Properties

Label 4650.2.a.ci.1.1
Level $4650$
Weight $2$
Character 4650.1
Self dual yes
Analytic conductor $37.130$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(1,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1304369399\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1708.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 8x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.47090\) of defining polynomial
Character \(\chi\) \(=\) 4650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} -0.470896 q^{11} -1.00000 q^{12} -6.47090 q^{13} +2.00000 q^{14} +1.00000 q^{16} -7.04712 q^{17} -1.00000 q^{18} -7.04712 q^{19} +2.00000 q^{21} +0.470896 q^{22} -6.94179 q^{23} +1.00000 q^{24} +6.47090 q^{26} -1.00000 q^{27} -2.00000 q^{28} -6.94179 q^{29} -1.00000 q^{31} -1.00000 q^{32} +0.470896 q^{33} +7.04712 q^{34} +1.00000 q^{36} +1.78935 q^{37} +7.04712 q^{38} +6.47090 q^{39} +2.00000 q^{41} -2.00000 q^{42} +0.210649 q^{43} -0.470896 q^{44} +6.94179 q^{46} +7.04712 q^{47} -1.00000 q^{48} -3.00000 q^{49} +7.04712 q^{51} -6.47090 q^{52} +3.15244 q^{53} +1.00000 q^{54} +2.00000 q^{56} +7.04712 q^{57} +6.94179 q^{58} -7.15244 q^{59} +11.2578 q^{61} +1.00000 q^{62} -2.00000 q^{63} +1.00000 q^{64} -0.470896 q^{66} +8.26025 q^{67} -7.04712 q^{68} +6.94179 q^{69} +0.260246 q^{71} -1.00000 q^{72} -11.8836 q^{73} -1.78935 q^{74} -7.04712 q^{76} +0.941791 q^{77} -6.47090 q^{78} -1.89468 q^{79} +1.00000 q^{81} -2.00000 q^{82} +11.7783 q^{83} +2.00000 q^{84} -0.210649 q^{86} +6.94179 q^{87} +0.470896 q^{88} +12.0942 q^{89} +12.9418 q^{91} -6.94179 q^{92} +1.00000 q^{93} -7.04712 q^{94} +1.00000 q^{96} +3.52910 q^{97} +3.00000 q^{98} -0.470896 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} - 6 q^{7} - 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{2} - 3 q^{3} + 3 q^{4} + 3 q^{6} - 6 q^{7} - 3 q^{8} + 3 q^{9} + 8 q^{11} - 3 q^{12} - 10 q^{13} + 6 q^{14} + 3 q^{16} - 2 q^{17} - 3 q^{18} - 2 q^{19} + 6 q^{21} - 8 q^{22} - 2 q^{23} + 3 q^{24} + 10 q^{26} - 3 q^{27} - 6 q^{28} - 2 q^{29} - 3 q^{31} - 3 q^{32} - 8 q^{33} + 2 q^{34} + 3 q^{36} + 6 q^{37} + 2 q^{38} + 10 q^{39} + 6 q^{41} - 6 q^{42} + 8 q^{44} + 2 q^{46} + 2 q^{47} - 3 q^{48} - 9 q^{49} + 2 q^{51} - 10 q^{52} - 10 q^{53} + 3 q^{54} + 6 q^{56} + 2 q^{57} + 2 q^{58} - 2 q^{59} + 14 q^{61} + 3 q^{62} - 6 q^{63} + 3 q^{64} + 8 q^{66} + 16 q^{67} - 2 q^{68} + 2 q^{69} - 8 q^{71} - 3 q^{72} + 2 q^{73} - 6 q^{74} - 2 q^{76} - 16 q^{77} - 10 q^{78} - 6 q^{79} + 3 q^{81} - 6 q^{82} - 2 q^{83} + 6 q^{84} + 2 q^{87} - 8 q^{88} - 2 q^{89} + 20 q^{91} - 2 q^{92} + 3 q^{93} - 2 q^{94} + 3 q^{96} + 20 q^{97} + 9 q^{98} + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −0.470896 −0.141980 −0.0709902 0.997477i \(-0.522616\pi\)
−0.0709902 + 0.997477i \(0.522616\pi\)
\(12\) −1.00000 −0.288675
\(13\) −6.47090 −1.79470 −0.897352 0.441316i \(-0.854512\pi\)
−0.897352 + 0.441316i \(0.854512\pi\)
\(14\) 2.00000 0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −7.04712 −1.70918 −0.854588 0.519306i \(-0.826190\pi\)
−0.854588 + 0.519306i \(0.826190\pi\)
\(18\) −1.00000 −0.235702
\(19\) −7.04712 −1.61672 −0.808360 0.588689i \(-0.799644\pi\)
−0.808360 + 0.588689i \(0.799644\pi\)
\(20\) 0 0
\(21\) 2.00000 0.436436
\(22\) 0.470896 0.100395
\(23\) −6.94179 −1.44746 −0.723732 0.690081i \(-0.757575\pi\)
−0.723732 + 0.690081i \(0.757575\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 6.47090 1.26905
\(27\) −1.00000 −0.192450
\(28\) −2.00000 −0.377964
\(29\) −6.94179 −1.28906 −0.644529 0.764580i \(-0.722947\pi\)
−0.644529 + 0.764580i \(0.722947\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) −1.00000 −0.176777
\(33\) 0.470896 0.0819724
\(34\) 7.04712 1.20857
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 1.78935 0.294167 0.147084 0.989124i \(-0.453011\pi\)
0.147084 + 0.989124i \(0.453011\pi\)
\(38\) 7.04712 1.14319
\(39\) 6.47090 1.03617
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) −2.00000 −0.308607
