Properties

Label 4650.2.a.ci.1.3
Level $4650$
Weight $2$
Character 4650.1
Self dual yes
Analytic conductor $37.130$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(1,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1304369399\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1708.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 8x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.21018\) of defining polynomial
Character \(\chi\) \(=\) 4650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +5.21018 q^{11} -1.00000 q^{12} -0.789816 q^{13} +2.00000 q^{14} +1.00000 q^{16} +0.115086 q^{17} -1.00000 q^{18} +0.115086 q^{19} +2.00000 q^{21} -5.21018 q^{22} +4.42037 q^{23} +1.00000 q^{24} +0.789816 q^{26} -1.00000 q^{27} -2.00000 q^{28} +4.42037 q^{29} -1.00000 q^{31} -1.00000 q^{32} -5.21018 q^{33} -0.115086 q^{34} +1.00000 q^{36} -6.61056 q^{37} -0.115086 q^{38} +0.789816 q^{39} +2.00000 q^{41} -2.00000 q^{42} +8.61056 q^{43} +5.21018 q^{44} -4.42037 q^{46} -0.115086 q^{47} -1.00000 q^{48} -3.00000 q^{49} -0.115086 q^{51} -0.789816 q^{52} +0.190196 q^{53} +1.00000 q^{54} +2.00000 q^{56} -0.115086 q^{57} -4.42037 q^{58} -4.19020 q^{59} +12.4955 q^{61} +1.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} +5.21018 q^{66} -5.82075 q^{67} +0.115086 q^{68} -4.42037 q^{69} -13.8207 q^{71} -1.00000 q^{72} +10.8407 q^{73} +6.61056 q^{74} +0.115086 q^{76} -10.4204 q^{77} -0.789816 q^{78} +2.30528 q^{79} +1.00000 q^{81} -2.00000 q^{82} -15.1460 q^{83} +2.00000 q^{84} -8.61056 q^{86} -4.42037 q^{87} -5.21018 q^{88} -2.23017 q^{89} +1.57963 q^{91} +4.42037 q^{92} +1.00000 q^{93} +0.115086 q^{94} +1.00000 q^{96} +9.21018 q^{97} +3.00000 q^{98} +5.21018 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} - 6 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} - 6 q^{7} - 3 q^{8} + 3 q^{9} + 8 q^{11} - 3 q^{12} - 10 q^{13} + 6 q^{14} + 3 q^{16} - 2 q^{17} - 3 q^{18} - 2 q^{19} + 6 q^{21} - 8 q^{22} - 2 q^{23} + 3 q^{24} + 10 q^{26} - 3 q^{27} - 6 q^{28} - 2 q^{29} - 3 q^{31} - 3 q^{32} - 8 q^{33} + 2 q^{34} + 3 q^{36} + 6 q^{37} + 2 q^{38} + 10 q^{39} + 6 q^{41} - 6 q^{42} + 8 q^{44} + 2 q^{46} + 2 q^{47} - 3 q^{48} - 9 q^{49} + 2 q^{51} - 10 q^{52} - 10 q^{53} + 3 q^{54} + 6 q^{56} + 2 q^{57} + 2 q^{58} - 2 q^{59} + 14 q^{61} + 3 q^{62} - 6 q^{63} + 3 q^{64} + 8 q^{66} + 16 q^{67} - 2 q^{68} + 2 q^{69} - 8 q^{71} - 3 q^{72} + 2 q^{73} - 6 q^{74} - 2 q^{76} - 16 q^{77} - 10 q^{78} - 6 q^{79} + 3 q^{81} - 6 q^{82} - 2 q^{83} + 6 q^{84} + 2 q^{87} - 8 q^{88} - 2 q^{89} + 20 q^{91} - 2 q^{92} + 3 q^{93} - 2 q^{94} + 3 q^{96} + 20 q^{97} + 9 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 5.21018 1.57093 0.785465 0.618906i \(-0.212424\pi\)
0.785465 + 0.618906i \(0.212424\pi\)
\(12\) −1.00000 −0.288675
\(13\) −0.789816 −0.219056 −0.109528 0.993984i \(-0.534934\pi\)
−0.109528 + 0.993984i \(0.534934\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 0.115086 0.0279125 0.0139562 0.999903i \(-0.495557\pi\)
0.0139562 + 0.999903i \(0.495557\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.115086 0.0264026 0.0132013 0.999913i \(-0.495798\pi\)
0.0132013 + 0.999913i \(0.495798\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) −5.21018 −1.11081
\(23\) 4.42037 0.921710 0.460855 0.887475i \(-0.347543\pi\)
0.460855 + 0.887475i \(0.347543\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 0.789816 0.154896
\(27\) −1.00000 −0.192450
\(28\) −2.00000 −0.377964
\(29\) 4.42037 0.820842 0.410421 0.911896i \(-0.365382\pi\)
0.410421 + 0.911896i \(0.365382\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −1.00000 −0.176777
\(33\) −5.21018 −0.906977
\(34\) −0.115086 −0.0197371
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −6.61056 −1.08677 −0.543385 0.839484i \(-0.682858\pi\)
−0.543385 + 0.839484i \(0.682858\pi\)
\(38\) −0.115086 −0.0186694
\(39\) 0.789816 0.126472
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) −2.00000 −0.308607
\(43\) 8.61056 1.31310 0.656549 0.754283i \(-0.272015\pi\)
0.656549 + 0.754283i \(0.272015\pi\)
\(44\) 5.21018 0.785465
\(45\) 0 0
\(46\) −4.42037 −0.651748
\(47\) −0.115086 −0.0167870 −0.00839352 0.999965i \(-0.502672\pi\)
−0.00839352 + 0.999965i \(0.502672\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −0.115086 −0.0161153
\(52\) −0.789816 −0.109528
\(53\) 0.190196 0.0261254 0.0130627 0.999915i \(-0.495842\pi\)
0.0130627 + 0.999915i \(0.495842\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) −0.115086 −0.0152435
\(58\) −4.42037 −0.580423
\(59\) −4.19020 −0.545517 −0.272759 0.962083i \(-0.587936\pi\)
−0.272759 + 0.962083i \(0.587936\pi\)
\(60\) 0 0
\(61\) 12.4955 1.59988 0.799941 0.600079i \(-0.204864\pi\)
0.799941 + 0.600079i \(0.204864\pi\)
\(62\) 1.00000 0.127000
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 5.21018 0.641329
