Properties

Label 4650.2.a.ci.1.2
Level $4650$
Weight $2$
Character 4650.1
Self dual yes
Analytic conductor $37.130$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(1,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1304369399\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1708.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 8x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.260711\) of defining polynomial
Character \(\chi\) \(=\) 4650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +3.26071 q^{11} -1.00000 q^{12} -2.73929 q^{13} +2.00000 q^{14} +1.00000 q^{16} +4.93203 q^{17} -1.00000 q^{18} +4.93203 q^{19} +2.00000 q^{21} -3.26071 q^{22} +0.521423 q^{23} +1.00000 q^{24} +2.73929 q^{26} -1.00000 q^{27} -2.00000 q^{28} +0.521423 q^{29} -1.00000 q^{31} -1.00000 q^{32} -3.26071 q^{33} -4.93203 q^{34} +1.00000 q^{36} +10.8212 q^{37} -4.93203 q^{38} +2.73929 q^{39} +2.00000 q^{41} -2.00000 q^{42} -8.82121 q^{43} +3.26071 q^{44} -0.521423 q^{46} -4.93203 q^{47} -1.00000 q^{48} -3.00000 q^{49} -4.93203 q^{51} -2.73929 q^{52} -13.3426 q^{53} +1.00000 q^{54} +2.00000 q^{56} -4.93203 q^{57} -0.521423 q^{58} +9.34264 q^{59} -9.75324 q^{61} +1.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} +3.26071 q^{66} +13.5605 q^{67} +4.93203 q^{68} -0.521423 q^{69} +5.56050 q^{71} -1.00000 q^{72} +3.04285 q^{73} -10.8212 q^{74} +4.93203 q^{76} -6.52142 q^{77} -2.73929 q^{78} -6.41061 q^{79} +1.00000 q^{81} -2.00000 q^{82} +1.36776 q^{83} +2.00000 q^{84} +8.82121 q^{86} -0.521423 q^{87} -3.26071 q^{88} -11.8641 q^{89} +5.47858 q^{91} +0.521423 q^{92} +1.00000 q^{93} +4.93203 q^{94} +1.00000 q^{96} +7.26071 q^{97} +3.00000 q^{98} +3.26071 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} - 6 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} - 6 q^{7} - 3 q^{8} + 3 q^{9} + 8 q^{11} - 3 q^{12} - 10 q^{13} + 6 q^{14} + 3 q^{16} - 2 q^{17} - 3 q^{18} - 2 q^{19} + 6 q^{21} - 8 q^{22} - 2 q^{23} + 3 q^{24} + 10 q^{26} - 3 q^{27} - 6 q^{28} - 2 q^{29} - 3 q^{31} - 3 q^{32} - 8 q^{33} + 2 q^{34} + 3 q^{36} + 6 q^{37} + 2 q^{38} + 10 q^{39} + 6 q^{41} - 6 q^{42} + 8 q^{44} + 2 q^{46} + 2 q^{47} - 3 q^{48} - 9 q^{49} + 2 q^{51} - 10 q^{52} - 10 q^{53} + 3 q^{54} + 6 q^{56} + 2 q^{57} + 2 q^{58} - 2 q^{59} + 14 q^{61} + 3 q^{62} - 6 q^{63} + 3 q^{64} + 8 q^{66} + 16 q^{67} - 2 q^{68} + 2 q^{69} - 8 q^{71} - 3 q^{72} + 2 q^{73} - 6 q^{74} - 2 q^{76} - 16 q^{77} - 10 q^{78} - 6 q^{79} + 3 q^{81} - 6 q^{82} - 2 q^{83} + 6 q^{84} + 2 q^{87} - 8 q^{88} - 2 q^{89} + 20 q^{91} - 2 q^{92} + 3 q^{93} - 2 q^{94} + 3 q^{96} + 20 q^{97} + 9 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.26071 0.983141 0.491571 0.870838i \(-0.336423\pi\)
0.491571 + 0.870838i \(0.336423\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.73929 −0.759742 −0.379871 0.925039i \(-0.624032\pi\)
−0.379871 + 0.925039i \(0.624032\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.93203 1.19619 0.598096 0.801424i \(-0.295924\pi\)
0.598096 + 0.801424i \(0.295924\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.93203 1.13149 0.565743 0.824582i \(-0.308590\pi\)
0.565743 + 0.824582i \(0.308590\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) −3.26071 −0.695186
\(23\) 0.521423 0.108724 0.0543621 0.998521i \(-0.482687\pi\)
0.0543621 + 0.998521i \(0.482687\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 2.73929 0.537219
\(27\) −1.00000 −0.192450
\(28\) −2.00000 −0.377964
\(29\) 0.521423 0.0968258 0.0484129 0.998827i \(-0.484584\pi\)
0.0484129 + 0.998827i \(0.484584\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −1.00000 −0.176777
\(33\) −3.26071 −0.567617
\(34\) −4.93203 −0.845836
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 10.8212 1.77900 0.889498 0.456939i \(-0.151054\pi\)
0.889498 + 0.456939i \(0.151054\pi\)
\(38\) −4.93203 −0.800081
\(39\) 2.73929 0.438637
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) −2.00000 −0.308607
\(43\) −8.82121 −1.34522 −0.672611 0.739996i \(-0.734827\pi\)
−0.672611 + 0.739996i \(0.734827\pi\)
\(44\) 3.26071 0.491571
\(45\) 0 0
\(46\) −0.521423 −0.0768796
\(47\) −4.93203 −0.719410 −0.359705 0.933066i \(-0.617123\pi\)
−0.359705 + 0.933066i \(0.617123\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) −4.93203 −0.690622
\(52\) −2.73929 −0.379871
\(53\) −13.3426 −1.83275 −0.916376 0.400319i \(-0.868899\pi\)
−0.916376 + 0.400319i \(0.868899\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) −4.93203 −0.653263
\(58\) −0.521423 −0.0684662
\(59\) 9.34264 1.21631 0.608154 0.793819i \(-0.291910\pi\)
0.608154 + 0.793819i \(0.291910\pi\)
\(60\) 0 0
\(61\) −9.75324 −1.24877 −0.624387 0.781115i \(-0.714651\pi\)
−0.624387 + 0.781115i \(0.714651\pi\)
\(62\) 1.00000 0.127000
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.26071 0.401366