\(43\) 0.210649 0.0321237 0.0160619 0.999871i \(-0.494887\pi\)
0.0160619 + 0.999871i \(0.494887\pi\)
\(44\) −0.470896 −0.0709902
\(45\) 0 0
\(46\) 6.94179 1.02351
\(47\) 7.04712 1.02793 0.513964 0.857812i \(-0.328177\pi\)
0.513964 + 0.857812i \(0.328177\pi\)
\(48\) −1.00000 −0.144338
\(49\) −3.00000 −0.428571
\(50\) 0 0
\(51\) 7.04712 0.986794
\(52\) −6.47090 −0.897352
\(53\) 3.15244 0.433021 0.216510 0.976280i \(-0.430532\pi\)
0.216510 + 0.976280i \(0.430532\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) 7.04712 0.933413
\(58\) 6.94179 0.911502
\(59\) −7.15244 −0.931168 −0.465584 0.885004i \(-0.654156\pi\)
−0.465584 + 0.885004i \(0.654156\pi\)
\(60\) 0 0
\(61\) 11.2578 1.44141 0.720705 0.693242i \(-0.243818\pi\)
0.720705 + 0.693242i \(0.243818\pi\)
\(62\) 1.00000 0.127000
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −0.470896 −0.0579632
\(67\) 8.26025 1.00915 0.504575 0.863368i \(-0.331649\pi\)
0.504575 + 0.863368i \(0.331649\pi\)
\(68\) −7.04712 −0.854588
\(69\) 6.94179 0.835693
\(70\) 0 0
\(71\) 0.260246 0.0308855 0.0154428 0.999881i \(-0.495084\pi\)
0.0154428 + 0.999881i \(0.495084\pi\)
\(72\) −1.00000 −0.117851
\(73\) −11.8836 −1.39087 −0.695434 0.718590i \(-0.744788\pi\)
−0.695434 + 0.718590i \(0.744788\pi\)
\(74\) −1.78935 −0.208008
\(75\) 0 0
\(76\) −7.04712 −0.808360
\(77\) 0.941791 0.107327
\(78\) −6.47090 −0.732685
\(79\) −1.89468 −0.213168 −0.106584 0.994304i \(-0.533991\pi\)
−0.106584 + 0.994304i \(0.533991\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −2.00000 −0.220863
\(83\) 11.7783 1.29283 0.646416 0.762985i \(-0.276267\pi\)
0.646416 + 0.762985i \(0.276267\pi\)
\(84\) 2.00000 0.218218
\(85\) 0 0
\(86\) −0.210649 −0.0227149
\(87\) 6.94179 0.744238
\(88\) 0.470896 0.0501976
\(89\) 12.0942 1.28199 0.640993 0.767547i \(-0.278523\pi\)
0.640993 + 0.767547i \(0.278523\pi\)
\(90\) 0 0
\(91\) 12.9418 1.35667
\(92\) −6.94179 −0.723732
\(93\) 1.00000 0.103695
\(94\) −7.04712 −0.726854
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) 3.52910 0.358326 0.179163 0.983819i \(-0.442661\pi\)
0.179163 + 0.983819i \(0.442661\pi\)
\(98\) 3.00000 0.303046
\(99\) −0.470896 −0.0473268
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) −7.04712 −0.697768
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) 6.47090 0.634524
\(105\) 0 0
\(106\) −3.15244 −0.306192
\(107\) −16.7311 −1.61746 −0.808730 0.588180i \(-0.799845\pi\)
−0.808730 + 0.588180i \(0.799845\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −11.1524 −1.06821 −0.534105 0.845418i \(-0.679351\pi\)
−0.534105 + 0.845418i \(0.679351\pi\)
\(110\) 0 0
\(111\) −1.78935 −0.169838
\(112\) −2.00000 −0.188982
\(113\) −16.3049 −1.53383 −0.766917 0.641746i \(-0.778210\pi\)
−0.766917 + 0.641746i \(0.778210\pi\)
\(114\) −7.04712 −0.660023
\(115\) 0 0
\(116\) −6.94179 −0.644529
\(117\) −6.47090 −0.598235
\(118\) 7.15244 0.658436
\(119\) 14.0942 1.29202
\(120\) 0 0
\(121\) −10.7783 −0.979842
\(122\) −11.2578 −1.01923
\(123\) −2.00000 −0.180334
\(124\) −1.00000 −0.0898027
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) −0.941791 −0.0835704 −0.0417852 0.999127i \(-0.513305\pi\)
−0.0417852 + 0.999127i \(0.513305\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −0.210649 −0.0185466
\(130\) 0 0
\(131\) −3.15244 −0.275430 −0.137715 0.990472i \(-0.543976\pi\)
−0.137715 + 0.990472i \(0.543976\pi\)
\(132\) 0.470896 0.0409862
\(133\) 14.0942 1.22212
\(134\) −8.26025 −0.713577
\(135\) 0 0
\(136\) 7.04712 0.604285
\(137\) −9.67293 −0.826414 −0.413207 0.910637i \(-0.635591\pi\)
−0.413207 + 0.910637i \(0.635591\pi\)
\(138\) −6.94179 −0.590924
\(139\) 5.05821 0.429032 0.214516 0.976721i \(-0.431183\pi\)
0.214516 + 0.976721i \(0.431183\pi\)
\(140\) 0 0
\(141\) −7.04712 −0.593474
\(142\) −0.260246 −0.0218394
\(143\) 3.04712 0.254813
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) 11.8836 0.983492
\(147\) 3.00000 0.247436
\(148\) 1.78935 0.147084