\(67\) −5.82075 −0.711118 −0.355559 0.934654i \(-0.615709\pi\)
−0.355559 + 0.934654i \(0.615709\pi\)
\(68\) 0.115086 0.0139562
\(69\) −4.42037 −0.532150
\(70\) 0 0
\(71\) −13.8207 −1.64022 −0.820111 0.572205i \(-0.806088\pi\)
−0.820111 + 0.572205i \(0.806088\pi\)
\(72\) −1.00000 −0.117851
\(73\) 10.8407 1.26881 0.634406 0.773000i \(-0.281245\pi\)
0.634406 + 0.773000i \(0.281245\pi\)
\(74\) 6.61056 0.768462
\(75\) 0 0
\(76\) 0.115086 0.0132013
\(77\) −10.4204 −1.18751
\(78\) −0.789816 −0.0894290
\(79\) 2.30528 0.259365 0.129682 0.991556i \(-0.458604\pi\)
0.129682 + 0.991556i \(0.458604\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) −15.1460 −1.66249 −0.831246 0.555905i \(-0.812372\pi\)
−0.831246 + 0.555905i \(0.812372\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) −8.61056 −0.928501
\(87\) −4.42037 −0.473913
\(88\) −5.21018 −0.555407
\(89\) −2.23017 −0.236398 −0.118199 0.992990i \(-0.537712\pi\)
−0.118199 + 0.992990i \(0.537712\pi\)
\(90\) 0 0
\(91\) 1.57963 0.165590
\(92\) 4.42037 0.460855
\(93\) 1.00000 0.103695
\(94\) 0.115086 0.0118702
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 9.21018 0.935153 0.467576 0.883953i \(-0.345127\pi\)
0.467576 + 0.883953i \(0.345127\pi\)
\(98\) 3.00000 0.303046
\(99\) 5.21018 0.523643
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0.115086 0.0113952
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 0.789816 0.0774478
\(105\) 0 0
\(106\) −0.190196 −0.0184735
\(107\) 3.03093 0.293011 0.146506 0.989210i \(-0.453197\pi\)
0.146506 + 0.989210i \(0.453197\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −8.19020 −0.784479 −0.392239 0.919863i \(-0.628299\pi\)
−0.392239 + 0.919863i \(0.628299\pi\)
\(110\) 0 0
\(111\) 6.61056 0.627447
\(112\) −2.00000 −0.188982
\(113\) −10.3804 −0.976505 −0.488253 0.872702i \(-0.662366\pi\)
−0.488253 + 0.872702i \(0.662366\pi\)
\(114\) 0.115086 0.0107788
\(115\) 0 0
\(116\) 4.42037 0.410421
\(117\) −0.789816 −0.0730185
\(118\) 4.19020 0.385739
\(119\) −0.230172 −0.0210999
\(120\) 0 0
\(121\) 16.1460 1.46782
\(122\) −12.4955 −1.13129
\(123\) −2.00000 −0.180334
\(124\) −1.00000 −0.0898027
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 10.4204 0.924658 0.462329 0.886708i \(-0.347014\pi\)
0.462329 + 0.886708i \(0.347014\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −8.61056 −0.758118
\(130\) 0 0
\(131\) −0.190196 −0.0166175 −0.00830875 0.999965i \(-0.502645\pi\)
−0.00830875 + 0.999965i \(0.502645\pi\)
\(132\) −5.21018 −0.453488
\(133\) −0.230172 −0.0199585
\(134\) 5.82075 0.502836
\(135\) 0 0
\(136\) −0.115086 −0.00986855
\(137\) 21.4513 1.83271 0.916354 0.400369i \(-0.131118\pi\)
0.916354 + 0.400369i \(0.131118\pi\)
\(138\) 4.42037 0.376287
\(139\) 16.4204 1.39276 0.696379 0.717674i \(-0.254793\pi\)
0.696379 + 0.717674i \(0.254793\pi\)
\(140\) 0 0
\(141\) 0.115086 0.00969200
\(142\) 13.8207 1.15981
\(143\) −4.11509 −0.344121
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −10.8407 −0.897186
\(147\) 3.00000 0.247436
\(148\) −6.61056 −0.543385
\(149\) −3.63055 −0.297426 −0.148713 0.988880i \(-0.547513\pi\)
−0.148713 + 0.988880i \(0.547513\pi\)
\(150\) 0 0
\(151\) −15.7566 −1.28225 −0.641126 0.767435i \(-0.721533\pi\)
−0.641126 + 0.767435i \(0.721533\pi\)
\(152\) −0.115086 −0.00933472
\(153\) 0.115086 0.00930416
\(154\) 10.4204 0.839697
\(155\) 0 0
\(156\) 0.789816 0.0632359
\(157\) 3.96002 0.316044 0.158022 0.987436i \(-0.449488\pi\)
0.158022 + 0.987436i \(0.449488\pi\)
\(158\) −2.30528 −0.183398
\(159\) −0.190196 −0.0150835
\(160\) 0 0
\(161\) −8.84074 −0.696748
\(162\) −1.00000 −0.0785674
\(163\) −9.82075 −0.769220 −0.384610 0.923079i \(-0.625664\pi\)
−0.384610 + 0.923079i \(0.625664\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) 15.1460 1.17556
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) −2.00000 −0.154303
\(169\) −12.3762 −0.952015
\(170\) 0 0
\(171\) 0.115086 0.00880085
\(172\) 8.61056 0.656549
\(173\) 0.535454 0.0407098 0.0203549 0.999793i \(-0.493520\pi\)
0.0203549 + 0.999793i \(0.493520\pi\)
\(174\) 4.42037 0.335107
\(175\) 0 0
\(176\) 5.21018 0.392732
\(177\) 4.19020 0.314954
\(178\) 2.23017 0.167158
\(179\) 10.4313 0.779673 0.389836 0.920884i \(-0.372532\pi\)
0.389836 + 0.920884i \(0.372532\pi\)
\(180\) 0 0
\(181\) 17.4513 1.29714 0.648572 0.761153i \(-0.275366\pi\)
0.648572 + 0.761153i \(0.275366\pi\)
\(182\) −1.57963 −0.117090
\(183\) −12.4955 −0.923692
\(184\) −4.42037 −0.325874
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) 0.599620 0.0438485
\(188\) −0.115086 −0.00839352
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) 19.2611 1.39368 0.696842 0.717224i \(-0.254588\pi\)
0.696842 + 0.717224i \(0.254588\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −14.4313 −1.03879 −0.519394 0.854535i \(-0.673842\pi\)
−0.519394 + 0.854535i \(0.673842\pi\)