\(67\) 13.5605 1.65668 0.828340 0.560226i \(-0.189286\pi\)
0.828340 + 0.560226i \(0.189286\pi\)
\(68\) 4.93203 0.598096
\(69\) −0.521423 −0.0627719
\(70\) 0 0
\(71\) 5.56050 0.659910 0.329955 0.943997i \(-0.392966\pi\)
0.329955 + 0.943997i \(0.392966\pi\)
\(72\) −1.00000 −0.117851
\(73\) 3.04285 0.356138 0.178069 0.984018i \(-0.443015\pi\)
0.178069 + 0.984018i \(0.443015\pi\)
\(74\) −10.8212 −1.25794
\(75\) 0 0
\(76\) 4.93203 0.565743
\(77\) −6.52142 −0.743185
\(78\) −2.73929 −0.310163
\(79\) −6.41061 −0.721250 −0.360625 0.932711i \(-0.617437\pi\)
−0.360625 + 0.932711i \(0.617437\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) 1.36776 0.150131 0.0750657 0.997179i \(-0.476083\pi\)
0.0750657 + 0.997179i \(0.476083\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) 8.82121 0.951216
\(87\) −0.521423 −0.0559024
\(88\) −3.26071 −0.347593
\(89\) −11.8641 −1.25759 −0.628794 0.777572i \(-0.716451\pi\)
−0.628794 + 0.777572i \(0.716451\pi\)
\(90\) 0 0
\(91\) 5.47858 0.574311
\(92\) 0.521423 0.0543621
\(93\) 1.00000 0.103695
\(94\) 4.93203 0.508700
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 7.26071 0.737214 0.368607 0.929585i \(-0.379835\pi\)
0.368607 + 0.929585i \(0.379835\pi\)
\(98\) 3.00000 0.303046
\(99\) 3.26071 0.327714
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 4.93203 0.488344
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 2.73929 0.268609
\(105\) 0 0
\(106\) 13.3426 1.29595
\(107\) −18.2998 −1.76911 −0.884554 0.466438i \(-0.845537\pi\)
−0.884554 + 0.466438i \(0.845537\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 5.34264 0.511732 0.255866 0.966712i \(-0.417639\pi\)
0.255866 + 0.966712i \(0.417639\pi\)
\(110\) 0 0
\(111\) −10.8212 −1.02710
\(112\) −2.00000 −0.188982
\(113\) 16.6853 1.56962 0.784809 0.619737i \(-0.212761\pi\)
0.784809 + 0.619737i \(0.212761\pi\)
\(114\) 4.93203 0.461927
\(115\) 0 0
\(116\) 0.521423 0.0484129
\(117\) −2.73929 −0.253247
\(118\) −9.34264 −0.860059
\(119\) −9.86406 −0.904237
\(120\) 0 0
\(121\) −0.367761 −0.0334328
\(122\) 9.75324 0.883017
\(123\) −2.00000 −0.180334
\(124\) −1.00000 −0.0898027
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) 6.52142 0.578683 0.289341 0.957226i \(-0.406564\pi\)
0.289341 + 0.957226i \(0.406564\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 8.82121 0.776665
\(130\) 0 0
\(131\) 13.3426 1.16575 0.582876 0.812561i \(-0.301927\pi\)
0.582876 + 0.812561i \(0.301927\pi\)
\(132\) −3.26071 −0.283808
\(133\) −9.86406 −0.855322
\(134\) −13.5605 −1.17145
\(135\) 0 0
\(136\) −4.93203 −0.422918
\(137\) −3.77837 −0.322808 −0.161404 0.986888i \(-0.551602\pi\)
−0.161404 + 0.986888i \(0.551602\pi\)
\(138\) 0.521423 0.0443865
\(139\) 12.5214 1.06205 0.531027 0.847355i \(-0.321806\pi\)
0.531027 + 0.847355i \(0.321806\pi\)
\(140\) 0 0
\(141\) 4.93203 0.415352
\(142\) −5.56050 −0.466627
\(143\) −8.93203 −0.746934
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −3.04285 −0.251828
\(147\) 3.00000 0.247436
\(148\) 10.8212 0.889498
\(149\) 2.21787 0.181695 0.0908473 0.995865i \(-0.471042\pi\)
0.0908473 + 0.995865i \(0.471042\pi\)
\(150\) 0 0
\(151\) 18.1890 1.48020 0.740099 0.672498i \(-0.234779\pi\)
0.740099 + 0.672498i \(0.234779\pi\)
\(152\) −4.93203 −0.400040
\(153\) 4.93203 0.398731
\(154\) 6.52142 0.525511
\(155\) 0 0
\(156\) 2.73929 0.219319
\(157\) −19.2067 −1.53286 −0.766431 0.642327i \(-0.777969\pi\)
−0.766431 + 0.642327i \(0.777969\pi\)
\(158\) 6.41061 0.510000
\(159\) 13.3426 1.05814
\(160\) 0 0
\(161\) −1.04285 −0.0821877
\(162\) −1.00000 −0.0785674
\(163\) 9.56050 0.748836 0.374418 0.927260i \(-0.377842\pi\)
0.374418 + 0.927260i \(0.377842\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) −1.36776 −0.106159
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) −2.00000 −0.154303
\(169\) −5.49630 −0.422792
\(170\) 0 0
\(171\) 4.93203 0.377162
\(172\) −8.82121 −0.672611
\(173\) 1.45345 0.110504 0.0552520 0.998472i \(-0.482404\pi\)
0.0552520 + 0.998472i \(0.482404\pi\)
\(174\) 0.521423 0.0395290
\(175\) 0 0
\(176\) 3.26071 0.245785
\(177\) −9.34264 −0.702236
\(178\) 11.8641 0.889249
\(179\) −26.3817 −1.97186 −0.985931 0.167153i \(-0.946543\pi\)
−0.985931 + 0.167153i \(0.946543\pi\)
\(180\) 0 0
\(181\) −7.77837 −0.578162 −0.289081 0.957305i \(-0.593350\pi\)
−0.289081 + 0.957305i \(0.593350\pi\)
\(182\) −5.47858 −0.406099
\(183\) 9.75324 0.720980
\(184\) −0.521423 −0.0384398
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) 16.0819 1.17603
\(188\) −4.93203 −0.359705
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) 7.56427 0.547331 0.273666 0.961825i \(-0.411764\pi\)
0.273666 + 0.961825i \(0.411764\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 22.3817 1.61107 0.805536 0.592547i \(-0.201878\pi\)
0.805536 + 0.592547i \(0.201878\pi\)