\(149\) 13.4127 1.09881 0.549405 0.835556i \(-0.314854\pi\)
0.549405 + 0.835556i \(0.314854\pi\)
\(150\) 0 0
\(151\) 19.5676 1.59239 0.796195 0.605041i \(-0.206843\pi\)
0.796195 + 0.605041i \(0.206843\pi\)
\(152\) 7.04712 0.571597
\(153\) −7.04712 −0.569726
\(154\) −0.941791 −0.0758917
\(155\) 0 0
\(156\) 6.47090 0.518086
\(157\) 21.2467 1.69567 0.847835 0.530261i \(-0.177906\pi\)
0.847835 + 0.530261i \(0.177906\pi\)
\(158\) 1.89468 0.150732
\(159\) −3.15244 −0.250005
\(160\) 0 0
\(161\) 13.8836 1.09418
\(162\) −1.00000 −0.0785674
\(163\) 4.26025 0.333688 0.166844 0.985983i \(-0.446642\pi\)
0.166844 + 0.985983i \(0.446642\pi\)
\(164\) 2.00000 0.156174
\(165\) 0 0
\(166\) −11.7783 −0.914170
\(167\) −2.00000 −0.154765 −0.0773823 0.997001i \(-0.524656\pi\)
−0.0773823 + 0.997001i \(0.524656\pi\)
\(168\) −2.00000 −0.154303
\(169\) 28.8725 2.22096
\(170\) 0 0
\(171\) −7.04712 −0.538906
\(172\) 0.210649 0.0160619
\(173\) −17.9889 −1.36767 −0.683836 0.729636i \(-0.739689\pi\)
−0.683836 + 0.729636i \(0.739689\pi\)
\(174\) −6.94179 −0.526256
\(175\) 0 0
\(176\) −0.470896 −0.0354951
\(177\) 7.15244 0.537610
\(178\) −12.0942 −0.906501
\(179\) −12.0496 −0.900629 −0.450315 0.892870i \(-0.648688\pi\)
−0.450315 + 0.892870i \(0.648688\pi\)
\(180\) 0 0
\(181\) −13.6729 −1.01630 −0.508151 0.861268i \(-0.669671\pi\)
−0.508151 + 0.861268i \(0.669671\pi\)
\(182\) −12.9418 −0.959309
\(183\) −11.2578 −0.832198
\(184\) 6.94179 0.511756
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) 3.31846 0.242669
\(188\) 7.04712 0.513964
\(189\) 2.00000 0.145479
\(190\) 0 0
\(191\) −14.8254 −1.07273 −0.536363 0.843987i \(-0.680202\pi\)
−0.536363 + 0.843987i \(0.680202\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 8.04960 0.579423 0.289711 0.957114i \(-0.406441\pi\)
0.289711 + 0.957114i \(0.406441\pi\)
\(194\) −3.52910 −0.253375
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) −16.3049 −1.16167 −0.580837 0.814020i \(-0.697275\pi\)
−0.580837 + 0.814020i \(0.697275\pi\)
\(198\) 0.470896 0.0334651
\(199\) −3.98891 −0.282766 −0.141383 0.989955i \(-0.545155\pi\)
−0.141383 + 0.989955i \(0.545155\pi\)
\(200\) 0 0
\(201\) −8.26025 −0.582633
\(202\) 0 0
\(203\) 13.8836 0.974436
\(204\) 7.04712 0.493397
\(205\) 0 0
\(206\) −6.00000 −0.418040
\(207\) −6.94179 −0.482488
\(208\) −6.47090 −0.448676
\(209\) 3.31846 0.229542
\(210\) 0 0
\(211\) 2.11642 0.145700 0.0728501 0.997343i \(-0.476791\pi\)
0.0728501 + 0.997343i \(0.476791\pi\)
\(212\) 3.15244 0.216510
\(213\) −0.260246 −0.0178318
\(214\) 16.7311 1.14372
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 2.00000 0.135769
\(218\) 11.1524 0.755339
\(219\) 11.8836 0.803018
\(220\) 0 0
\(221\) 45.6011 3.06747
\(222\) 1.78935 0.120093
\(223\) 2.58731 0.173259 0.0866297 0.996241i \(-0.472390\pi\)
0.0866297 + 0.996241i \(0.472390\pi\)
\(224\) 2.00000 0.133631
\(225\) 0 0
\(226\) 16.3049 1.08458
\(227\) −4.94179 −0.327998 −0.163999 0.986460i \(-0.552439\pi\)
−0.163999 + 0.986460i \(0.552439\pi\)
\(228\) 7.04712 0.466707
\(229\) −11.6791 −0.771774 −0.385887 0.922546i \(-0.626105\pi\)
−0.385887 + 0.922546i \(0.626105\pi\)
\(230\) 0 0
\(231\) −0.941791 −0.0619653
\(232\) 6.94179 0.455751
\(233\) −13.7894 −0.903370 −0.451685 0.892177i \(-0.649177\pi\)
−0.451685 + 0.892177i \(0.649177\pi\)
\(234\) 6.47090 0.423016
\(235\) 0 0
\(236\) −7.15244 −0.465584
\(237\) 1.89468 0.123072
\(238\) −14.0942 −0.913593
\(239\) −12.7311 −0.823509 −0.411755 0.911295i \(-0.635084\pi\)
−0.411755 + 0.911295i \(0.635084\pi\)
\(240\) 0 0
\(241\) −3.15244 −0.203067 −0.101533 0.994832i \(-0.532375\pi\)
−0.101533 + 0.994832i \(0.532375\pi\)
\(242\) 10.7783 0.692853
\(243\) −1.00000 −0.0641500
\(244\) 11.2578 0.720705
\(245\) 0 0
\(246\) 2.00000 0.127515
\(247\) 45.6011 2.90153
\(248\) 1.00000 0.0635001
\(249\) −11.7783 −0.746417
\(250\) 0 0
\(251\) 3.05821 0.193032 0.0965162 0.995331i \(-0.469230\pi\)
0.0965162 + 0.995331i \(0.469230\pi\)
\(252\) −2.00000 −0.125988
\(253\) 3.26886 0.205511