\(194\) −9.21018 −0.661253
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −10.3804 −0.739572 −0.369786 0.929117i \(-0.620569\pi\)
−0.369786 + 0.929117i \(0.620569\pi\)
\(198\) −5.21018 −0.370272
\(199\) 14.5355 1.03039 0.515196 0.857073i \(-0.327719\pi\)
0.515196 + 0.857073i \(0.327719\pi\)
\(200\) 0 0
\(201\) 5.82075 0.410564
\(202\) 0 0
\(203\) −8.84074 −0.620498
\(204\) −0.115086 −0.00805764
\(205\) 0 0
\(206\) −6.00000 −0.418040
\(207\) 4.42037 0.307237
\(208\) −0.789816 −0.0547639
\(209\) 0.599620 0.0414766
\(210\) 0 0
\(211\) 24.8407 1.71011 0.855053 0.518540i \(-0.173524\pi\)
0.855053 + 0.518540i \(0.173524\pi\)
\(212\) 0.190196 0.0130627
\(213\) 13.8207 0.946982
\(214\) −3.03093 −0.207190
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 2.00000 0.135769
\(218\) 8.19020 0.554710
\(219\) −10.8407 −0.732549
\(220\) 0 0
\(221\) −0.0908968 −0.00611438
\(222\) −6.61056 −0.443672
\(223\) 19.6306 1.31456 0.657280 0.753647i \(-0.271707\pi\)
0.657280 + 0.753647i \(0.271707\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) 10.3804 0.690493
\(227\) 6.42037 0.426135 0.213067 0.977038i \(-0.431655\pi\)
0.213067 + 0.977038i \(0.431655\pi\)
\(228\) −0.115086 −0.00762176
\(229\) −29.7166 −1.96373 −0.981864 0.189585i \(-0.939286\pi\)
−0.981864 + 0.189585i \(0.939286\pi\)
\(230\) 0 0
\(231\) 10.4204 0.685610
\(232\) −4.42037 −0.290211
\(233\) −5.38944 −0.353074 −0.176537 0.984294i \(-0.556489\pi\)
−0.176537 + 0.984294i \(0.556489\pi\)
\(234\) 0.789816 0.0516319
\(235\) 0 0
\(236\) −4.19020 −0.272759
\(237\) −2.30528 −0.149744
\(238\) 0.230172 0.0149198
\(239\) 7.03093 0.454793 0.227397 0.973802i \(-0.426979\pi\)
0.227397 + 0.973802i \(0.426979\pi\)
\(240\) 0 0
\(241\) −0.190196 −0.0122516 −0.00612580 0.999981i \(-0.501950\pi\)
−0.00612580 + 0.999981i \(0.501950\pi\)
\(242\) −16.1460 −1.03791
\(243\) −1.00000 −0.0641500
\(244\) 12.4955 0.799941
\(245\) 0 0
\(246\) 2.00000 0.127515
\(247\) −0.0908968 −0.00578363
\(248\) 1.00000 0.0635001
\(249\) 15.1460 0.959840
\(250\) 0 0
\(251\) 14.4204 0.910206 0.455103 0.890439i \(-0.349603\pi\)
0.455103 + 0.890439i \(0.349603\pi\)
\(252\) −2.00000 −0.125988
\(253\) 23.0309 1.44794
\(254\) −10.4204 −0.653832
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 1.76983 0.110399 0.0551994 0.998475i \(-0.482421\pi\)
0.0551994 + 0.998475i \(0.482421\pi\)
\(258\) 8.61056 0.536070
\(259\) 13.2211 0.821521
\(260\) 0 0
\(261\) 4.42037 0.273614
\(262\) 0.190196 0.0117504
\(263\) −14.2302 −0.877470 −0.438735 0.898616i \(-0.644573\pi\)
−0.438735 + 0.898616i \(0.644573\pi\)
\(264\) 5.21018 0.320665
\(265\) 0 0
\(266\) 0.230172 0.0141128
\(267\) 2.23017 0.136484
\(268\) −5.82075 −0.355559
\(269\) −1.15926 −0.0706815 −0.0353408 0.999375i \(-0.511252\pi\)
−0.0353408 + 0.999375i \(0.511252\pi\)
\(270\) 0 0
\(271\) 22.6857 1.37806 0.689028 0.724734i \(-0.258038\pi\)
0.689028 + 0.724734i \(0.258038\pi\)
\(272\) 0.115086 0.00697812
\(273\) −1.57963 −0.0956037
\(274\) −21.4513 −1.29592
\(275\) 0 0
\(276\) −4.42037 −0.266075
\(277\) 9.63055 0.578644 0.289322 0.957232i \(-0.406570\pi\)
0.289322 + 0.957232i \(0.406570\pi\)
\(278\) −16.4204 −0.984828
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 10.8407 0.646704 0.323352 0.946279i \(-0.395190\pi\)
0.323352 + 0.946279i \(0.395190\pi\)
\(282\) −0.115086 −0.00685328
\(283\) 19.7808 1.17584 0.587922 0.808917i \(-0.299946\pi\)
0.587922 + 0.808917i \(0.299946\pi\)
\(284\) −13.8207 −0.820111
\(285\) 0 0
\(286\) 4.11509 0.243330
\(287\) −4.00000 −0.236113
\(288\) −1.00000 −0.0589256
\(289\) −16.9868 −0.999221
\(290\) 0 0
\(291\) −9.21018 −0.539911
\(292\) 10.8407 0.634406
\(293\) −31.2211 −1.82396 −0.911979 0.410237i \(-0.865446\pi\)
−0.911979 + 0.410237i \(0.865446\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) 6.61056 0.384231
\(297\) −5.21018 −0.302326
\(298\) 3.63055 0.210312
\(299\) −3.49128 −0.201906
\(300\) 0 0
\(301\) −17.2211 −0.992609
\(302\) 15.7566 0.906689
\(303\) 0 0
\(304\) 0.115086 0.00660064
\(305\) 0 0
\(306\) −0.115086 −0.00657904
\(307\) 13.5796 0.775031 0.387515 0.921863i \(-0.373333\pi\)
0.387515 + 0.921863i \(0.373333\pi\)
\(308\) −10.4204 −0.593756
\(309\) −6.00000 −0.341328
\(310\) 0 0
\(311\) 18.2811 1.03663 0.518313 0.855191i \(-0.326560\pi\)
0.518313 + 0.855191i \(0.326560\pi\)
\(312\) −0.789816 −0.0447145
\(313\) 14.4603 0.817347 0.408673 0.912681i \(-0.365991\pi\)
0.408673 + 0.912681i \(0.365991\pi\)
\(314\) −3.96002 −0.223477
\(315\) 0 0
\(316\) 2.30528 0.129682
\(317\) 3.46455 0.194588 0.0972941 0.995256i \(-0.468981\pi\)
0.0972941 + 0.995256i \(0.468981\pi\)
\(318\) 0.190196 0.0106657
\(319\) 23.0309 1.28948
\(320\) 0 0
\(321\) −3.03093 −0.169170
\(322\) 8.84074 0.492675
\(323\) 0.0132448 0.000736961 0
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 9.82075 0.543921
\(327\) 8.19020 0.452919
