Properties

Label 4650.2.d
Level $4650$
Weight $2$
Character orbit 4650.d
Rep. character $\chi_{4650}(3349,\cdot)$
Character field $\Q$
Dimension $92$
Newform subspaces $36$
Sturm bound $1920$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 36 \)
Sturm bound: \(1920\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(7\), \(11\), \(13\), \(17\), \(19\), \(29\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(4650, [\chi])\).

Total New Old
Modular forms 984 92 892
Cusp forms 936 92 844
Eisenstein series 48 0 48

Trace form

\( 92 q - 92 q^{4} - 92 q^{9} + O(q^{10}) \) \( 92 q - 92 q^{4} - 92 q^{9} + 16 q^{14} + 92 q^{16} - 8 q^{19} + 8 q^{26} - 24 q^{29} - 24 q^{34} + 92 q^{36} + 8 q^{41} - 16 q^{46} - 76 q^{49} - 24 q^{51} - 16 q^{56} + 8 q^{61} - 92 q^{64} + 16 q^{66} - 64 q^{71} - 8 q^{74} + 8 q^{76} + 96 q^{79} + 92 q^{81} - 32 q^{86} + 88 q^{89} - 96 q^{91} - 48 q^{94} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(4650, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4650.2.d.a 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+iq^{3}-q^{4}-q^{6}-iq^{8}-q^{9}+\cdots\)
4650.2.d.b 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+2iq^{7}+\cdots\)
4650.2.d.c 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-iq^{3}-q^{4}-q^{6}+4iq^{7}+\cdots\)
4650.2.d.d 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+iq^{7}-iq^{8}+\cdots\)
4650.2.d.e 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+iq^{7}-iq^{8}+\cdots\)
4650.2.d.f 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.s \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-iq^{3}-q^{4}-q^{6}+iq^{7}+iq^{8}+\cdots\)
4650.2.d.g 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-iq^{3}-q^{4}-q^{6}+2iq^{7}+\cdots\)
4650.2.d.h 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.j \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-iq^{3}-q^{4}-q^{6}+4iq^{7}+\cdots\)
4650.2.d.i 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+iq^{7}-iq^{8}+\cdots\)
4650.2.d.j 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.m \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+3iq^{7}+\cdots\)
4650.2.d.k 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 186.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}+iq^{3}-q^{4}-q^{6}+2iq^{7}+\cdots\)
4650.2.d.l 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.f \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-iq^{3}-q^{4}-q^{6}+iq^{7}+iq^{8}+\cdots\)
4650.2.d.m 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.v \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}-iq^{3}-q^{4}-q^{6}+3iq^{7}+\cdots\)
4650.2.d.n 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.o \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}+iq^{3}-q^{4}+q^{6}+iq^{8}-q^{9}+\cdots\)
4650.2.d.o 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}-iq^{8}-q^{9}+\cdots\)
4650.2.d.p 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}+iq^{3}-q^{4}+q^{6}+2iq^{7}+\cdots\)
4650.2.d.q 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+3iq^{7}+\cdots\)
4650.2.d.r 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 186.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}+iq^{3}-q^{4}+q^{6}+2iq^{7}+\cdots\)
4650.2.d.s 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+5iq^{7}+\cdots\)
4650.2.d.t 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}+iq^{3}-q^{4}+q^{6}+3iq^{7}+\cdots\)
4650.2.d.u 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.n \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+2iq^{7}+\cdots\)
4650.2.d.v 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+4iq^{7}+\cdots\)
4650.2.d.w 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+2iq^{7}+\cdots\)
4650.2.d.x 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.k \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}+iq^{3}-q^{4}+q^{6}+2iq^{7}+\cdots\)
4650.2.d.y 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+3iq^{7}+\cdots\)
4650.2.d.z 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 186.2.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}+iq^{3}-q^{4}+q^{6}+2iq^{7}+\cdots\)
4650.2.d.ba 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 930.2.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-iq^{2}+iq^{3}-q^{4}+q^{6}+3iq^{7}+\cdots\)
4650.2.d.bb 4650.d 5.b $2$ $37.130$ \(\Q(\sqrt{-1}) \) None 4650.2.a.g \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-iq^{3}-q^{4}+q^{6}+iq^{7}-iq^{8}+\cdots\)
4650.2.d.bc 4650.d 5.b $4$ $37.130$ \(\Q(i, \sqrt{17})\) None 186.2.a.d \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-\beta _{2}q^{3}-q^{4}-q^{6}+2\beta _{1}q^{7}+\cdots\)
4650.2.d.bd 4650.d 5.b $4$ $37.130$ \(\Q(i, \sqrt{17})\) None 930.2.a.p \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-\beta _{2}q^{3}-q^{4}-q^{6}+\beta _{1}q^{7}+\cdots\)
4650.2.d.be 4650.d 5.b $4$ $37.130$ \(\Q(i, \sqrt{5})\) None 4650.2.a.ca \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{1}q^{3}-q^{4}+q^{6}+(-2\beta _{1}+\cdots)q^{7}+\cdots\)
4650.2.d.bf 4650.d 5.b $4$ $37.130$ \(\Q(i, \sqrt{13})\) None 4650.2.a.cb \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{1}q^{3}-q^{4}+q^{6}-3\beta _{1}q^{7}+\cdots\)
4650.2.d.bg 4650.d 5.b $4$ $37.130$ \(\Q(i, \sqrt{65})\) None 930.2.a.q \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{2}-\beta _{2}q^{3}-q^{4}+q^{6}+\beta _{1}q^{7}+\cdots\)
4650.2.d.bh 4650.d 5.b $4$ $37.130$ \(\Q(i, \sqrt{33})\) None 930.2.a.r \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}+\beta _{2}q^{3}-q^{4}+q^{6}+\beta _{1}q^{7}+\cdots\)
4650.2.d.bi 4650.d 5.b $6$ $37.130$ 6.0.44836416.1 None 4650.2.a.cj \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+\beta _{1}q^{3}-q^{4}-q^{6}-\beta _{4}q^{7}+\cdots\)
4650.2.d.bj 4650.d 5.b $6$ $37.130$ 6.0.120648256.1 None 4650.2.a.cl \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{2}-\beta _{2}q^{3}-q^{4}-q^{6}+(\beta _{2}+\beta _{5})q^{7}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(4650, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(4650, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(310, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(465, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(775, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(930, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1550, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2325, [\chi])\)\(^{\oplus 2}\)