\(254\) 0.941791 0.0590932
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 16.0942 1.00393 0.501965 0.864888i \(-0.332611\pi\)
0.501965 + 0.864888i \(0.332611\pi\)
\(258\) 0.210649 0.0131145
\(259\) −3.57870 −0.222370
\(260\) 0 0
\(261\) −6.94179 −0.429686
\(262\) 3.15244 0.194758
\(263\) 0.0942314 0.00581056 0.00290528 0.999996i \(-0.499075\pi\)
0.00290528 + 0.999996i \(0.499075\pi\)
\(264\) −0.470896 −0.0289816
\(265\) 0 0
\(266\) −14.0942 −0.864173
\(267\) −12.0942 −0.740155
\(268\) 8.26025 0.504575
\(269\) −23.8836 −1.45621 −0.728104 0.685467i \(-0.759598\pi\)
−0.728104 + 0.685467i \(0.759598\pi\)
\(270\) 0 0
\(271\) 24.4102 1.48281 0.741407 0.671055i \(-0.234159\pi\)
0.741407 + 0.671055i \(0.234159\pi\)
\(272\) −7.04712 −0.427294
\(273\) −12.9418 −0.783273
\(274\) 9.67293 0.584363
\(275\) 0 0
\(276\) 6.94179 0.417847
\(277\) −7.41269 −0.445385 −0.222693 0.974889i \(-0.571485\pi\)
−0.222693 + 0.974889i \(0.571485\pi\)
\(278\) −5.05821 −0.303371
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −11.8836 −0.708915 −0.354458 0.935072i \(-0.615334\pi\)
−0.354458 + 0.935072i \(0.615334\pi\)
\(282\) 7.04712 0.419650
\(283\) 22.9864 1.36640 0.683201 0.730231i \(-0.260587\pi\)
0.683201 + 0.730231i \(0.260587\pi\)
\(284\) 0.260246 0.0154428
\(285\) 0 0
\(286\) −3.04712 −0.180180
\(287\) −4.00000 −0.236113
\(288\) −1.00000 −0.0589256
\(289\) 32.6618 1.92128
\(290\) 0 0
\(291\) −3.52910 −0.206880
\(292\) −11.8836 −0.695434
\(293\) −14.4213 −0.842501 −0.421251 0.906944i \(-0.638409\pi\)
−0.421251 + 0.906944i \(0.638409\pi\)
\(294\) −3.00000 −0.174964
\(295\) 0 0
\(296\) −1.78935 −0.104004
\(297\) 0.470896 0.0273241
\(298\) −13.4127 −0.776976
\(299\) 44.9196 2.59777
\(300\) 0 0
\(301\) −0.421299 −0.0242832
\(302\) −19.5676 −1.12599
\(303\) 0 0
\(304\) −7.04712 −0.404180
\(305\) 0 0
\(306\) 7.04712 0.402857
\(307\) 24.9418 1.42350 0.711752 0.702431i \(-0.247902\pi\)
0.711752 + 0.702431i \(0.247902\pi\)
\(308\) 0.941791 0.0536635
\(309\) −6.00000 −0.341328
\(310\) 0 0
\(311\) −24.4487 −1.38636 −0.693180 0.720765i \(-0.743791\pi\)
−0.693180 + 0.720765i \(0.743791\pi\)
\(312\) −6.47090 −0.366342
\(313\) −14.1885 −0.801979 −0.400990 0.916083i \(-0.631334\pi\)
−0.400990 + 0.916083i \(0.631334\pi\)
\(314\) −21.2467 −1.19902
\(315\) 0 0
\(316\) −1.89468 −0.106584
\(317\) 21.9889 1.23502 0.617510 0.786563i \(-0.288141\pi\)
0.617510 + 0.786563i \(0.288141\pi\)
\(318\) 3.15244 0.176780
\(319\) 3.26886 0.183021
\(320\) 0 0
\(321\) 16.7311 0.933841
\(322\) −13.8836 −0.773702
\(323\) 49.6618 2.76326
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −4.26025 −0.235953
\(327\) 11.1524 0.616731
\(328\) −2.00000 −0.110432
\(329\) −14.0942 −0.777040
\(330\) 0 0
\(331\) −15.3631 −0.844432 −0.422216 0.906495i \(-0.638748\pi\)
−0.422216 + 0.906495i \(0.638748\pi\)
\(332\) 11.7783 0.646416
\(333\) 1.78935 0.0980558
\(334\) 2.00000 0.109435
\(335\) 0 0
\(336\) 2.00000 0.109109
\(337\) −13.9778 −0.761420 −0.380710 0.924694i \(-0.624320\pi\)
−0.380710 + 0.924694i \(0.624320\pi\)
\(338\) −28.8725 −1.57046
\(339\) 16.3049 0.885560
\(340\) 0 0
\(341\) 0.470896 0.0255004
\(342\) 7.04712 0.381064
\(343\) 20.0000 1.07990
\(344\) −0.210649 −0.0113574
\(345\) 0 0
\(346\) 17.9889 0.967090
\(347\) −17.6618 −0.948137 −0.474069 0.880488i \(-0.657215\pi\)
−0.474069 + 0.880488i \(0.657215\pi\)
\(348\) 6.94179 0.372119
\(349\) −7.67293 −0.410723 −0.205361 0.978686i \(-0.565837\pi\)
−0.205361 + 0.978686i \(0.565837\pi\)
\(350\) 0 0
\(351\) 6.47090 0.345391
\(352\) 0.470896 0.0250988
\(353\) −11.0471 −0.587979 −0.293989 0.955809i \(-0.594983\pi\)
−0.293989 + 0.955809i \(0.594983\pi\)
\(354\) −7.15244 −0.380148
\(355\) 0 0
\(356\) 12.0942 0.640993
\(357\) −14.0942 −0.745946
\(358\) 12.0496 0.636841
\(359\) −35.9282 −1.89622 −0.948109 0.317944i \(-0.897007\pi\)
−0.948109 + 0.317944i \(0.897007\pi\)
\(360\) 0 0
\(361\) 30.6618 1.61378
\(362\) 13.6729 0.718633
\(363\) 10.7783 0.565712
\(364\) 12.9418 0.678334