\(328\) −2.00000 −0.110432
\(329\) 0.230172 0.0126898
\(330\) 0 0
\(331\) −20.8008 −1.14331 −0.571657 0.820493i \(-0.693699\pi\)
−0.571657 + 0.820493i \(0.693699\pi\)
\(332\) −15.1460 −0.831246
\(333\) −6.61056 −0.362257
\(334\) 2.00000 0.109435
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) 23.0709 1.25675 0.628376 0.777910i \(-0.283720\pi\)
0.628376 + 0.777910i \(0.283720\pi\)
\(338\) 12.3762 0.673176
\(339\) 10.3804 0.563786
\(340\) 0 0
\(341\) −5.21018 −0.282147
\(342\) −0.115086 −0.00622314
\(343\) 20.0000 1.07990
\(344\) −8.61056 −0.464251
\(345\) 0 0
\(346\) −0.535454 −0.0287862
\(347\) 31.9868 1.71714 0.858569 0.512697i \(-0.171354\pi\)
0.858569 + 0.512697i \(0.171354\pi\)
\(348\) −4.42037 −0.236957
\(349\) 23.4513 1.25532 0.627660 0.778488i \(-0.284013\pi\)
0.627660 + 0.778488i \(0.284013\pi\)
\(350\) 0 0
\(351\) 0.789816 0.0421573
\(352\) −5.21018 −0.277704
\(353\) −3.88491 −0.206773 −0.103387 0.994641i \(-0.532968\pi\)
−0.103387 + 0.994641i \(0.532968\pi\)
\(354\) −4.19020 −0.222706
\(355\) 0 0
\(356\) −2.23017 −0.118199
\(357\) 0.230172 0.0121820
\(358\) −10.4313 −0.551312
\(359\) −21.3604 −1.12736 −0.563680 0.825994i \(-0.690615\pi\)
−0.563680 + 0.825994i \(0.690615\pi\)
\(360\) 0 0
\(361\) −18.9868 −0.999303
\(362\) −17.4513 −0.917220
\(363\) −16.1460 −0.847446
\(364\) 1.57963 0.0827952
\(365\) 0 0
\(366\) 12.4955 0.653149
\(367\) 20.4713 1.06859 0.534296 0.845297i \(-0.320577\pi\)
0.534296 + 0.845297i \(0.320577\pi\)
\(368\) 4.42037 0.230428
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −0.380392 −0.0197490
\(372\) 1.00000 0.0518476
\(373\) 9.76983 0.505863 0.252931 0.967484i \(-0.418605\pi\)
0.252931 + 0.967484i \(0.418605\pi\)
\(374\) −0.599620 −0.0310056
\(375\) 0 0
\(376\) 0.115086 0.00593511
\(377\) −3.49128 −0.179810
\(378\) −2.00000 −0.102869
\(379\) 3.65474 0.187731 0.0938657 0.995585i \(-0.470078\pi\)
0.0938657 + 0.995585i \(0.470078\pi\)
\(380\) 0 0
\(381\) −10.4204 −0.533852
\(382\) −19.2611 −0.985484
\(383\) 25.4913 1.30254 0.651272 0.758845i \(-0.274236\pi\)
0.651272 + 0.758845i \(0.274236\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 14.4313 0.734534
\(387\) 8.61056 0.437700
\(388\) 9.21018 0.467576
\(389\) 4.65054 0.235792 0.117896 0.993026i \(-0.462385\pi\)
0.117896 + 0.993026i \(0.462385\pi\)
\(390\) 0 0
\(391\) 0.508723 0.0257272
\(392\) 3.00000 0.151523
\(393\) 0.190196 0.00959412
\(394\) 10.3804 0.522957
\(395\) 0 0
\(396\) 5.21018 0.261822
\(397\) −26.7124 −1.34066 −0.670329 0.742064i \(-0.733847\pi\)
−0.670329 + 0.742064i \(0.733847\pi\)
\(398\) −14.5355 −0.728596
\(399\) 0.230172 0.0115230
\(400\) 0 0
\(401\) 16.0509 0.801545 0.400772 0.916178i \(-0.368742\pi\)
0.400772 + 0.916178i \(0.368742\pi\)
\(402\) −5.82075 −0.290313
\(403\) 0.789816 0.0393435
\(404\) 0 0
\(405\) 0 0
\(406\) 8.84074 0.438758
\(407\) −34.4423 −1.70724
\(408\) 0.115086 0.00569761
\(409\) 9.87167 0.488123 0.244061 0.969760i \(-0.421520\pi\)
0.244061 + 0.969760i \(0.421520\pi\)
\(410\) 0 0
\(411\) −21.4513 −1.05811
\(412\) 6.00000 0.295599
\(413\) 8.38039 0.412372
\(414\) −4.42037 −0.217249
\(415\) 0 0
\(416\) 0.789816 0.0387239
\(417\) −16.4204 −0.804109
\(418\) −0.599620 −0.0293284
\(419\) −0.420368 −0.0205363 −0.0102682 0.999947i \(-0.503269\pi\)
−0.0102682 + 0.999947i \(0.503269\pi\)
\(420\) 0 0
\(421\) −39.2211 −1.91152 −0.955760 0.294146i \(-0.904965\pi\)
−0.955760 + 0.294146i \(0.904965\pi\)
\(422\) −24.8407 −1.20923
\(423\) −0.115086 −0.00559568
\(424\) −0.190196 −0.00923674
\(425\) 0 0
\(426\) −13.8207 −0.669617
\(427\) −24.9910 −1.20940
\(428\) 3.03093 0.146506
\(429\) 4.11509 0.198678
\(430\) 0 0
\(431\) −6.88071 −0.331432 −0.165716 0.986173i \(-0.552994\pi\)
−0.165716 + 0.986173i \(0.552994\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 1.38944 0.0667720 0.0333860 0.999443i \(-0.489371\pi\)
0.0333860 + 0.999443i \(0.489371\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) −8.19020 −0.392239
\(437\) 0.508723 0.0243355
\(438\) 10.8407 0.517990
\(439\) 19.8717 0.948423 0.474212 0.880411i \(-0.342733\pi\)
0.474212 + 0.880411i \(0.342733\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0.0908968 0.00432352
\(443\) −8.61056 −0.409100 −0.204550 0.978856i \(-0.565573\pi\)
−0.204550 + 0.978856i \(0.565573\pi\)
\(444\) 6.61056 0.313723
\(445\) 0 0
\(446\) −19.6306 −0.929534
\(447\) 3.63055 0.171719
\(448\) −2.00000 −0.0944911
\(449\) −10.3694 −0.489364 −0.244682 0.969603i \(-0.578684\pi\)
−0.244682 + 0.969603i \(0.578684\pi\)
\(450\) 0 0
\(451\) 10.4204 0.490676
\(452\) −10.3804 −0.488253
\(453\) 15.7566 0.740309
\(454\) −6.42037 −0.301323
\(455\) 0 0
\(456\) 0.115086 0.00538940
\(457\) 21.4913 1.00532 0.502660 0.864484i \(-0.332355\pi\)
0.502660 + 0.864484i \(0.332355\pi\)
\(458\) 29.7166 1.38857
\(459\) −0.115086 −0.00537176
\(460\) 0 0