\(194\) −7.26071 −0.521289
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 16.6853 1.18878 0.594388 0.804178i \(-0.297394\pi\)
0.594388 + 0.804178i \(0.297394\pi\)
\(198\) −3.26071 −0.231729
\(199\) 15.4535 1.09547 0.547733 0.836653i \(-0.315491\pi\)
0.547733 + 0.836653i \(0.315491\pi\)
\(200\) 0 0
\(201\) −13.5605 −0.956484
\(202\) 0 0
\(203\) −1.04285 −0.0731934
\(204\) −4.93203 −0.345311
\(205\) 0 0
\(206\) −6.00000 −0.418040
\(207\) 0.521423 0.0362414
\(208\) −2.73929 −0.189935
\(209\) 16.0819 1.11241
\(210\) 0 0
\(211\) 17.0428 1.17328 0.586639 0.809849i \(-0.300451\pi\)
0.586639 + 0.809849i \(0.300451\pi\)
\(212\) −13.3426 −0.916376
\(213\) −5.56050 −0.380999
\(214\) 18.2998 1.25095
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 2.00000 0.135769
\(218\) −5.34264 −0.361849
\(219\) −3.04285 −0.205616
\(220\) 0 0
\(221\) −13.5103 −0.908798
\(222\) 10.8212 0.726272
\(223\) 13.7821 0.922920 0.461460 0.887161i \(-0.347326\pi\)
0.461460 + 0.887161i \(0.347326\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) −16.6853 −1.10989
\(227\) 2.52142 0.167353 0.0836764 0.996493i \(-0.473334\pi\)
0.0836764 + 0.996493i \(0.473334\pi\)
\(228\) −4.93203 −0.326632
\(229\) 27.3957 1.81036 0.905178 0.425032i \(-0.139737\pi\)
0.905178 + 0.425032i \(0.139737\pi\)
\(230\) 0 0
\(231\) 6.52142 0.429078
\(232\) −0.521423 −0.0342331
\(233\) −22.8212 −1.49507 −0.747534 0.664224i \(-0.768762\pi\)
−0.747534 + 0.664224i \(0.768762\pi\)
\(234\) 2.73929 0.179073
\(235\) 0 0
\(236\) 9.34264 0.608154
\(237\) 6.41061 0.416414
\(238\) 9.86406 0.639392
\(239\) −14.2998 −0.924977 −0.462488 0.886625i \(-0.653043\pi\)
−0.462488 + 0.886625i \(0.653043\pi\)
\(240\) 0 0
\(241\) 13.3426 0.859475 0.429737 0.902954i \(-0.358606\pi\)
0.429737 + 0.902954i \(0.358606\pi\)
\(242\) 0.367761 0.0236406
\(243\) −1.00000 −0.0641500
\(244\) −9.75324 −0.624387
\(245\) 0 0
\(246\) 2.00000 0.127515
\(247\) −13.5103 −0.859637
\(248\) 1.00000 0.0635001
\(249\) −1.36776 −0.0866783
\(250\) 0 0
\(251\) 10.5214 0.664106 0.332053 0.943261i \(-0.392259\pi\)
0.332053 + 0.943261i \(0.392259\pi\)
\(252\) −2.00000 −0.125988
\(253\) 1.70021 0.106891
\(254\) −6.52142 −0.409190
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −7.86406 −0.490547 −0.245273 0.969454i \(-0.578878\pi\)
−0.245273 + 0.969454i \(0.578878\pi\)
\(258\) −8.82121 −0.549185
\(259\) −21.6424 −1.34479
\(260\) 0 0
\(261\) 0.521423 0.0322753
\(262\) −13.3426 −0.824311
\(263\) −23.8641 −1.47152 −0.735760 0.677242i \(-0.763175\pi\)
−0.735760 + 0.677242i \(0.763175\pi\)
\(264\) 3.26071 0.200683
\(265\) 0 0
\(266\) 9.86406 0.604804
\(267\) 11.8641 0.726069
\(268\) 13.5605 0.828340
\(269\) −8.95715 −0.546127 −0.273064 0.961996i \(-0.588037\pi\)
−0.273064 + 0.961996i \(0.588037\pi\)
\(270\) 0 0
\(271\) −13.0959 −0.795518 −0.397759 0.917490i \(-0.630212\pi\)
−0.397759 + 0.917490i \(0.630212\pi\)
\(272\) 4.93203 0.299048
\(273\) −5.47858 −0.331579
\(274\) 3.77837 0.228260
\(275\) 0 0
\(276\) −0.521423 −0.0313860
\(277\) 3.78213 0.227246 0.113623 0.993524i \(-0.463754\pi\)
0.113623 + 0.993524i \(0.463754\pi\)
\(278\) −12.5214 −0.750985
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) 3.04285 0.181521 0.0907605 0.995873i \(-0.471070\pi\)
0.0907605 + 0.995873i \(0.471070\pi\)
\(282\) −4.93203 −0.293698
\(283\) −22.7672 −1.35337 −0.676685 0.736273i \(-0.736584\pi\)
−0.676685 + 0.736273i \(0.736584\pi\)
\(284\) 5.56050 0.329955
\(285\) 0 0
\(286\) 8.93203 0.528162
\(287\) −4.00000 −0.236113
\(288\) −1.00000 −0.0589256
\(289\) 7.32492 0.430877
\(290\) 0 0
\(291\) −7.26071 −0.425630
\(292\) 3.04285 0.178069
\(293\) 3.64243 0.212793 0.106396 0.994324i \(-0.466069\pi\)
0.106396 + 0.994324i \(0.466069\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) −10.8212 −0.628970
\(297\) −3.26071 −0.189206
\(298\) −2.21787 −0.128478
\(299\) −1.42833 −0.0826023
\(300\) 0 0
\(301\) 17.6424 1.01689
\(302\) −18.1890 −1.04666
\(303\) 0 0
\(304\) 4.93203 0.282871
\(305\) 0 0
\(306\) −4.93203 −0.281945
\(307\) 17.4786 0.997555 0.498778 0.866730i \(-0.333782\pi\)
0.498778 + 0.866730i \(0.333782\pi\)
\(308\) −6.52142 −0.371593
\(309\) −6.00000 −0.341328
\(310\) 0 0
\(311\) 18.1676 1.03019 0.515095 0.857133i \(-0.327756\pi\)
0.515095 + 0.857133i \(0.327756\pi\)
\(312\) −2.73929 −0.155082
\(313\) 33.7281 1.90643 0.953213 0.302300i \(-0.0977543\pi\)
0.953213 + 0.302300i \(0.0977543\pi\)
\(314\) 19.2067 1.08390
\(315\) 0 0
\(316\) −6.41061 −0.360625
\(317\) 2.54655 0.143028 0.0715142 0.997440i \(-0.477217\pi\)
0.0715142 + 0.997440i \(0.477217\pi\)
\(318\) −13.3426 −0.748218
\(319\) 1.70021 0.0951934
\(320\) 0 0
\(321\) 18.2998 1.02139
\(322\) 1.04285 0.0581155
\(323\) 24.3249 1.35347
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −9.56050 −0.529507
\(327\) −5.34264 −0.295448