\(365\) 0 0
\(366\) 11.2578 0.588453
\(367\) −19.2963 −1.00726 −0.503629 0.863920i \(-0.668002\pi\)
−0.503629 + 0.863920i \(0.668002\pi\)
\(368\) −6.94179 −0.361866
\(369\) 2.00000 0.104116
\(370\) 0 0
\(371\) −6.30488 −0.327333
\(372\) 1.00000 0.0518476
\(373\) 24.0942 1.24755 0.623776 0.781603i \(-0.285598\pi\)
0.623776 + 0.781603i \(0.285598\pi\)
\(374\) −3.31846 −0.171593
\(375\) 0 0
\(376\) −7.04712 −0.363427
\(377\) 44.9196 2.31348
\(378\) −2.00000 −0.102869
\(379\) 25.1413 1.29142 0.645712 0.763581i \(-0.276561\pi\)
0.645712 + 0.763581i \(0.276561\pi\)
\(380\) 0 0
\(381\) 0.941791 0.0482494
\(382\) 14.8254 0.758532
\(383\) −22.9196 −1.17114 −0.585569 0.810623i \(-0.699129\pi\)
−0.585569 + 0.810623i \(0.699129\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) −8.04960 −0.409714
\(387\) 0.210649 0.0107079
\(388\) 3.52910 0.179163
\(389\) −21.0360 −1.06657 −0.533284 0.845936i \(-0.679042\pi\)
−0.533284 + 0.845936i \(0.679042\pi\)
\(390\) 0 0
\(391\) 48.9196 2.47397
\(392\) 3.00000 0.151523
\(393\) 3.15244 0.159020
\(394\) 16.3049 0.821428
\(395\) 0 0
\(396\) −0.470896 −0.0236634
\(397\) 38.4983 1.93217 0.966087 0.258216i \(-0.0831345\pi\)
0.966087 + 0.258216i \(0.0831345\pi\)
\(398\) 3.98891 0.199946
\(399\) −14.0942 −0.705594
\(400\) 0 0
\(401\) −12.3545 −0.616953 −0.308477 0.951232i \(-0.599819\pi\)
−0.308477 + 0.951232i \(0.599819\pi\)
\(402\) 8.26025 0.411984
\(403\) 6.47090 0.322338
\(404\) 0 0
\(405\) 0 0
\(406\) −13.8836 −0.689031
\(407\) −0.842597 −0.0417660
\(408\) −7.04712 −0.348884
\(409\) −32.6147 −1.61269 −0.806347 0.591443i \(-0.798559\pi\)
−0.806347 + 0.591443i \(0.798559\pi\)
\(410\) 0 0
\(411\) 9.67293 0.477131
\(412\) 6.00000 0.295599
\(413\) 14.3049 0.703897
\(414\) 6.94179 0.341170
\(415\) 0 0
\(416\) 6.47090 0.317262
\(417\) −5.05821 −0.247702
\(418\) −3.31846 −0.162311
\(419\) 10.9418 0.534541 0.267271 0.963621i \(-0.413878\pi\)
0.267271 + 0.963621i \(0.413878\pi\)
\(420\) 0 0
\(421\) −22.4213 −1.09275 −0.546374 0.837542i \(-0.683992\pi\)
−0.546374 + 0.837542i \(0.683992\pi\)
\(422\) −2.11642 −0.103026
\(423\) 7.04712 0.342642
\(424\) −3.15244 −0.153096
\(425\) 0 0
\(426\) 0.260246 0.0126090
\(427\) −22.5155 −1.08960
\(428\) −16.7311 −0.808730
\(429\) −3.04712 −0.147116
\(430\) 0 0
\(431\) 33.1303 1.59583 0.797914 0.602771i \(-0.205937\pi\)
0.797914 + 0.602771i \(0.205937\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 9.78935 0.470446 0.235223 0.971941i \(-0.424418\pi\)
0.235223 + 0.971941i \(0.424418\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) −11.1524 −0.534105
\(437\) 48.9196 2.34014
\(438\) −11.8836 −0.567820
\(439\) −22.6147 −1.07934 −0.539671 0.841876i \(-0.681451\pi\)
−0.539671 + 0.841876i \(0.681451\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) −45.6011 −2.16903
\(443\) −0.210649 −0.0100083 −0.00500413 0.999987i \(-0.501593\pi\)
−0.00500413 + 0.999987i \(0.501593\pi\)
\(444\) −1.78935 −0.0849188
\(445\) 0 0
\(446\) −2.58731 −0.122513
\(447\) −13.4127 −0.634398
\(448\) −2.00000 −0.0944911
\(449\) −27.4127 −1.29368 −0.646842 0.762624i \(-0.723911\pi\)
−0.646842 + 0.762624i \(0.723911\pi\)
\(450\) 0 0
\(451\) −0.941791 −0.0443472
\(452\) −16.3049 −0.766917
\(453\) −19.5676 −0.919366
\(454\) 4.94179 0.231930
\(455\) 0 0
\(456\) −7.04712 −0.330011
\(457\) −26.9196 −1.25925 −0.629623 0.776901i \(-0.716791\pi\)
−0.629623 + 0.776901i \(0.716791\pi\)
\(458\) 11.6791 0.545727
\(459\) 7.04712 0.328931
\(460\) 0 0
\(461\) 29.0360 1.35234 0.676171 0.736745i \(-0.263638\pi\)
0.676171 + 0.736745i \(0.263638\pi\)
\(462\) 0.941791 0.0438161
\(463\) 16.8922 0.785047 0.392523 0.919742i \(-0.371602\pi\)
0.392523 + 0.919742i \(0.371602\pi\)
\(464\) −6.94179 −0.322265
\(465\) 0 0
\(466\) 13.7894 0.638779
\(467\) −7.76716 −0.359421 −0.179711 0.983719i \(-0.557516\pi\)
−0.179711 + 0.983719i \(0.557516\pi\)
\(468\) −6.47090 −0.299117
\(469\) −16.5205 −0.762845
\(470\) 0 0
\(471\) −21.2467 −0.978995
\(472\) 7.15244 0.329218