\(461\) 3.34946 0.156000 0.0779999 0.996953i \(-0.475147\pi\)
0.0779999 + 0.996953i \(0.475147\pi\)
\(462\) −10.4204 −0.484799
\(463\) 28.0109 1.30178 0.650889 0.759172i \(-0.274396\pi\)
0.650889 + 0.759172i \(0.274396\pi\)
\(464\) 4.42037 0.205210
\(465\) 0 0
\(466\) 5.38944 0.249661
\(467\) 37.6815 1.74369 0.871845 0.489781i \(-0.162923\pi\)
0.871845 + 0.489781i \(0.162923\pi\)
\(468\) −0.789816 −0.0365093
\(469\) 11.6415 0.537554
\(470\) 0 0
\(471\) −3.96002 −0.182468
\(472\) 4.19020 0.192869
\(473\) 44.8626 2.06279
\(474\) 2.30528 0.105885
\(475\) 0 0
\(476\) −0.230172 −0.0105499
\(477\) 0.190196 0.00870848
\(478\) −7.03093 −0.321587
\(479\) −10.2811 −0.469755 −0.234878 0.972025i \(-0.575469\pi\)
−0.234878 + 0.972025i \(0.575469\pi\)
\(480\) 0 0
\(481\) 5.22113 0.238063
\(482\) 0.190196 0.00866319
\(483\) 8.84074 0.402267
\(484\) 16.1460 0.733910
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 32.9316 1.49227 0.746137 0.665792i \(-0.231906\pi\)
0.746137 + 0.665792i \(0.231906\pi\)
\(488\) −12.4955 −0.565644
\(489\) 9.82075 0.444110
\(490\) 0 0
\(491\) −41.7034 −1.88205 −0.941023 0.338342i \(-0.890134\pi\)
−0.941023 + 0.338342i \(0.890134\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 0.508723 0.0229117
\(494\) 0.0908968 0.00408964
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) 27.6415 1.23989
\(498\) −15.1460 −0.678709
\(499\) 22.2302 0.995159 0.497580 0.867418i \(-0.334222\pi\)
0.497580 + 0.867418i \(0.334222\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) −14.4204 −0.643613
\(503\) 12.3453 0.550448 0.275224 0.961380i \(-0.411248\pi\)
0.275224 + 0.961380i \(0.411248\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) −23.0309 −1.02385
\(507\) 12.3762 0.549646
\(508\) 10.4204 0.462329
\(509\) 30.9910 1.37365 0.686825 0.726823i \(-0.259004\pi\)
0.686825 + 0.726823i \(0.259004\pi\)
\(510\) 0 0
\(511\) −21.6815 −0.959132
\(512\) −1.00000 −0.0441942
\(513\) −0.115086 −0.00508118
\(514\) −1.76983 −0.0780638
\(515\) 0 0
\(516\) −8.61056 −0.379059
\(517\) −0.599620 −0.0263713
\(518\) −13.2211 −0.580903
\(519\) −0.535454 −0.0235038
\(520\) 0 0
\(521\) 28.8008 1.26178 0.630892 0.775871i \(-0.282689\pi\)
0.630892 + 0.775871i \(0.282689\pi\)
\(522\) −4.42037 −0.193474
\(523\) 27.7698 1.21429 0.607145 0.794591i \(-0.292315\pi\)
0.607145 + 0.794591i \(0.292315\pi\)
\(524\) −0.190196 −0.00830875
\(525\) 0 0
\(526\) 14.2302 0.620465
\(527\) −0.115086 −0.00501323
\(528\) −5.21018 −0.226744
\(529\) −3.46034 −0.150450
\(530\) 0 0
\(531\) −4.19020 −0.181839
\(532\) −0.230172 −0.00997923
\(533\) −1.57963 −0.0684214
\(534\) −2.23017 −0.0965090
\(535\) 0 0
\(536\) 5.82075 0.251418
\(537\) −10.4313 −0.450144
\(538\) 1.15926 0.0499794
\(539\) −15.6306 −0.673256
\(540\) 0 0
\(541\) 34.9426 1.50230 0.751149 0.660132i \(-0.229500\pi\)
0.751149 + 0.660132i \(0.229500\pi\)
\(542\) −22.6857 −0.974433
\(543\) −17.4513 −0.748907
\(544\) −0.115086 −0.00493428
\(545\) 0 0
\(546\) 1.57963 0.0676020
\(547\) 23.6415 1.01084 0.505419 0.862874i \(-0.331338\pi\)
0.505419 + 0.862874i \(0.331338\pi\)
\(548\) 21.4513 0.916354
\(549\) 12.4955 0.533294
\(550\) 0 0
\(551\) 0.508723 0.0216723
\(552\) 4.42037 0.188143
\(553\) −4.61056 −0.196061
\(554\) −9.63055 −0.409163
\(555\) 0 0
\(556\) 16.4204 0.696379
\(557\) −22.9910 −0.974158 −0.487079 0.873358i \(-0.661938\pi\)
−0.487079 + 0.873358i \(0.661938\pi\)
\(558\) 1.00000 0.0423334
\(559\) −6.80076 −0.287642
\(560\) 0 0
\(561\) −0.599620 −0.0253160
\(562\) −10.8407 −0.457289
\(563\) −7.87167 −0.331751 −0.165876 0.986147i \(-0.553045\pi\)
−0.165876 + 0.986147i \(0.553045\pi\)
\(564\) 0.115086 0.00484600
\(565\) 0 0
\(566\) −19.7808 −0.831448
\(567\) −2.00000 −0.0839921
\(568\) 13.8207 0.579906
\(569\) −40.6724 −1.70508 −0.852538 0.522664i \(-0.824938\pi\)
−0.852538 + 0.522664i \(0.824938\pi\)
\(570\) 0 0
\(571\) 14.2302 0.595514 0.297757 0.954642i \(-0.403761\pi\)
0.297757 + 0.954642i \(0.403761\pi\)
\(572\) −4.11509 −0.172060
\(573\) −19.2611 −0.804644
\(574\) 4.00000 0.166957
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −7.63055 −0.317664 −0.158832 0.987306i \(-0.550773\pi\)
−0.158832 + 0.987306i \(0.550773\pi\)
\(578\) 16.9868 0.706556
\(579\) 14.4313 0.599745
\(580\) 0 0
\(581\) 30.2920 1.25673
\(582\) 9.21018 0.381774
\(583\) 0.990956 0.0410412
\(584\) −10.8407 −0.448593
\(585\) 0 0
\(586\) 31.2211 1.28973
\(587\) 17.8449 0.736539 0.368270 0.929719i \(-0.379950\pi\)
0.368270 + 0.929719i \(0.379950\pi\)
\(588\) 3.00000 0.123718
\(589\) −0.115086 −0.00474204
\(590\) 0 0
\(591\) 10.3804 0.426992
\(592\) −6.61056 −0.271693
\(593\) 47.4732 1.94949 0.974745 0.223320i \(-0.0716896\pi\)
0.974745 + 0.223320i \(0.0716896\pi\)
\(594\) 5.21018 0.213776
\(595\) 0 0
\(596\) −3.63055 −0.148713
\(597\) −14.5355 −0.594897
\(598\) 3.49128 0.142769
\(599\) 41.4622 1.69410 0.847051 0.531512i \(-0.178376\pi\)