\(328\) −2.00000 −0.110432
\(329\) 9.86406 0.543823
\(330\) 0 0
\(331\) 10.1638 0.558656 0.279328 0.960196i \(-0.409888\pi\)
0.279328 + 0.960196i \(0.409888\pi\)
\(332\) 1.36776 0.0750657
\(333\) 10.8212 0.592999
\(334\) 2.00000 0.109435
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) 24.9069 1.35677 0.678383 0.734709i \(-0.262681\pi\)
0.678383 + 0.734709i \(0.262681\pi\)
\(338\) 5.49630 0.298959
\(339\) −16.6853 −0.906220
\(340\) 0 0
\(341\) −3.26071 −0.176577
\(342\) −4.93203 −0.266694
\(343\) 20.0000 1.07990
\(344\) 8.82121 0.475608
\(345\) 0 0
\(346\) −1.45345 −0.0781381
\(347\) 7.67508 0.412020 0.206010 0.978550i \(-0.433952\pi\)
0.206010 + 0.978550i \(0.433952\pi\)
\(348\) −0.521423 −0.0279512
\(349\) −1.77837 −0.0951939 −0.0475969 0.998867i \(-0.515156\pi\)
−0.0475969 + 0.998867i \(0.515156\pi\)
\(350\) 0 0
\(351\) 2.73929 0.146212
\(352\) −3.26071 −0.173797
\(353\) 0.932030 0.0496069 0.0248035 0.999692i \(-0.492104\pi\)
0.0248035 + 0.999692i \(0.492104\pi\)
\(354\) 9.34264 0.496556
\(355\) 0 0
\(356\) −11.8641 −0.628794
\(357\) 9.86406 0.522061
\(358\) 26.3817 1.39432
\(359\) 17.2886 0.912458 0.456229 0.889862i \(-0.349200\pi\)
0.456229 + 0.889862i \(0.349200\pi\)
\(360\) 0 0
\(361\) 5.32492 0.280259
\(362\) 7.77837 0.408822
\(363\) 0.367761 0.0193025
\(364\) 5.47858 0.287155
\(365\) 0 0
\(366\) −9.75324 −0.509810
\(367\) 6.82498 0.356261 0.178131 0.984007i \(-0.442995\pi\)
0.178131 + 0.984007i \(0.442995\pi\)
\(368\) 0.521423 0.0271810
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) 26.6853 1.38543
\(372\) 1.00000 0.0518476
\(373\) 0.135941 0.00703875 0.00351938 0.999994i \(-0.498880\pi\)
0.00351938 + 0.999994i \(0.498880\pi\)
\(374\) −16.0819 −0.831577
\(375\) 0 0
\(376\) 4.93203 0.254350
\(377\) −1.42833 −0.0735626
\(378\) −2.00000 −0.102869
\(379\) −10.7961 −0.554558 −0.277279 0.960789i \(-0.589433\pi\)
−0.277279 + 0.960789i \(0.589433\pi\)
\(380\) 0 0
\(381\) −6.52142 −0.334103
\(382\) −7.56427 −0.387022
\(383\) 23.4283 1.19713 0.598566 0.801074i \(-0.295738\pi\)
0.598566 + 0.801074i \(0.295738\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −22.3817 −1.13920
\(387\) −8.82121 −0.448407
\(388\) 7.26071 0.368607
\(389\) 10.3855 0.526565 0.263282 0.964719i \(-0.415195\pi\)
0.263282 + 0.964719i \(0.415195\pi\)
\(390\) 0 0
\(391\) 2.57167 0.130055
\(392\) 3.00000 0.151523
\(393\) −13.3426 −0.673047
\(394\) −16.6853 −0.840592
\(395\) 0 0
\(396\) 3.26071 0.163857
\(397\) 10.2141 0.512631 0.256315 0.966593i \(-0.417491\pi\)
0.256315 + 0.966593i \(0.417491\pi\)
\(398\) −15.4535 −0.774612
\(399\) 9.86406 0.493821
\(400\) 0 0
\(401\) 6.30356 0.314785 0.157392 0.987536i \(-0.449691\pi\)
0.157392 + 0.987536i \(0.449691\pi\)
\(402\) 13.5605 0.676336
\(403\) 2.73929 0.136454
\(404\) 0 0
\(405\) 0 0
\(406\) 1.04285 0.0517556
\(407\) 35.2849 1.74901
\(408\) 4.93203 0.244172
\(409\) −19.2569 −0.952195 −0.476097 0.879393i \(-0.657949\pi\)
−0.476097 + 0.879393i \(0.657949\pi\)
\(410\) 0 0
\(411\) 3.77837 0.186373
\(412\) 6.00000 0.295599
\(413\) −18.6853 −0.919442
\(414\) −0.521423 −0.0256265
\(415\) 0 0
\(416\) 2.73929 0.134305
\(417\) −12.5214 −0.613177
\(418\) −16.0819 −0.786593
\(419\) 3.47858 0.169940 0.0849698 0.996384i \(-0.472921\pi\)
0.0849698 + 0.996384i \(0.472921\pi\)
\(420\) 0 0
\(421\) −4.35757 −0.212375 −0.106188 0.994346i \(-0.533864\pi\)
−0.106188 + 0.994346i \(0.533864\pi\)
\(422\) −17.0428 −0.829633
\(423\) −4.93203 −0.239803
\(424\) 13.3426 0.647976
\(425\) 0 0
\(426\) 5.56050 0.269407
\(427\) 19.5065 0.943985
\(428\) −18.2998 −0.884554
\(429\) 8.93203 0.431242
\(430\) 0 0
\(431\) −22.2495 −1.07172 −0.535861 0.844306i \(-0.680013\pi\)
−0.535861 + 0.844306i \(0.680013\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 18.8212 0.904490 0.452245 0.891894i \(-0.350623\pi\)
0.452245 + 0.891894i \(0.350623\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) 5.34264 0.255866
\(437\) 2.57167 0.123020
\(438\) 3.04285 0.145393
\(439\) −9.25695 −0.441810 −0.220905 0.975295i \(-0.570901\pi\)
−0.220905 + 0.975295i \(0.570901\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 13.5103 0.642617
\(443\) 8.82121 0.419109 0.209554 0.977797i \(-0.432799\pi\)
0.209554 + 0.977797i \(0.432799\pi\)
\(444\) −10.8212 −0.513552
\(445\) 0 0
\(446\) −13.7821 −0.652603
\(447\) −2.21787 −0.104901
\(448\) −2.00000 −0.0944911
\(449\) −16.2179 −0.765368 −0.382684 0.923879i \(-0.625000\pi\)
−0.382684 + 0.923879i \(0.625000\pi\)
\(450\) 0 0
\(451\) 6.52142 0.307082
\(452\) 16.6853 0.784809
\(453\) −18.1890 −0.854593
\(454\) −2.52142 −0.118336
\(455\) 0 0
\(456\) 4.93203 0.230963
\(457\) 19.4283 0.908819 0.454409 0.890793i \(-0.349850\pi\)
0.454409 + 0.890793i \(0.349850\pi\)
\(458\) −27.3957 −1.28012
\(459\) −4.93203 −0.230207
\(460\) 0 0
