0.782065i \(0.285834\pi\)
\(702\) 2.00000i 0.0754851i
\(703\) 28.0000i 1.05604i
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) − 15.0000i − 0.564133i
\(708\) − 6.00000i − 0.225494i
\(709\) 15.0000 0.563337 0.281668 0.959512i \(-0.409112\pi\)
0.281668 + 0.959512i \(0.409112\pi\)
\(710\) 0 0
\(711\) 13.0000 0.487538
\(712\) − 3.00000i − 0.112430i
\(713\) − 7.00000i − 0.262152i
\(714\) −24.0000 −0.898177
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 8.00000i 0.298765i
\(718\) − 1.00000i − 0.0373197i
\(719\) 30.0000 1.11881 0.559406 0.828894i \(-0.311029\pi\)
0.559406 + 0.828894i \(0.311029\pi\)
\(720\) 0 0
\(721\) 24.0000 0.893807
\(722\) 30.0000i 1.11648i
\(723\) 22.0000i 0.818189i
\(724\) 21.0000 0.780459
\(725\) 0 0
\(726\) −2.00000 −0.0742270
\(727\) 29.0000i 1.07555i 0.843088 + 0.537775i \(0.180735\pi\)
−0.843088 + 0.537775i \(0.819265\pi\)
\(728\) 6.00000i 0.222375i
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 2.00000i 0.0739221i
\(733\) 2.00000i 0.0738717i 0.999318 + 0.0369358i \(0.0117597\pi\)
−0.999318 + 0.0369358i \(0.988240\pi\)
\(734\) −18.0000 −0.664392
\(735\) 0 0
\(736\) −7.00000 −0.258023
\(737\) − 30.0000i − 1.10506i
\(738\) 0 0
\(739\) 40.0000 1.47142 0.735712 0.677295i \(-0.236848\pi\)
0.735712 + 0.677295i \(0.236848\pi\)
\(740\) 0 0
\(741\) −14.0000 −0.514303
\(742\) 15.0000i 0.550667i
\(743\) 1.00000i 0.0366864i 0.999832 + 0.0183432i \(0.00583916\pi\)
−0.999832 + 0.0183432i \(0.994161\pi\)
\(744\) 1.00000 0.0366618
\(745\) 0 0
\(746\) −13.0000 −0.475964
\(747\) 16.0000i 0.585409i
\(748\) 24.0000i 0.877527i
\(749\) 9.00000 0.328853
\(750\) 0 0
\(751\) 6.00000 0.218943 0.109472 0.993990i \(-0.465084\pi\)
0.109472 + 0.993990i \(0.465084\pi\)
\(752\) − 6.00000i − 0.218797i
\(753\) − 20.0000i − 0.728841i
\(754\) 16.0000 0.582686
\(755\) 0 0
\(756\) −3.00000 −0.109109
\(757\) 2.00000i 0.0726912i 0.999339 + 0.0363456i \(0.0115717\pi\)
−0.999339 + 0.0363456i \(0.988428\pi\)
\(758\) − 19.0000i − 0.690111i
\(759\) 21.0000 0.762252
\(760\) 0 0
\(761\) 49.0000 1.77625 0.888124 0.459603i \(-0.152008\pi\)
0.888124 + 0.459603i \(0.152008\pi\)
\(762\) 12.0000i 0.434714i
\(763\) 12.0000i 0.434429i
\(764\) 24.0000 0.868290
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) 12.0000i 0.433295i
\(768\) − 1.00000i − 0.0360844i
\(769\) −9.00000 −0.324548 −0.162274 0.986746i \(-0.551883\pi\)
−0.162274 + 0.986746i \(0.551883\pi\)
\(770\) 0 0
\(771\) 23.0000 0.828325
\(772\) 14.0000i 0.503871i
\(773\) − 1.00000i − 0.0359675i −0.999838 0.0179838i \(-0.994275\pi\)
0.999838 0.0179838i \(-0.00572471\pi\)
\(774\) 1.00000 0.0359443
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) − 12.0000i − 0.430498i
\(778\) 22.0000i 0.788738i
\(779\) 0 0
\(780\) 0 0
\(781\) 27.0000 0.966136
\(782\) 56.0000i 2.00256i
\(783\) 8.00000i 0.285897i
\(784\) −2.00000 −0.0714286
\(785\) 0 0
\(786\) 6.00000 0.214013
\(787\) 27.0000i 0.962446i 0.876598 + 0.481223i \(0.159807\pi\)
−0.876598 + 0.481223i \(0.840193\pi\)
\(788\) 6.00000i 0.213741i
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) 3.00000 0.106668
\(792\) 3.00000i 0.106600i
\(793\) − 4.00000i − 0.142044i
\(794\) 25.0000 0.887217
\(795\) 0 0
\(796\) −3.00000 −0.106332
\(797\) 2.00000i 0.0708436i 0.999372 + 0.0354218i \(0.0112775\pi\)
−0.999372 + 0.0354218i \(0.988723\pi\)
\(798\) − 21.0000i − 0.743392i
\(799\) −48.0000 −1.69812
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) − 35.0000i − 1.23589i
\(803\) 3.00000i 0.105868i
\(804\) 10.0000 0.352673
\(805\) 0 0
\(806\) −2.00000 −0.0704470
\(807\) − 18.0000i − 0.633630i
\(808\) − 5.00000i − 0.175899i