\(473\) −0.0991938 −0.00456094
\(474\) −1.89468 −0.0870253
\(475\) 0 0
\(476\) 14.0942 0.646008
\(477\) 3.15244 0.144340
\(478\) 12.7311 0.582309
\(479\) 32.4487 1.48262 0.741310 0.671163i \(-0.234205\pi\)
0.741310 + 0.671163i \(0.234205\pi\)
\(480\) 0 0
\(481\) −11.5787 −0.527943
\(482\) 3.15244 0.143590
\(483\) −13.8836 −0.631725
\(484\) −10.7783 −0.489921
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) −35.4847 −1.60797 −0.803983 0.594652i \(-0.797290\pi\)
−0.803983 + 0.594652i \(0.797290\pi\)
\(488\) −11.2578 −0.509615
\(489\) −4.26025 −0.192655
\(490\) 0 0
\(491\) 25.9828 1.17259 0.586293 0.810099i \(-0.300587\pi\)
0.586293 + 0.810099i \(0.300587\pi\)
\(492\) −2.00000 −0.0901670
\(493\) 48.9196 2.20323
\(494\) −45.6011 −2.05169
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) −0.520492 −0.0233473
\(498\) 11.7783 0.527796
\(499\) 7.90577 0.353911 0.176955 0.984219i \(-0.443375\pi\)
0.176955 + 0.984219i \(0.443375\pi\)
\(500\) 0 0
\(501\) 2.00000 0.0893534
\(502\) −3.05821 −0.136495
\(503\) −9.14135 −0.407593 −0.203796 0.979013i \(-0.565328\pi\)
−0.203796 + 0.979013i \(0.565328\pi\)
\(504\) 2.00000 0.0890871
\(505\) 0 0
\(506\) −3.26886 −0.145318
\(507\) −28.8725 −1.28227
\(508\) −0.941791 −0.0417852
\(509\) 28.5155 1.26393 0.631964 0.774997i \(-0.282249\pi\)
0.631964 + 0.774997i \(0.282249\pi\)
\(510\) 0 0
\(511\) 23.7672 1.05140
\(512\) −1.00000 −0.0441942
\(513\) 7.04712 0.311138
\(514\) −16.0942 −0.709886
\(515\) 0 0
\(516\) −0.210649 −0.00927332
\(517\) −3.31846 −0.145945
\(518\) 3.57870 0.157239
\(519\) 17.9889 0.789625
\(520\) 0 0
\(521\) 23.3631 1.02356 0.511778 0.859118i \(-0.328987\pi\)
0.511778 + 0.859118i \(0.328987\pi\)
\(522\) 6.94179 0.303834
\(523\) 42.0942 1.84065 0.920326 0.391152i \(-0.127923\pi\)
0.920326 + 0.391152i \(0.127923\pi\)
\(524\) −3.15244 −0.137715
\(525\) 0 0
\(526\) −0.0942314 −0.00410868
\(527\) 7.04712 0.306977
\(528\) 0.470896 0.0204931
\(529\) 25.1885 1.09515
\(530\) 0 0
\(531\) −7.15244 −0.310389
\(532\) 14.0942 0.611062
\(533\) −12.9418 −0.560571
\(534\) 12.0942 0.523369
\(535\) 0 0
\(536\) −8.26025 −0.356788
\(537\) 12.0496 0.519978
\(538\) 23.8836 1.02969
\(539\) 1.41269 0.0608487
\(540\) 0 0
\(541\) −44.5925 −1.91718 −0.958591 0.284785i \(-0.908078\pi\)
−0.958591 + 0.284785i \(0.908078\pi\)
\(542\) −24.4102 −1.04851
\(543\) 13.6729 0.586762
\(544\) 7.04712 0.302143
\(545\) 0 0
\(546\) 12.9418 0.553858
\(547\) −4.52049 −0.193282 −0.0966411 0.995319i \(-0.530810\pi\)
−0.0966411 + 0.995319i \(0.530810\pi\)
\(548\) −9.67293 −0.413207
\(549\) 11.2578 0.480470
\(550\) 0 0
\(551\) 48.9196 2.08405
\(552\) −6.94179 −0.295462
\(553\) 3.78935 0.161140
\(554\) 7.41269 0.314935
\(555\) 0 0
\(556\) 5.05821 0.214516
\(557\) −20.5155 −0.869271 −0.434635 0.900606i \(-0.643123\pi\)
−0.434635 + 0.900606i \(0.643123\pi\)
\(558\) 1.00000 0.0423334
\(559\) −1.36309 −0.0576525
\(560\) 0 0
\(561\) −3.31846 −0.140105
\(562\) 11.8836 0.501279
\(563\) 34.6147 1.45884 0.729418 0.684068i \(-0.239791\pi\)
0.729418 + 0.684068i \(0.239791\pi\)
\(564\) −7.04712 −0.296737
\(565\) 0 0
\(566\) −22.9864 −0.966192
\(567\) −2.00000 −0.0839921
\(568\) −0.260246 −0.0109197
\(569\) 7.25163 0.304004 0.152002 0.988380i \(-0.451428\pi\)
0.152002 + 0.988380i \(0.451428\pi\)
\(570\) 0 0
\(571\) −0.0942314 −0.00394346 −0.00197173 0.999998i \(-0.500628\pi\)
−0.00197173 + 0.999998i \(0.500628\pi\)
\(572\) 3.04712 0.127406
\(573\) 14.8254 0.619339
\(574\) 4.00000 0.166957
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 9.41269 0.391855 0.195928 0.980618i \(-0.437228\pi\)
0.195928 + 0.980618i \(0.437228\pi\)
\(578\) −32.6618 −1.35855
\(579\) −8.04960 −0.334530
\(580\) 0 0
\(581\) −23.5565 −0.977289
\(582\) 3.52910 0.146286
\(583\) −1.48447 −0.0614805
\(584\) 11.8836 0.491746
\(585\) 0 0
\(586\) 14.4213 0.595738
\(587\) 42.2938 1.74565 0.872826 0.488032i \(-0.162285\pi\)
0.872826 + 0.488032i \(0.162285\pi\)
\(588\) 3.00000 0.123718