\(461\) −2.38548 −0.111103 −0.0555515 0.998456i \(-0.517692\pi\)
−0.0555515 + 0.998456i \(0.517692\pi\)
\(462\) −6.52142 −0.303404
\(463\) −4.90314 −0.227868 −0.113934 0.993488i \(-0.536345\pi\)
−0.113934 + 0.993488i \(0.536345\pi\)
\(464\) 0.521423 0.0242064
\(465\) 0 0
\(466\) 22.8212 1.05717
\(467\) 22.0857 1.02200 0.511002 0.859580i \(-0.329274\pi\)
0.511002 + 0.859580i \(0.329274\pi\)
\(468\) −2.73929 −0.126624
\(469\) −27.1210 −1.25233
\(470\) 0 0
\(471\) 19.2067 0.884998
\(472\) −9.34264 −0.430030
\(473\) −28.7634 −1.32254
\(474\) −6.41061 −0.294449
\(475\) 0 0
\(476\) −9.86406 −0.452118
\(477\) −13.3426 −0.610917
\(478\) 14.2998 0.654057
\(479\) −10.1676 −0.464570 −0.232285 0.972648i \(-0.574620\pi\)
−0.232285 + 0.972648i \(0.574620\pi\)
\(480\) 0 0
\(481\) −29.6424 −1.35158
\(482\) −13.3426 −0.607740
\(483\) 1.04285 0.0474511
\(484\) −0.367761 −0.0167164
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 38.5531 1.74701 0.873504 0.486817i \(-0.161842\pi\)
0.873504 + 0.486817i \(0.161842\pi\)
\(488\) 9.75324 0.441509
\(489\) −9.56050 −0.432341
\(490\) 0 0
\(491\) 39.7206 1.79256 0.896282 0.443484i \(-0.146258\pi\)
0.896282 + 0.443484i \(0.146258\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 2.57167 0.115822
\(494\) 13.5103 0.607855
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) −11.1210 −0.498845
\(498\) 1.36776 0.0612908
\(499\) 31.8641 1.42643 0.713216 0.700945i \(-0.247238\pi\)
0.713216 + 0.700945i \(0.247238\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) −10.5214 −0.469594
\(503\) 26.7961 1.19478 0.597389 0.801951i \(-0.296205\pi\)
0.597389 + 0.801951i \(0.296205\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) −1.70021 −0.0755835
\(507\) 5.49630 0.244099
\(508\) 6.52142 0.289341
\(509\) −13.5065 −0.598664 −0.299332 0.954149i \(-0.596764\pi\)
−0.299332 + 0.954149i \(0.596764\pi\)
\(510\) 0 0
\(511\) −6.08569 −0.269215
\(512\) −1.00000 −0.0441942
\(513\) −4.93203 −0.217754
\(514\) 7.86406 0.346869
\(515\) 0 0
\(516\) 8.82121 0.388332
\(517\) −16.0819 −0.707282
\(518\) 21.6424 0.950914
\(519\) −1.45345 −0.0637995
\(520\) 0 0
\(521\) −2.16385 −0.0948000 −0.0474000 0.998876i \(-0.515094\pi\)
−0.0474000 + 0.998876i \(0.515094\pi\)
\(522\) −0.521423 −0.0228221
\(523\) 18.1359 0.793029 0.396515 0.918028i \(-0.370220\pi\)
0.396515 + 0.918028i \(0.370220\pi\)
\(524\) 13.3426 0.582876
\(525\) 0 0
\(526\) 23.8641 1.04052
\(527\) −4.93203 −0.214843
\(528\) −3.26071 −0.141904
\(529\) −22.7281 −0.988179
\(530\) 0 0
\(531\) 9.34264 0.405436
\(532\) −9.86406 −0.427661
\(533\) −5.47858 −0.237304
\(534\) −11.8641 −0.513408
\(535\) 0 0
\(536\) −13.5605 −0.585724
\(537\) 26.3817 1.13846
\(538\) 8.95715 0.386170
\(539\) −9.78213 −0.421346
\(540\) 0 0
\(541\) 7.64996 0.328897 0.164449 0.986386i \(-0.447415\pi\)
0.164449 + 0.986386i \(0.447415\pi\)
\(542\) 13.0959 0.562516
\(543\) 7.77837 0.333802
\(544\) −4.93203 −0.211459
\(545\) 0 0
\(546\) 5.47858 0.234461
\(547\) −15.1210 −0.646527 −0.323264 0.946309i \(-0.604780\pi\)
−0.323264 + 0.946309i \(0.604780\pi\)
\(548\) −3.77837 −0.161404
\(549\) −9.75324 −0.416258
\(550\) 0 0
\(551\) 2.57167 0.109557
\(552\) 0.521423 0.0221932
\(553\) 12.8212 0.545213
\(554\) −3.78213 −0.160687
\(555\) 0 0
\(556\) 12.5214 0.531027
\(557\) 21.5065 0.911259 0.455630 0.890169i \(-0.349414\pi\)
0.455630 + 0.890169i \(0.349414\pi\)
\(558\) 1.00000 0.0423334
\(559\) 24.1638 1.02202
\(560\) 0 0
\(561\) −16.0819 −0.678979
\(562\) −3.04285 −0.128355
\(563\) 21.2569 0.895873 0.447937 0.894065i \(-0.352159\pi\)
0.447937 + 0.894065i \(0.352159\pi\)
\(564\) 4.93203 0.207676
\(565\) 0 0
\(566\) 22.7672 0.956977
\(567\) −2.00000 −0.0839921
\(568\) −5.56050 −0.233313
\(569\) 19.4208 0.814162 0.407081 0.913392i \(-0.366547\pi\)
0.407081 + 0.913392i \(0.366547\pi\)
\(570\) 0 0
\(571\) 23.8641 0.998680 0.499340 0.866406i \(-0.333576\pi\)
0.499340 + 0.866406i \(0.333576\pi\)
\(572\) −8.93203 −0.373467
\(573\) −7.56427 −0.316002
\(574\) 4.00000 0.166957
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) −1.78213 −0.0741912 −0.0370956 0.999312i \(-0.511811\pi\)
−0.0370956 + 0.999312i \(0.511811\pi\)
\(578\) −7.32492 −0.304676
\(579\) −22.3817 −0.930152
\(580\) 0 0
\(581\) −2.73552 −0.113489
\(582\) 7.26071 0.300966
\(583\) −43.5065 −1.80185
\(584\) −3.04285 −0.125914
\(585\) 0 0
\(586\) −3.64243 −0.150467
\(587\) −10.1387 −0.418470 −0.209235 0.977865i \(-0.567097\pi\)
−0.209235 + 0.977865i \(0.567097\pi\)
\(588\) 3.00000 0.123718
\(589\) −4.93203 −0.203221
\(590\) 0 0
\(591\) −16.6853 −0.686340
\(592\) 10.8212 0.444749
\(593\) −43.5846 −1.78981 −0.894903 0.446260i \(-0.852756\pi\)
−0.894903 + 0.446260i \(0.852756\pi\)
\(594\) 3.26071 0.133789
\(595\) 0 0
\(596\) 2.21787 0.0908473
\(597\) −15.4535 −0.632468
\(598\) 1.42833 0.0584087