\(809\) −13.0000 −0.457056 −0.228528 0.973537i \(-0.573391\pi\)
−0.228528 + 0.973537i \(0.573391\pi\)
\(810\) 0 0
\(811\) −23.0000 −0.807639 −0.403820 0.914839i \(-0.632318\pi\)
−0.403820 + 0.914839i \(0.632318\pi\)
\(812\) 24.0000i 0.842235i
\(813\) − 7.00000i − 0.245501i
\(814\) −12.0000 −0.420600
\(815\) 0 0
\(816\) −8.00000 −0.280056
\(817\) 7.00000i 0.244899i
\(818\) − 12.0000i − 0.419570i
\(819\) 6.00000 0.209657
\(820\) 0 0
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) − 10.0000i − 0.348790i
\(823\) 14.0000i 0.488009i 0.969774 + 0.244005i \(0.0784612\pi\)
−0.969774 + 0.244005i \(0.921539\pi\)
\(824\) 8.00000 0.278693
\(825\) 0 0
\(826\) −18.0000 −0.626300
\(827\) 44.0000i 1.53003i 0.644013 + 0.765015i \(0.277268\pi\)
−0.644013 + 0.765015i \(0.722732\pi\)
\(828\) 7.00000i 0.243267i
\(829\) 21.0000 0.729360 0.364680 0.931133i \(-0.381178\pi\)
0.364680 + 0.931133i \(0.381178\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 2.00000i 0.0693375i
\(833\) 16.0000i 0.554367i
\(834\) 10.0000 0.346272
\(835\) 0 0
\(836\) −21.0000 −0.726300
\(837\) − 1.00000i − 0.0345651i
\(838\) − 16.0000i − 0.552711i
\(839\) 27.0000 0.932144 0.466072 0.884747i \(-0.345669\pi\)
0.466072 + 0.884747i \(0.345669\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 34.0000i 1.17172i
\(843\) 28.0000i 0.964371i
\(844\) −17.0000 −0.585164
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 6.00000i 0.206162i
\(848\) 5.00000i 0.171701i
\(849\) −16.0000 −0.549119
\(850\) 0 0
\(851\) −28.0000 −0.959828
\(852\) 9.00000i 0.308335i
\(853\) 45.0000i 1.54077i 0.637579 + 0.770385i \(0.279936\pi\)
−0.637579 + 0.770385i \(0.720064\pi\)
\(854\) 6.00000 0.205316
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 22.0000i 0.751506i 0.926720 + 0.375753i \(0.122616\pi\)
−0.926720 + 0.375753i \(0.877384\pi\)
\(858\) − 6.00000i − 0.204837i
\(859\) 24.0000 0.818869 0.409435 0.912339i \(-0.365726\pi\)
0.409435 + 0.912339i \(0.365726\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 32.0000i 1.08992i
\(863\) − 31.0000i − 1.05525i −0.849477 0.527626i \(-0.823082\pi\)
0.849477 0.527626i \(-0.176918\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 0 0
\(866\) −19.0000 −0.645646
\(867\) 47.0000i 1.59620i
\(868\) − 3.00000i − 0.101827i
\(869\) −39.0000 −1.32298
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 4.00000i 0.135457i
\(873\) 6.00000i 0.203069i
\(874\) −49.0000 −1.65745
\(875\) 0 0
\(876\) −1.00000 −0.0337869
\(877\) − 2.00000i − 0.0675352i −0.999430 0.0337676i \(-0.989249\pi\)
0.999430 0.0337676i \(-0.0107506\pi\)
\(878\) 26.0000i 0.877457i
\(879\) 14.0000 0.472208
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 2.00000i 0.0673435i
\(883\) − 13.0000i − 0.437485i −0.975783 0.218742i \(-0.929805\pi\)
0.975783 0.218742i \(-0.0701954\pi\)
\(884\) 16.0000 0.538138
\(885\) 0 0
\(886\) −19.0000 −0.638317
\(887\) − 22.0000i − 0.738688i −0.929293 0.369344i \(-0.879582\pi\)
0.929293 0.369344i \(-0.120418\pi\)
\(888\) − 4.00000i − 0.134231i
\(889\) 36.0000 1.20740
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 10.0000i 0.334825i
\(893\) − 42.0000i − 1.40548i
\(894\) 9.00000 0.301005
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) − 14.0000i − 0.467446i
\(898\) − 34.0000i − 1.13459i
\(899\) −8.00000 −0.266815
\(900\) 0 0
\(901\) 40.0000 1.33259
\(902\) 0 0
\(903\) − 3.00000i − 0.0998337i
\(904\) 1.00000 0.0332595
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) 40.0000i 1.32818i 0.747653 + 0.664089i \(0.231180\pi\)
−0.747653 + 0.664089i \(0.768820\pi\)
\(908\) 25.0000i 0.829654i
\(909\) −5.00000 −0.165840