\(589\) 7.04712 0.290371
\(590\) 0 0
\(591\) 16.3049 0.670693
\(592\) 1.78935 0.0735419
\(593\) −5.88854 −0.241814 −0.120907 0.992664i \(-0.538580\pi\)
−0.120907 + 0.992664i \(0.538580\pi\)
\(594\) −0.470896 −0.0193211
\(595\) 0 0
\(596\) 13.4127 0.549405
\(597\) 3.98891 0.163255
\(598\) −44.9196 −1.83690
\(599\) −0.780739 −0.0319001 −0.0159501 0.999873i \(-0.505077\pi\)
−0.0159501 + 0.999873i \(0.505077\pi\)
\(600\) 0 0
\(601\) −25.5787 −1.04338 −0.521688 0.853136i \(-0.674698\pi\)
−0.521688 + 0.853136i \(0.674698\pi\)
\(602\) 0.421299 0.0171708
\(603\) 8.26025 0.336383
\(604\) 19.5676 0.796195
\(605\) 0 0
\(606\) 0 0
\(607\) 7.46228 0.302885 0.151442 0.988466i \(-0.451608\pi\)
0.151442 + 0.988466i \(0.451608\pi\)
\(608\) 7.04712 0.285798
\(609\) −13.8836 −0.562591
\(610\) 0 0
\(611\) −45.6011 −1.84483
\(612\) −7.04712 −0.284863
\(613\) −4.68651 −0.189286 −0.0946431 0.995511i \(-0.530171\pi\)
−0.0946431 + 0.995511i \(0.530171\pi\)
\(614\) −24.9418 −1.00657
\(615\) 0 0
\(616\) −0.941791 −0.0379458
\(617\) 7.69512 0.309794 0.154897 0.987931i \(-0.450495\pi\)
0.154897 + 0.987931i \(0.450495\pi\)
\(618\) 6.00000 0.241355
\(619\) 33.7894 1.35811 0.679054 0.734088i \(-0.262390\pi\)
0.679054 + 0.734088i \(0.262390\pi\)
\(620\) 0 0
\(621\) 6.94179 0.278564
\(622\) 24.4487 0.980304
\(623\) −24.1885 −0.969090
\(624\) 6.47090 0.259043
\(625\) 0 0
\(626\) 14.1885 0.567085
\(627\) −3.31846 −0.132526
\(628\) 21.2467 0.847835
\(629\) −12.6098 −0.502784
\(630\) 0 0
\(631\) −34.3049 −1.36566 −0.682828 0.730579i \(-0.739250\pi\)
−0.682828 + 0.730579i \(0.739250\pi\)
\(632\) 1.89468 0.0753661
\(633\) −2.11642 −0.0841201
\(634\) −21.9889 −0.873291
\(635\) 0 0
\(636\) −3.15244 −0.125002
\(637\) 19.4127 0.769159
\(638\) −3.26886 −0.129415
\(639\) 0.260246 0.0102952
\(640\) 0 0
\(641\) 3.83399 0.151433 0.0757167 0.997129i \(-0.475876\pi\)
0.0757167 + 0.997129i \(0.475876\pi\)
\(642\) −16.7311 −0.660325
\(643\) 12.9640 0.511249 0.255625 0.966776i \(-0.417719\pi\)
0.255625 + 0.966776i \(0.417719\pi\)
\(644\) 13.8836 0.547090
\(645\) 0 0
\(646\) −49.6618 −1.95392
\(647\) 29.3459 1.15371 0.576853 0.816848i \(-0.304281\pi\)
0.576853 + 0.816848i \(0.304281\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 3.36805 0.132208
\(650\) 0 0
\(651\) −2.00000 −0.0783862
\(652\) 4.26025 0.166844
\(653\) −4.52662 −0.177140 −0.0885702 0.996070i \(-0.528230\pi\)
−0.0885702 + 0.996070i \(0.528230\pi\)
\(654\) −11.1524 −0.436095
\(655\) 0 0
\(656\) 2.00000 0.0780869
\(657\) −11.8836 −0.463623
\(658\) 14.0942 0.549450
\(659\) −15.8836 −0.618737 −0.309368 0.950942i \(-0.600118\pi\)
−0.309368 + 0.950942i \(0.600118\pi\)
\(660\) 0 0
\(661\) 12.8254 0.498849 0.249425 0.968394i \(-0.419759\pi\)
0.249425 + 0.968394i \(0.419759\pi\)
\(662\) 15.3631 0.597103
\(663\) −45.6011 −1.77100
\(664\) −11.7783 −0.457085
\(665\) 0 0
\(666\) −1.78935 −0.0693359
\(667\) 48.1885 1.86586
\(668\) −2.00000 −0.0773823
\(669\) −2.58731 −0.100031
\(670\) 0 0
\(671\) −5.30123 −0.204652
\(672\) −2.00000 −0.0771517
\(673\) 27.9828 1.07866 0.539328 0.842096i \(-0.318678\pi\)
0.539328 + 0.842096i \(0.318678\pi\)
\(674\) 13.9778 0.538405
\(675\) 0 0
\(676\) 28.8725 1.11048
\(677\) −27.6729 −1.06356 −0.531779 0.846883i \(-0.678476\pi\)
−0.531779 + 0.846883i \(0.678476\pi\)
\(678\) −16.3049 −0.626185
\(679\) −7.05821 −0.270869
\(680\) 0 0
\(681\) 4.94179 0.189370
\(682\) −0.470896 −0.0180315
\(683\) −8.18846 −0.313323 −0.156661 0.987652i \(-0.550073\pi\)
−0.156661 + 0.987652i \(0.550073\pi\)
\(684\) −7.04712 −0.269453
\(685\) 0 0
\(686\) −20.0000 −0.763604
\(687\) 11.6791 0.445584
\(688\) 0.210649 0.00803093
\(689\) −20.3991 −0.777144
\(690\) 0 0
\(691\) 22.4152 0.852713 0.426357 0.904555i \(-0.359797\pi\)
0.426357 + 0.904555i \(0.359797\pi\)
\(692\) −17.9889 −0.683836
\(693\) 0.941791 0.0357757
\(694\) 17.6618 0.670434
\(695\) 0 0
\(696\) −6.94179 −0.263128
\(697\) −14.0942 −0.533857
\(698\) 7.67293 0.290425
\(699\) 13.7894 0.521561
\(700\) 0 0