0.847051 + 0.531512i \(0.178376\pi\)
\(600\) 0 0
\(601\) −8.77887 −0.358098 −0.179049 0.983840i \(-0.557302\pi\)
−0.179049 + 0.983840i \(0.557302\pi\)
\(602\) 17.2211 0.701881
\(603\) −5.82075 −0.237039
\(604\) −15.7566 −0.641126
\(605\) 0 0
\(606\) 0 0
\(607\) −32.0619 −1.30135 −0.650675 0.759356i \(-0.725514\pi\)
−0.650675 + 0.759356i \(0.725514\pi\)
\(608\) −0.115086 −0.00466736
\(609\) 8.84074 0.358245
\(610\) 0 0
\(611\) 0.0908968 0.00367729
\(612\) 0.115086 0.00465208
\(613\) 23.2321 0.938335 0.469167 0.883109i \(-0.344554\pi\)
0.469167 + 0.883109i \(0.344554\pi\)
\(614\) −13.5796 −0.548029
\(615\) 0 0
\(616\) 10.4204 0.419849
\(617\) 13.6196 0.548305 0.274152 0.961686i \(-0.411603\pi\)
0.274152 + 0.961686i \(0.411603\pi\)
\(618\) 6.00000 0.241355
\(619\) 25.3894 1.02049 0.510244 0.860030i \(-0.329555\pi\)
0.510244 + 0.860030i \(0.329555\pi\)
\(620\) 0 0
\(621\) −4.42037 −0.177383
\(622\) −18.2811 −0.733005
\(623\) 4.46034 0.178700
\(624\) 0.789816 0.0316179
\(625\) 0 0
\(626\) −14.4603 −0.577952
\(627\) −0.599620 −0.0239465
\(628\) 3.96002 0.158022
\(629\) −0.760784 −0.0303345
\(630\) 0 0
\(631\) −28.3804 −1.12981 −0.564903 0.825157i \(-0.691086\pi\)
−0.564903 + 0.825157i \(0.691086\pi\)
\(632\) −2.30528 −0.0916992
\(633\) −24.8407 −0.987331
\(634\) −3.46455 −0.137595
\(635\) 0 0
\(636\) −0.190196 −0.00754176
\(637\) 2.36945 0.0938809
\(638\) −23.0309 −0.911803
\(639\) −13.8207 −0.546740
\(640\) 0 0
\(641\) 3.59058 0.141819 0.0709096 0.997483i \(-0.477410\pi\)
0.0709096 + 0.997483i \(0.477410\pi\)
\(642\) 3.03093 0.119621
\(643\) 38.6505 1.52423 0.762114 0.647443i \(-0.224161\pi\)
0.762114 + 0.647443i \(0.224161\pi\)
\(644\) −8.84074 −0.348374
\(645\) 0 0
\(646\) −0.0132448 −0.000521110 0
\(647\) −32.9026 −1.29353 −0.646767 0.762687i \(-0.723880\pi\)
−0.646767 + 0.762687i \(0.723880\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −21.8317 −0.856969
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) −9.82075 −0.384610
\(653\) −25.5264 −0.998926 −0.499463 0.866335i \(-0.666469\pi\)
−0.499463 + 0.866335i \(0.666469\pi\)
\(654\) −8.19020 −0.320262
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) 10.8407 0.422937
\(658\) −0.230172 −0.00897305
\(659\) 6.84074 0.266477 0.133239 0.991084i \(-0.457462\pi\)
0.133239 + 0.991084i \(0.457462\pi\)
\(660\) 0 0
\(661\) −21.2611 −0.826961 −0.413481 0.910513i \(-0.635687\pi\)
−0.413481 + 0.910513i \(0.635687\pi\)
\(662\) 20.8008 0.808445
\(663\) 0.0908968 0.00353014
\(664\) 15.1460 0.587780
\(665\) 0 0
\(666\) 6.61056 0.256154
\(667\) 19.5397 0.756578
\(668\) −2.00000 −0.0773823
\(669\) −19.6306 −0.758961
\(670\) 0 0
\(671\) 65.1037 2.51330
\(672\) −2.00000 −0.0771517
\(673\) −39.7034 −1.53045 −0.765226 0.643762i \(-0.777373\pi\)
−0.765226 + 0.643762i \(0.777373\pi\)
\(674\) −23.0709 −0.888658
\(675\) 0 0
\(676\) −12.3762 −0.476007
\(677\) 3.45130 0.132644 0.0663221 0.997798i \(-0.478874\pi\)
0.0663221 + 0.997798i \(0.478874\pi\)
\(678\) −10.3804 −0.398657
\(679\) −18.4204 −0.706909
\(680\) 0 0
\(681\) −6.42037 −0.246029
\(682\) 5.21018 0.199508
\(683\) 20.4603 0.782893 0.391447 0.920201i \(-0.371975\pi\)
0.391447 + 0.920201i \(0.371975\pi\)
\(684\) 0.115086 0.00440043
\(685\) 0 0
\(686\) −20.0000 −0.763604
\(687\) 29.7166 1.13376
\(688\) 8.61056 0.328275
\(689\) −0.150220 −0.00572292
\(690\) 0 0
\(691\) −9.94678 −0.378393 −0.189197 0.981939i \(-0.560588\pi\)
−0.189197 + 0.981939i \(0.560588\pi\)
\(692\) 0.535454 0.0203549
\(693\) −10.4204 −0.395837
\(694\) −31.9868 −1.21420
\(695\) 0 0
\(696\) 4.42037 0.167554
\(697\) 0.230172 0.00871839
\(698\) −23.4513 −0.887645
\(699\) 5.38944 0.203847
\(700\) 0 0
\(701\) −14.7898 −0.558604 −0.279302 0.960203i \(-0.590103\pi\)
−0.279302 + 0.960203i \(0.590103\pi\)
\(702\) −0.789816 −0.0298097
\(703\) −0.760784 −0.0286935
\(704\) 5.21018 0.196366
\(705\) 0 0
\(706\) 3.88491 0.146211
\(707\) 0 0
\(708\) 4.19020 0.157477
\(709\) −10.4336 −0.391843 −0.195921 0.980620i \(-0.562770\pi\)
−0.195921 + 0.980620i \(0.562770\pi\)
\(710\) 0 0
\(711\) 2.30528 0.0864548
\(712\) 2.23017 0.0835792
\(713\) −4.42037 −0.165544
\(714\) −0.230172 −0.00861398
\(715\) 0 0
\(716\) 10.4313 0.389836
\(717\) −7.03093 −0.262575
\(718\) 21.3604 0.797163
\(719\) −20.3320 −0.758256 −0.379128 0.925344i \(-0.623776\pi\)
−0.379128 + 0.925344i \(0.623776\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) 18.9868 0.706614
\(723\) 0.190196 0.00707347
\(724\) 17.4513 0.648572
\(725\) 0 0
\(726\) 16.1460 0.599235
\(727\) 37.5132 1.39129 0.695643 0.718387i \(-0.255119\pi\)
0.695643 + 0.718387i \(0.255119\pi\)
\(728\) −1.57963 −0.0585450
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 0.990956 0.0366518
\(732\) −12.4955 −0.461846
\(733\) −28.6505 −1.05823 −0.529116 0.848550i \(-0.677476\pi\)
−0.529116 + 0.848550i \(0.677476\pi\)