\(599\) −16.6815 −0.681588 −0.340794 0.940138i \(-0.610696\pi\)
−0.340794 + 0.940138i \(0.610696\pi\)
\(600\) 0 0
\(601\) −43.6424 −1.78021 −0.890106 0.455754i \(-0.849370\pi\)
−0.890106 + 0.455754i \(0.849370\pi\)
\(602\) −17.6424 −0.719052
\(603\) 13.5605 0.552226
\(604\) 18.1890 0.740099
\(605\) 0 0
\(606\) 0 0
\(607\) 10.5996 0.430224 0.215112 0.976589i \(-0.430988\pi\)
0.215112 + 0.976589i \(0.430988\pi\)
\(608\) −4.93203 −0.200020
\(609\) 1.04285 0.0422582
\(610\) 0 0
\(611\) 13.5103 0.546566
\(612\) 4.93203 0.199365
\(613\) −44.5456 −1.79918 −0.899589 0.436737i \(-0.856134\pi\)
−0.899589 + 0.436737i \(0.856134\pi\)
\(614\) −17.4786 −0.705378
\(615\) 0 0
\(616\) 6.52142 0.262756
\(617\) 40.6853 1.63793 0.818964 0.573845i \(-0.194549\pi\)
0.818964 + 0.573845i \(0.194549\pi\)
\(618\) 6.00000 0.241355
\(619\) 42.8212 1.72113 0.860565 0.509341i \(-0.170111\pi\)
0.860565 + 0.509341i \(0.170111\pi\)
\(620\) 0 0
\(621\) −0.521423 −0.0209240
\(622\) −18.1676 −0.728455
\(623\) 23.7281 0.950647
\(624\) 2.73929 0.109659
\(625\) 0 0
\(626\) −33.7281 −1.34805
\(627\) −16.0819 −0.642250
\(628\) −19.2067 −0.766431
\(629\) 53.3705 2.12802
\(630\) 0 0
\(631\) −1.31473 −0.0523385 −0.0261692 0.999658i \(-0.508331\pi\)
−0.0261692 + 0.999658i \(0.508331\pi\)
\(632\) 6.41061 0.255000
\(633\) −17.0428 −0.677392
\(634\) −2.54655 −0.101136
\(635\) 0 0
\(636\) 13.3426 0.529070
\(637\) 8.21787 0.325604
\(638\) −1.70021 −0.0673119
\(639\) 5.56050 0.219970
\(640\) 0 0
\(641\) −25.4246 −1.00421 −0.502105 0.864807i \(-0.667441\pi\)
−0.502105 + 0.864807i \(0.667441\pi\)
\(642\) −18.2998 −0.722235
\(643\) 44.3855 1.75039 0.875196 0.483768i \(-0.160732\pi\)
0.875196 + 0.483768i \(0.160732\pi\)
\(644\) −1.04285 −0.0410939
\(645\) 0 0
\(646\) −24.3249 −0.957051
\(647\) 17.5567 0.690227 0.345113 0.938561i \(-0.387841\pi\)
0.345113 + 0.938561i \(0.387841\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 30.4636 1.19580
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 9.56050 0.374418
\(653\) 18.0530 0.706470 0.353235 0.935535i \(-0.385082\pi\)
0.353235 + 0.935535i \(0.385082\pi\)
\(654\) 5.34264 0.208914
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) 3.04285 0.118713
\(658\) −9.86406 −0.384541
\(659\) −0.957154 −0.0372854 −0.0186427 0.999826i \(-0.505935\pi\)
−0.0186427 + 0.999826i \(0.505935\pi\)
\(660\) 0 0
\(661\) −9.56427 −0.372007 −0.186003 0.982549i \(-0.559554\pi\)
−0.186003 + 0.982549i \(0.559554\pi\)
\(662\) −10.1638 −0.395029
\(663\) 13.5103 0.524695
\(664\) −1.36776 −0.0530794
\(665\) 0 0
\(666\) −10.8212 −0.419314
\(667\) 0.271882 0.0105273
\(668\) −2.00000 −0.0773823
\(669\) −13.7821 −0.532848
\(670\) 0 0
\(671\) −31.8025 −1.22772
\(672\) −2.00000 −0.0771517
\(673\) 41.7206 1.60821 0.804105 0.594487i \(-0.202645\pi\)
0.804105 + 0.594487i \(0.202645\pi\)
\(674\) −24.9069 −0.959378
\(675\) 0 0
\(676\) −5.49630 −0.211396
\(677\) −21.7784 −0.837011 −0.418505 0.908214i \(-0.637446\pi\)
−0.418505 + 0.908214i \(0.637446\pi\)
\(678\) 16.6853 0.640794
\(679\) −14.5214 −0.557281
\(680\) 0 0
\(681\) −2.52142 −0.0966211
\(682\) 3.26071 0.124859
\(683\) 39.7281 1.52015 0.760077 0.649833i \(-0.225161\pi\)
0.760077 + 0.649833i \(0.225161\pi\)
\(684\) 4.93203 0.188581
\(685\) 0 0
\(686\) −20.0000 −0.763604
\(687\) −27.3957 −1.04521
\(688\) −8.82121 −0.336306
\(689\) 36.5493 1.39242
\(690\) 0 0
\(691\) 37.5316 1.42777 0.713885 0.700263i \(-0.246934\pi\)
0.713885 + 0.700263i \(0.246934\pi\)
\(692\) 1.45345 0.0552520
\(693\) −6.52142 −0.247728
\(694\) −7.67508 −0.291342
\(695\) 0 0
\(696\) 0.521423 0.0197645
\(697\) 9.86406 0.373628
\(698\) 1.77837 0.0673122
\(699\) 22.8212 0.863178
\(700\) 0 0
\(701\) −16.7393 −0.632234 −0.316117 0.948720i \(-0.602379\pi\)
−0.316117 + 0.948720i \(0.602379\pi\)
\(702\) −2.73929 −0.103388
\(703\) 53.3705 2.01291
\(704\) 3.26071 0.122893
\(705\) 0 0
\(706\) −0.932030 −0.0350774
\(707\) 0 0
\(708\) −9.34264 −0.351118
\(709\) −30.8463 −1.15846 −0.579229 0.815165i \(-0.696646\pi\)
−0.579229 + 0.815165i \(0.696646\pi\)
\(710\) 0 0
\(711\) −6.41061 −0.240417
\(712\) 11.8641 0.444624
\(713\) −0.521423 −0.0195274
\(714\) −9.86406 −0.369153
\(715\) 0 0
\(716\) −26.3817 −0.985931
\(717\) 14.2998 0.534035
\(718\) −17.2886 −0.645206
\(719\) −10.4712 −0.390509 −0.195254 0.980753i \(-0.562553\pi\)
−0.195254 + 0.980753i \(0.562553\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) −5.32492 −0.198173
\(723\) −13.3426 −0.496218
\(724\) −7.77837 −0.289081
\(725\) 0 0
\(726\) −0.367761 −0.0136489
\(727\) −30.3779 −1.12666 −0.563328 0.826233i \(-0.690479\pi\)
−0.563328 + 0.826233i \(0.690479\pi\)
\(728\) −5.47858 −0.203050
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −43.5065 −1.60915
\(732\) 9.75324 0.360490
\(733\) −34.3855 −1.27006 −0.635028 0.772489i \(-0.719012\pi\)
−0.635028 + 0.772489i \(0.719012\pi\)