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) − 7.00000i − 0.231793i
\(913\) − 48.0000i − 1.58857i
\(914\) −38.0000 −1.25693
\(915\) 0 0
\(916\) −13.0000 −0.429532
\(917\) − 18.0000i − 0.594412i
\(918\) 8.00000i 0.264039i
\(919\) 10.0000 0.329870 0.164935 0.986304i \(-0.447259\pi\)
0.164935 + 0.986304i \(0.447259\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) − 20.0000i − 0.658665i
\(923\) − 18.0000i − 0.592477i
\(924\) 9.00000 0.296078
\(925\) 0 0
\(926\) 40.0000 1.31448
\(927\) − 8.00000i − 0.262754i
\(928\) 8.00000i 0.262613i
\(929\) −3.00000 −0.0984268 −0.0492134 0.998788i \(-0.515671\pi\)
−0.0492134 + 0.998788i \(0.515671\pi\)
\(930\) 0 0
\(931\) −14.0000 −0.458831
\(932\) 25.0000i 0.818902i
\(933\) 16.0000i 0.523816i
\(934\) 0 0
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) 16.0000i 0.522697i 0.965244 + 0.261349i \(0.0841672\pi\)
−0.965244 + 0.261349i \(0.915833\pi\)
\(938\) − 30.0000i − 0.979535i
\(939\) −10.0000 −0.326338
\(940\) 0 0
\(941\) −28.0000 −0.912774 −0.456387 0.889781i \(-0.650857\pi\)
−0.456387 + 0.889781i \(0.650857\pi\)
\(942\) 7.00000i 0.228072i
\(943\) 0 0
\(944\) −6.00000 −0.195283
\(945\) 0 0
\(946\) −3.00000 −0.0975384
\(947\) − 38.0000i − 1.23483i −0.786636 0.617417i \(-0.788179\pi\)
0.786636 0.617417i \(-0.211821\pi\)
\(948\) − 13.0000i − 0.422220i
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) −24.0000 −0.778253
\(952\) 24.0000i 0.777844i
\(953\) 12.0000i 0.388718i 0.980930 + 0.194359i \(0.0622627\pi\)
−0.980930 + 0.194359i \(0.937737\pi\)
\(954\) 5.00000 0.161881
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) − 24.0000i − 0.775810i
\(958\) 27.0000i 0.872330i
\(959\) −30.0000 −0.968751
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 8.00000i 0.257930i
\(963\) − 3.00000i − 0.0966736i
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 21.0000 0.675664
\(967\) 32.0000i 1.02905i 0.857475 + 0.514525i \(0.172032\pi\)
−0.857475 + 0.514525i \(0.827968\pi\)
\(968\) 2.00000i 0.0642824i
\(969\) −56.0000 −1.79898
\(970\) 0 0
\(971\) −54.0000 −1.73294 −0.866471 0.499227i \(-0.833617\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 1.00000i 0.0320750i
\(973\) − 30.0000i − 0.961756i
\(974\) −20.0000 −0.640841
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) − 46.0000i − 1.47167i −0.677161 0.735835i \(-0.736790\pi\)
0.677161 0.735835i \(-0.263210\pi\)
\(978\) 18.0000i 0.575577i
\(979\) 9.00000 0.287641
\(980\) 0 0
\(981\) 4.00000 0.127710
\(982\) − 29.0000i − 0.925427i
\(983\) 48.0000i 1.53096i 0.643458 + 0.765481i \(0.277499\pi\)
−0.643458 + 0.765481i \(0.722501\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 64.0000 2.03818
\(987\) 18.0000i 0.572946i
\(988\) 14.0000i 0.445399i
\(989\) −7.00000 −0.222587
\(990\) 0 0
\(991\) 5.00000 0.158830 0.0794151 0.996842i \(-0.474695\pi\)
0.0794151 + 0.996842i \(0.474695\pi\)
\(992\) − 1.00000i − 0.0317500i
\(993\) − 32.0000i − 1.01549i
\(994\) 27.0000 0.856388
\(995\) 0 0
\(996\) 16.0000 0.506979
\(997\) 6.00000i 0.190022i 0.995476 + 0.0950110i \(0.0302886\pi\)
−0.995476 + 0.0950110i \(0.969711\pi\)
\(998\) 20.0000i 0.633089i
\(999\) −4.00000 −0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.d.ba.3349.2 2
5.2 odd 4 930.2.a.e.1.1 1
5.3 odd 4 4650.2.a.bk.1.1 1
5.4 even 2 inner 4650.2.d.ba.3349.1 2
15.2 even 4 2790.2.a.u.1.1 1
20.7 even 4 7440.2.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.a.e.1.1 1 5.2 odd 4
2790.2.a.u.1.1 1 15.2 even 4
4650.2.a.bk.1.1 1 5.3 odd 4
4650.2.d.ba.3349.1 2 5.4 even 2 inner
4650.2.d.ba.3349.2 2 1.1 even 1 trivial
7440.2.a.x.1.1 1 20.7 even 4