\(734\) −20.4713 −0.755609
\(735\) 0 0
\(736\) −4.42037 −0.162937
\(737\) −30.3272 −1.11712
\(738\) −2.00000 −0.0736210
\(739\) 21.6415 0.796095 0.398048 0.917365i \(-0.369688\pi\)
0.398048 + 0.917365i \(0.369688\pi\)
\(740\) 0 0
\(741\) 0.0908968 0.00333918
\(742\) 0.380392 0.0139646
\(743\) 5.76983 0.211674 0.105837 0.994383i \(-0.466248\pi\)
0.105837 + 0.994383i \(0.466248\pi\)
\(744\) −1.00000 −0.0366618
\(745\) 0 0
\(746\) −9.76983 −0.357699
\(747\) −15.1460 −0.554164
\(748\) 0.599620 0.0219243
\(749\) −6.06187 −0.221496
\(750\) 0 0
\(751\) −31.7698 −1.15930 −0.579649 0.814866i \(-0.696810\pi\)
−0.579649 + 0.814866i \(0.696810\pi\)
\(752\) −0.115086 −0.00419676
\(753\) −14.4204 −0.525507
\(754\) 3.49128 0.127145
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) −14.6905 −0.533936 −0.266968 0.963705i \(-0.586022\pi\)
−0.266968 + 0.963705i \(0.586022\pi\)
\(758\) −3.65474 −0.132746
\(759\) −23.0309 −0.835970
\(760\) 0 0
\(761\) 44.1528 1.60054 0.800268 0.599642i \(-0.204690\pi\)
0.800268 + 0.599642i \(0.204690\pi\)
\(762\) 10.4204 0.377490
\(763\) 16.3804 0.593010
\(764\) 19.2611 0.696842
\(765\) 0 0
\(766\) −25.4913 −0.921037
\(767\) 3.30948 0.119499
\(768\) −1.00000 −0.0360844
\(769\) 2.07995 0.0750050 0.0375025 0.999297i \(-0.488060\pi\)
0.0375025 + 0.999297i \(0.488060\pi\)
\(770\) 0 0
\(771\) −1.76983 −0.0637388
\(772\) −14.4313 −0.519394
\(773\) −30.1502 −1.08443 −0.542214 0.840240i \(-0.682414\pi\)
−0.542214 + 0.840240i \(0.682414\pi\)
\(774\) −8.61056 −0.309500
\(775\) 0 0
\(776\) −9.21018 −0.330626
\(777\) −13.2211 −0.474305
\(778\) −4.65054 −0.166730
\(779\) 0.230172 0.00824678
\(780\) 0 0
\(781\) −72.0086 −2.57667
\(782\) −0.508723 −0.0181919
\(783\) −4.42037 −0.157971
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) −0.190196 −0.00678407
\(787\) −15.8717 −0.565764 −0.282882 0.959155i \(-0.591290\pi\)
−0.282882 + 0.959155i \(0.591290\pi\)
\(788\) −10.3804 −0.369786
\(789\) 14.2302 0.506608
\(790\) 0 0
\(791\) 20.7608 0.738169
\(792\) −5.21018 −0.185136
\(793\) −9.86913 −0.350463
\(794\) 26.7124 0.947988
\(795\) 0 0
\(796\) 14.5355 0.515196
\(797\) 25.6415 0.908268 0.454134 0.890933i \(-0.349949\pi\)
0.454134 + 0.890933i \(0.349949\pi\)
\(798\) −0.230172 −0.00814801
\(799\) −0.0132448 −0.000468568 0
\(800\) 0 0
\(801\) −2.23017 −0.0787993
\(802\) −16.0509 −0.566778
\(803\) 56.4822 1.99321
\(804\) 5.82075 0.205282
\(805\) 0 0
\(806\) −0.789816 −0.0278201
\(807\) 1.15926 0.0408080
\(808\) 0 0
\(809\) −37.7324 −1.32660 −0.663300 0.748353i \(-0.730845\pi\)
−0.663300 + 0.748353i \(0.730845\pi\)
\(810\) 0 0
\(811\) 9.22113 0.323798 0.161899 0.986807i \(-0.448238\pi\)
0.161899 + 0.986807i \(0.448238\pi\)
\(812\) −8.84074 −0.310249
\(813\) −22.6857 −0.795621
\(814\) 34.4423 1.20720
\(815\) 0 0
\(816\) −0.115086 −0.00402882
\(817\) 0.990956 0.0346692
\(818\) −9.87167 −0.345155
\(819\) 1.57963 0.0551968
\(820\) 0 0
\(821\) −26.3804 −0.920682 −0.460341 0.887742i \(-0.652273\pi\)
−0.460341 + 0.887742i \(0.652273\pi\)
\(822\) 21.4513 0.748200
\(823\) 24.0109 0.836969 0.418484 0.908224i \(-0.362561\pi\)
0.418484 + 0.908224i \(0.362561\pi\)
\(824\) −6.00000 −0.209020
\(825\) 0 0
\(826\) −8.38039 −0.291591
\(827\) 7.52641 0.261719 0.130859 0.991401i \(-0.458226\pi\)
0.130859 + 0.991401i \(0.458226\pi\)
\(828\) 4.42037 0.153618
\(829\) 7.30948 0.253869 0.126934 0.991911i \(-0.459486\pi\)
0.126934 + 0.991911i \(0.459486\pi\)
\(830\) 0 0
\(831\) −9.63055 −0.334080
\(832\) −0.789816 −0.0273819
\(833\) −0.345258 −0.0119625
\(834\) 16.4204 0.568591
\(835\) 0 0
\(836\) 0.599620 0.0207383
\(837\) 1.00000 0.0345651
\(838\) 0.420368 0.0145214
\(839\) −45.2430 −1.56196 −0.780981 0.624555i \(-0.785281\pi\)
−0.780981 + 0.624555i \(0.785281\pi\)
\(840\) 0 0
\(841\) −9.46034 −0.326219
\(842\) 39.2211 1.35165
\(843\) −10.8407 −0.373375
\(844\) 24.8407 0.855053
\(845\) 0 0
\(846\) 0.115086 0.00395674
\(847\) −32.2920 −1.10957
\(848\) 0.190196 0.00653136
\(849\) −19.7808 −0.678874
\(850\) 0 0
\(851\) −29.2211 −1.00169
\(852\) 13.8207 0.473491
\(853\) 9.11088 0.311951 0.155975 0.987761i \(-0.450148\pi\)
0.155975 + 0.987761i \(0.450148\pi\)
\(854\) 24.9910 0.855173
\(855\) 0 0
\(856\) −3.03093 −0.103595
\(857\) 6.99096 0.238807 0.119403 0.992846i \(-0.461902\pi\)
0.119403 + 0.992846i \(0.461902\pi\)
\(858\) −4.11509 −0.140487
\(859\) −17.6196 −0.601173 −0.300587 0.953755i \(-0.597182\pi\)
−0.300587 + 0.953755i \(0.597182\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 6.88071 0.234358
\(863\) −45.8717 −1.56149 −0.780745 0.624850i \(-0.785160\pi\)
−0.780745 + 0.624850i \(0.785160\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −1.38944 −0.0472149
\(867\) 16.9868 0.576900
\(868\) 2.00000 0.0678844
\(869\) 12.0109 0.407443
\(870\) 0 0
\(871\) 4.59732 0.155774
\(872\) 8.19020 0.277355
\(873\) 9.21018 0.311718