\(734\) −6.82498 −0.251915
\(735\) 0 0
\(736\) −0.521423 −0.0192199
\(737\) 44.2169 1.62875
\(738\) −2.00000 −0.0736210
\(739\) −17.1210 −0.629806 −0.314903 0.949124i \(-0.601972\pi\)
−0.314903 + 0.949124i \(0.601972\pi\)
\(740\) 0 0
\(741\) 13.5103 0.496312
\(742\) −26.6853 −0.979647
\(743\) −3.86406 −0.141759 −0.0708793 0.997485i \(-0.522581\pi\)
−0.0708793 + 0.997485i \(0.522581\pi\)
\(744\) −1.00000 −0.0366618
\(745\) 0 0
\(746\) −0.135941 −0.00497715
\(747\) 1.36776 0.0500438
\(748\) 16.0819 0.588013
\(749\) 36.5996 1.33732
\(750\) 0 0
\(751\) −22.1359 −0.807752 −0.403876 0.914814i \(-0.632337\pi\)
−0.403876 + 0.914814i \(0.632337\pi\)
\(752\) −4.93203 −0.179853
\(753\) −10.5214 −0.383422
\(754\) 1.42833 0.0520166
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) −43.5922 −1.58438 −0.792192 0.610272i \(-0.791060\pi\)
−0.792192 + 0.610272i \(0.791060\pi\)
\(758\) 10.7961 0.392132
\(759\) −1.70021 −0.0617137
\(760\) 0 0
\(761\) 14.9107 0.540511 0.270256 0.962789i \(-0.412892\pi\)
0.270256 + 0.962789i \(0.412892\pi\)
\(762\) 6.52142 0.236246
\(763\) −10.6853 −0.386833
\(764\) 7.56427 0.273666
\(765\) 0 0
\(766\) −23.4283 −0.846500
\(767\) −25.5922 −0.924080
\(768\) −1.00000 −0.0360844
\(769\) 48.4134 1.74583 0.872916 0.487871i \(-0.162226\pi\)
0.872916 + 0.487871i \(0.162226\pi\)
\(770\) 0 0
\(771\) 7.86406 0.283217
\(772\) 22.3817 0.805536
\(773\) 6.54933 0.235563 0.117782 0.993040i \(-0.462422\pi\)
0.117782 + 0.993040i \(0.462422\pi\)
\(774\) 8.82121 0.317072
\(775\) 0 0
\(776\) −7.26071 −0.260644
\(777\) 21.6424 0.776418
\(778\) −10.3855 −0.372338
\(779\) 9.86406 0.353417
\(780\) 0 0
\(781\) 18.1312 0.648785
\(782\) −2.57167 −0.0919628
\(783\) −0.521423 −0.0186341
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) 13.3426 0.475916
\(787\) 13.2569 0.472559 0.236280 0.971685i \(-0.424072\pi\)
0.236280 + 0.971685i \(0.424072\pi\)
\(788\) 16.6853 0.594388
\(789\) 23.8641 0.849583
\(790\) 0 0
\(791\) −33.3705 −1.18652
\(792\) −3.26071 −0.115864
\(793\) 26.7169 0.948747
\(794\) −10.2141 −0.362485
\(795\) 0 0
\(796\) 15.4535 0.547733
\(797\) −13.1210 −0.464770 −0.232385 0.972624i \(-0.574653\pi\)
−0.232385 + 0.972624i \(0.574653\pi\)
\(798\) −9.86406 −0.349184
\(799\) −24.3249 −0.860554
\(800\) 0 0
\(801\) −11.8641 −0.419196
\(802\) −6.30356 −0.222586
\(803\) 9.92184 0.350134
\(804\) −13.5605 −0.478242
\(805\) 0 0
\(806\) −2.73929 −0.0964873
\(807\) 8.95715 0.315307
\(808\) 0 0
\(809\) −12.3892 −0.435583 −0.217791 0.975995i \(-0.569885\pi\)
−0.217791 + 0.975995i \(0.569885\pi\)
\(810\) 0 0
\(811\) −25.6424 −0.900427 −0.450214 0.892921i \(-0.648652\pi\)
−0.450214 + 0.892921i \(0.648652\pi\)
\(812\) −1.04285 −0.0365967
\(813\) 13.0959 0.459293
\(814\) −35.2849 −1.23673
\(815\) 0 0
\(816\) −4.93203 −0.172656
\(817\) −43.5065 −1.52210
\(818\) 19.2569 0.673303
\(819\) 5.47858 0.191437
\(820\) 0 0
\(821\) 0.685273 0.0239162 0.0119581 0.999928i \(-0.496194\pi\)
0.0119581 + 0.999928i \(0.496194\pi\)
\(822\) −3.77837 −0.131786
\(823\) −8.90314 −0.310344 −0.155172 0.987887i \(-0.549593\pi\)
−0.155172 + 0.987887i \(0.549593\pi\)
\(824\) −6.00000 −0.209020
\(825\) 0 0
\(826\) 18.6853 0.650144
\(827\) −36.0530 −1.25369 −0.626843 0.779145i \(-0.715653\pi\)
−0.626843 + 0.779145i \(0.715653\pi\)
\(828\) 0.521423 0.0181207
\(829\) −21.5922 −0.749927 −0.374964 0.927040i \(-0.622345\pi\)
−0.374964 + 0.927040i \(0.622345\pi\)
\(830\) 0 0
\(831\) −3.78213 −0.131201
\(832\) −2.73929 −0.0949677
\(833\) −14.7961 −0.512654
\(834\) 12.5214 0.433581
\(835\) 0 0
\(836\) 16.0819 0.556205
\(837\) 1.00000 0.0345651
\(838\) −3.47858 −0.120165
\(839\) 55.4487 1.91430 0.957151 0.289590i \(-0.0935188\pi\)
0.957151 + 0.289590i \(0.0935188\pi\)
\(840\) 0 0
\(841\) −28.7281 −0.990625
\(842\) 4.35757 0.150172
\(843\) −3.04285 −0.104801
\(844\) 17.0428 0.586639
\(845\) 0 0
\(846\) 4.93203 0.169567
\(847\) 0.735523 0.0252729
\(848\) −13.3426 −0.458188
\(849\) 22.7672 0.781368
\(850\) 0 0
\(851\) 5.64243 0.193420
\(852\) −5.56050 −0.190500
\(853\) 34.1136 1.16803 0.584014 0.811744i \(-0.301481\pi\)
0.584014 + 0.811744i \(0.301481\pi\)
\(854\) −19.5065 −0.667498
\(855\) 0 0
\(856\) 18.2998 0.625474
\(857\) −37.5065 −1.28120 −0.640599 0.767876i \(-0.721314\pi\)
−0.640599 + 0.767876i \(0.721314\pi\)
\(858\) −8.93203 −0.304934
\(859\) −44.6853 −1.52464 −0.762321 0.647199i \(-0.775940\pi\)
−0.762321 + 0.647199i \(0.775940\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) 22.2495 0.757822
\(863\) −16.7431 −0.569940 −0.284970 0.958536i \(-0.591984\pi\)
−0.284970 + 0.958536i \(0.591984\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −18.8212 −0.639571
\(867\) −7.32492 −0.248767
\(868\) 2.00000 0.0678844
\(869\) −20.9031 −0.709090
\(870\) 0 0
\(871\) −37.1461 −1.25865
\(872\) −5.34264 −0.180924