\(874\) −0.508723 −0.0172078
\(875\) 0 0
\(876\) −10.8407 −0.366275
\(877\) −48.4204 −1.63504 −0.817520 0.575900i \(-0.804652\pi\)
−0.817520 + 0.575900i \(0.804652\pi\)
\(878\) −19.8717 −0.670636
\(879\) 31.2211 1.05306
\(880\) 0 0
\(881\) −34.7717 −1.17149 −0.585745 0.810496i \(-0.699198\pi\)
−0.585745 + 0.810496i \(0.699198\pi\)
\(882\) 3.00000 0.101015
\(883\) 35.7214 1.20212 0.601061 0.799203i \(-0.294745\pi\)
0.601061 + 0.799203i \(0.294745\pi\)
\(884\) −0.0908968 −0.00305719
\(885\) 0 0
\(886\) 8.61056 0.289278
\(887\) −24.7608 −0.831386 −0.415693 0.909505i \(-0.636461\pi\)
−0.415693 + 0.909505i \(0.636461\pi\)
\(888\) −6.61056 −0.221836
\(889\) −20.8407 −0.698976
\(890\) 0 0
\(891\) 5.21018 0.174548
\(892\) 19.6306 0.657280
\(893\) −0.0132448 −0.000443221 0
\(894\) −3.63055 −0.121424
\(895\) 0 0
\(896\) 2.00000 0.0668153
\(897\) 3.49128 0.116570
\(898\) 10.3694 0.346033
\(899\) −4.42037 −0.147428
\(900\) 0 0
\(901\) 0.0218889 0.000729226 0
\(902\) −10.4204 −0.346960
\(903\) 17.2211 0.573083
\(904\) 10.3804 0.345247
\(905\) 0 0
\(906\) −15.7566 −0.523477
\(907\) −20.5197 −0.681344 −0.340672 0.940182i \(-0.610655\pi\)
−0.340672 + 0.940182i \(0.610655\pi\)
\(908\) 6.42037 0.213067
\(909\) 0 0
\(910\) 0 0
\(911\) −27.1593 −0.899827 −0.449913 0.893072i \(-0.648545\pi\)
−0.449913 + 0.893072i \(0.648545\pi\)
\(912\) −0.115086 −0.00381088
\(913\) −78.9135 −2.61166
\(914\) −21.4913 −0.710868
\(915\) 0 0
\(916\) −29.7166 −0.981864
\(917\) 0.380392 0.0125617
\(918\) 0.115086 0.00379841
\(919\) −37.5531 −1.23876 −0.619382 0.785090i \(-0.712617\pi\)
−0.619382 + 0.785090i \(0.712617\pi\)
\(920\) 0 0
\(921\) −13.5796 −0.447464
\(922\) −3.34946 −0.110309
\(923\) 10.9158 0.359299
\(924\) 10.4204 0.342805
\(925\) 0 0
\(926\) −28.0109 −0.920497
\(927\) 6.00000 0.197066
\(928\) −4.42037 −0.145106
\(929\) 28.2121 0.925608 0.462804 0.886461i \(-0.346843\pi\)
0.462804 + 0.886461i \(0.346843\pi\)
\(930\) 0 0
\(931\) −0.345258 −0.0113154
\(932\) −5.38944 −0.176537
\(933\) −18.2811 −0.598496
\(934\) −37.6815 −1.23298
\(935\) 0 0
\(936\) 0.789816 0.0258159
\(937\) 54.0728 1.76648 0.883241 0.468920i \(-0.155357\pi\)
0.883241 + 0.468920i \(0.155357\pi\)
\(938\) −11.6415 −0.380108
\(939\) −14.4603 −0.471896
\(940\) 0 0
\(941\) 27.9600 0.911471 0.455735 0.890115i \(-0.349376\pi\)
0.455735 + 0.890115i \(0.349376\pi\)
\(942\) 3.96002 0.129025
\(943\) 8.84074 0.287894
\(944\) −4.19020 −0.136379
\(945\) 0 0
\(946\) −44.8626 −1.45861
\(947\) 6.68567 0.217255 0.108628 0.994083i \(-0.465354\pi\)
0.108628 + 0.994083i \(0.465354\pi\)
\(948\) −2.30528 −0.0748721
\(949\) −8.56219 −0.277940
\(950\) 0 0
\(951\) −3.46455 −0.112346
\(952\) 0.230172 0.00745992
\(953\) −33.3362 −1.07987 −0.539933 0.841708i \(-0.681550\pi\)
−0.539933 + 0.841708i \(0.681550\pi\)
\(954\) −0.190196 −0.00615782
\(955\) 0 0
\(956\) 7.03093 0.227397
\(957\) −23.0309 −0.744484
\(958\) 10.2811 0.332167
\(959\) −42.9026 −1.38540
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) −5.22113 −0.168336
\(963\) 3.03093 0.0976704
\(964\) −0.190196 −0.00612580
\(965\) 0 0
\(966\) −8.84074 −0.284446
\(967\) −40.1128 −1.28994 −0.644970 0.764208i \(-0.723130\pi\)
−0.644970 + 0.764208i \(0.723130\pi\)
\(968\) −16.1460 −0.518953
\(969\) −0.0132448 −0.000425485 0
\(970\) 0 0
\(971\) −53.1547 −1.70581 −0.852907 0.522063i \(-0.825163\pi\)
−0.852907 + 0.522063i \(0.825163\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −32.8407 −1.05283
\(974\) −32.9316 −1.05520
\(975\) 0 0
\(976\) 12.4955 0.399971
\(977\) −37.2830 −1.19279 −0.596394 0.802692i \(-0.703401\pi\)
−0.596394 + 0.802692i \(0.703401\pi\)
\(978\) −9.82075 −0.314033
\(979\) −11.6196 −0.371364
\(980\) 0 0
\(981\) −8.19020 −0.261493
\(982\) 41.7034 1.33081
\(983\) −45.6415 −1.45574 −0.727869 0.685716i \(-0.759489\pi\)
−0.727869 + 0.685716i \(0.759489\pi\)
\(984\) 2.00000 0.0637577
\(985\) 0 0
\(986\) −0.508723 −0.0162010
\(987\) −0.230172 −0.00732646
\(988\) −0.0908968 −0.00289181
\(989\) 38.0619 1.21030
\(990\) 0 0
\(991\) 58.9026 1.87110 0.935551 0.353191i \(-0.114903\pi\)
0.935551 + 0.353191i \(0.114903\pi\)
\(992\) 1.00000 0.0317500
\(993\) 20.8008 0.660092
\(994\) −27.6415 −0.876735
\(995\) 0 0
\(996\) 15.1460 0.479920
\(997\) −4.11024 −0.130173 −0.0650864 0.997880i \(-0.520732\pi\)
−0.0650864 + 0.997880i \(0.520732\pi\)
\(998\) −22.2302 −0.703684
\(999\) 6.61056 0.209149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.a.ci.1.3 3
5.2 odd 4 930.2.d.i.559.3 6
5.3 odd 4 930.2.d.i.559.6 yes 6
5.4 even 2 4650.2.a.cp.1.3 3
15.2 even 4 2790.2.d.j.559.4 6
15.8 even 4 2790.2.d.j.559.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.d.i.559.3 6 5.2 odd 4
930.2.d.i.559.6 yes 6 5.3 odd 4
2790.2.d.j.559.1 6 15.8 even 4
2790.2.d.j.559.4 6 15.2 even 4
4650.2.a.ci.1.3 3 1.1 even 1 trivial
4650.2.a.cp.1.3 3 5.4 even 2