\(873\) 7.26071 0.245738
\(874\) −2.57167 −0.0869881
\(875\) 0 0
\(876\) −3.04285 −0.102808
\(877\) −44.5214 −1.50338 −0.751691 0.659516i \(-0.770761\pi\)
−0.751691 + 0.659516i \(0.770761\pi\)
\(878\) 9.25695 0.312407
\(879\) −3.64243 −0.122856
\(880\) 0 0
\(881\) 52.2737 1.76115 0.880573 0.473911i \(-0.157158\pi\)
0.880573 + 0.473911i \(0.157158\pi\)
\(882\) 3.00000 0.101015
\(883\) 43.2924 1.45690 0.728452 0.685096i \(-0.240240\pi\)
0.728452 + 0.685096i \(0.240240\pi\)
\(884\) −13.5103 −0.454399
\(885\) 0 0
\(886\) −8.82121 −0.296354
\(887\) 29.3705 0.986166 0.493083 0.869982i \(-0.335870\pi\)
0.493083 + 0.869982i \(0.335870\pi\)
\(888\) 10.8212 0.363136
\(889\) −13.0428 −0.437443
\(890\) 0 0
\(891\) 3.26071 0.109238
\(892\) 13.7821 0.461460
\(893\) −24.3249 −0.814002
\(894\) 2.21787 0.0741765
\(895\) 0 0
\(896\) 2.00000 0.0668153
\(897\) 1.42833 0.0476905
\(898\) 16.2179 0.541197
\(899\) −0.521423 −0.0173904
\(900\) 0 0
\(901\) −65.8063 −2.19232
\(902\) −6.52142 −0.217140
\(903\) −17.6424 −0.587103
\(904\) −16.6853 −0.554944
\(905\) 0 0
\(906\) 18.1890 0.604288
\(907\) 10.3315 0.343051 0.171525 0.985180i \(-0.445130\pi\)
0.171525 + 0.985180i \(0.445130\pi\)
\(908\) 2.52142 0.0836764
\(909\) 0 0
\(910\) 0 0
\(911\) −34.9572 −1.15818 −0.579091 0.815263i \(-0.696592\pi\)
−0.579091 + 0.815263i \(0.696592\pi\)
\(912\) −4.93203 −0.163316
\(913\) 4.45987 0.147600
\(914\) −19.4283 −0.642632
\(915\) 0 0
\(916\) 27.3957 0.905178
\(917\) −26.6853 −0.881225
\(918\) 4.93203 0.162781
\(919\) 7.17125 0.236558 0.118279 0.992980i \(-0.462262\pi\)
0.118279 + 0.992980i \(0.462262\pi\)
\(920\) 0 0
\(921\) −17.4786 −0.575939
\(922\) 2.38548 0.0785617
\(923\) −15.2318 −0.501361
\(924\) 6.52142 0.214539
\(925\) 0 0
\(926\) 4.90314 0.161127
\(927\) 6.00000 0.197066
\(928\) −0.521423 −0.0171165
\(929\) −51.1489 −1.67814 −0.839071 0.544022i \(-0.816901\pi\)
−0.839071 + 0.544022i \(0.816901\pi\)
\(930\) 0 0
\(931\) −14.7961 −0.484922
\(932\) −22.8212 −0.747534
\(933\) −18.1676 −0.594781
\(934\) −22.0857 −0.722666
\(935\) 0 0
\(936\) 2.73929 0.0895364
\(937\) −21.5027 −0.702463 −0.351232 0.936289i \(-0.614237\pi\)
−0.351232 + 0.936289i \(0.614237\pi\)
\(938\) 27.1210 0.885532
\(939\) −33.7281 −1.10068
\(940\) 0 0
\(941\) 4.79330 0.156257 0.0781286 0.996943i \(-0.475106\pi\)
0.0781286 + 0.996943i \(0.475106\pi\)
\(942\) −19.2067 −0.625788
\(943\) 1.04285 0.0339597
\(944\) 9.34264 0.304077
\(945\) 0 0
\(946\) 28.7634 0.935180
\(947\) −29.0959 −0.945489 −0.472745 0.881200i \(-0.656737\pi\)
−0.472745 + 0.881200i \(0.656737\pi\)
\(948\) 6.41061 0.208207
\(949\) −8.33523 −0.270573
\(950\) 0 0
\(951\) −2.54655 −0.0825775
\(952\) 9.86406 0.319696
\(953\) −3.28960 −0.106561 −0.0532803 0.998580i \(-0.516968\pi\)
−0.0532803 + 0.998580i \(0.516968\pi\)
\(954\) 13.3426 0.431984
\(955\) 0 0
\(956\) −14.2998 −0.462488
\(957\) −1.70021 −0.0549600
\(958\) 10.1676 0.328501
\(959\) 7.55674 0.244020
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 29.6424 0.955710
\(963\) −18.2998 −0.589703
\(964\) 13.3426 0.429737
\(965\) 0 0
\(966\) −1.04285 −0.0335530
\(967\) 12.2960 0.395413 0.197707 0.980261i \(-0.436651\pi\)
0.197707 + 0.980261i \(0.436651\pi\)
\(968\) 0.367761 0.0118203
\(969\) −24.3249 −0.781429
\(970\) 0 0
\(971\) 53.4990 1.71686 0.858432 0.512928i \(-0.171439\pi\)
0.858432 + 0.512928i \(0.171439\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −25.0428 −0.802837
\(974\) −38.5531 −1.23532
\(975\) 0 0
\(976\) −9.75324 −0.312194
\(977\) 40.2420 1.28746 0.643728 0.765254i \(-0.277387\pi\)
0.643728 + 0.765254i \(0.277387\pi\)
\(978\) 9.56050 0.305711
\(979\) −38.6853 −1.23639
\(980\) 0 0
\(981\) 5.34264 0.170577
\(982\) −39.7206 −1.26753
\(983\) −6.87900 −0.219406 −0.109703 0.993964i \(-0.534990\pi\)
−0.109703 + 0.993964i \(0.534990\pi\)
\(984\) 2.00000 0.0637577
\(985\) 0 0
\(986\) −2.57167 −0.0818987
\(987\) −9.86406 −0.313976
\(988\) −13.5103 −0.429818
\(989\) −4.59958 −0.146258
\(990\) 0 0
\(991\) 8.44326 0.268209 0.134105 0.990967i \(-0.457184\pi\)
0.134105 + 0.990967i \(0.457184\pi\)
\(992\) 1.00000 0.0317500
\(993\) −10.1638 −0.322540
\(994\) 11.1210 0.352737
\(995\) 0 0
\(996\) −1.36776 −0.0433392
\(997\) 55.7560 1.76581 0.882906 0.469551i \(-0.155584\pi\)
0.882906 + 0.469551i \(0.155584\pi\)
\(998\) −31.8641 −1.00864
\(999\) −10.8212 −0.342368
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.a.ci.1.2 3
5.2 odd 4 930.2.d.i.559.2 6
5.3 odd 4 930.2.d.i.559.5 yes 6
5.4 even 2 4650.2.a.cp.1.2 3
15.2 even 4 2790.2.d.j.559.5 6
15.8 even 4 2790.2.d.j.559.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.d.i.559.2 6 5.2 odd 4
930.2.d.i.559.5 yes 6 5.3 odd 4
2790.2.d.j.559.2 6 15.8 even 4
2790.2.d.j.559.5 6 15.2 even 4
4650.2.a.ci.1.2 3 1.1 even 1 trivial
4650.2.a.cp.1.2 3 5.4 even 2