\(701\) −20.4709 −0.773175 −0.386588 0.922253i \(-0.626346\pi\)
−0.386588 + 0.922253i \(0.626346\pi\)
\(702\) −6.47090 −0.244228
\(703\) −12.6098 −0.475586
\(704\) −0.470896 −0.0177475
\(705\) 0 0
\(706\) 11.0471 0.415764
\(707\) 0 0
\(708\) 7.15244 0.268805
\(709\) −48.7200 −1.82972 −0.914860 0.403771i \(-0.867699\pi\)
−0.914860 + 0.403771i \(0.867699\pi\)
\(710\) 0 0
\(711\) −1.89468 −0.0710559
\(712\) −12.0942 −0.453250
\(713\) 6.94179 0.259972
\(714\) 14.0942 0.527463
\(715\) 0 0
\(716\) −12.0496 −0.450315
\(717\) 12.7311 0.475453
\(718\) 35.9282 1.34083
\(719\) 50.8032 1.89464 0.947320 0.320290i \(-0.103780\pi\)
0.947320 + 0.320290i \(0.103780\pi\)
\(720\) 0 0
\(721\) −12.0000 −0.446903
\(722\) −30.6618 −1.14112
\(723\) 3.15244 0.117241
\(724\) −13.6729 −0.508151
\(725\) 0 0
\(726\) −10.7783 −0.400019
\(727\) −33.1352 −1.22892 −0.614459 0.788949i \(-0.710625\pi\)
−0.614459 + 0.788949i \(0.710625\pi\)
\(728\) −12.9418 −0.479655
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −1.48447 −0.0549051
\(732\) −11.2578 −0.416099
\(733\) −2.96398 −0.109477 −0.0547385 0.998501i \(-0.517433\pi\)
−0.0547385 + 0.998501i \(0.517433\pi\)
\(734\) 19.2963 0.712238
\(735\) 0 0
\(736\) 6.94179 0.255878
\(737\) −3.88971 −0.143279
\(738\) −2.00000 −0.0736210
\(739\) −6.52049 −0.239860 −0.119930 0.992782i \(-0.538267\pi\)
−0.119930 + 0.992782i \(0.538267\pi\)
\(740\) 0 0
\(741\) −45.6011 −1.67520
\(742\) 6.30488 0.231459
\(743\) 20.0942 0.737186 0.368593 0.929591i \(-0.379840\pi\)
0.368593 + 0.929591i \(0.379840\pi\)
\(744\) −1.00000 −0.0366618
\(745\) 0 0
\(746\) −24.0942 −0.882152
\(747\) 11.7783 0.430944
\(748\) 3.31846 0.121335
\(749\) 33.4623 1.22269
\(750\) 0 0
\(751\) −46.0942 −1.68200 −0.841001 0.541033i \(-0.818033\pi\)
−0.841001 + 0.541033i \(0.818033\pi\)
\(752\) 7.04712 0.256982
\(753\) −3.05821 −0.111447
\(754\) −44.9196 −1.63588
\(755\) 0 0
\(756\) 2.00000 0.0727393
\(757\) 28.2827 1.02795 0.513976 0.857805i \(-0.328172\pi\)
0.513976 + 0.857805i \(0.328172\pi\)
\(758\) −25.1413 −0.913175
\(759\) −3.26886 −0.118652
\(760\) 0 0
\(761\) −41.0634 −1.48855 −0.744274 0.667874i \(-0.767204\pi\)
−0.744274 + 0.667874i \(0.767204\pi\)
\(762\) −0.941791 −0.0341175
\(763\) 22.3049 0.807491
\(764\) −14.8254 −0.536363
\(765\) 0 0
\(766\) 22.9196 0.828119
\(767\) 46.2827 1.67117
\(768\) −1.00000 −0.0360844
\(769\) −32.4933 −1.17174 −0.585870 0.810405i \(-0.699247\pi\)
−0.585870 + 0.810405i \(0.699247\pi\)
\(770\) 0 0
\(771\) −16.0942 −0.579620
\(772\) 8.04960 0.289711
\(773\) −50.3991 −1.81273 −0.906365 0.422495i \(-0.861154\pi\)
−0.906365 + 0.422495i \(0.861154\pi\)
\(774\) −0.210649 −0.00757163
\(775\) 0 0
\(776\) −3.52910 −0.126687
\(777\) 3.57870 0.128385
\(778\) 21.0360 0.754178
\(779\) −14.0942 −0.504978
\(780\) 0 0
\(781\) −0.122549 −0.00438514
\(782\) −48.9196 −1.74936
\(783\) 6.94179 0.248079
\(784\) −3.00000 −0.107143
\(785\) 0 0
\(786\) −3.15244 −0.112444
\(787\) 26.6147 0.948712 0.474356 0.880333i \(-0.342681\pi\)
0.474356 + 0.880333i \(0.342681\pi\)
\(788\) −16.3049 −0.580837
\(789\) −0.0942314 −0.00335473
\(790\) 0 0
\(791\) 32.6098 1.15947
\(792\) 0.470896 0.0167325
\(793\) −72.8478 −2.58690
\(794\) −38.4983 −1.36625
\(795\) 0 0
\(796\) −3.98891 −0.141383
\(797\) −2.52049 −0.0892804 −0.0446402 0.999003i \(-0.514214\pi\)
−0.0446402 + 0.999003i \(0.514214\pi\)
\(798\) 14.0942 0.498930
\(799\) −49.6618 −1.75691
\(800\) 0 0
\(801\) 12.0942 0.427329
\(802\) 12.3545 0.436252
\(803\) 5.59593 0.197476
\(804\) −8.26025 −0.291316
\(805\) 0 0
\(806\) −6.47090 −0.227928
\(807\) 23.8836 0.840742
\(808\) 0 0
\(809\) 36.1216 1.26997 0.634985 0.772525i \(-0.281006\pi\)
0.634985 + 0.772525i \(0.281006\pi\)
\(810\) 0 0
\(811\) −7.57870 −0.266124 −0.133062 0.991108i \(-0.542481\pi\)
−0.133062 + 0.991108i \(0.542481\pi\)
\(812\) 13.8836 0.487218
\(813\) −24.4102 −0.856103
\(814\) 0.842597 0.0295330
\(815\) 0 0
\(816\) 7.04712 0.246698
\(817\) −1.48447 −0.0519350
\(818\) 32.6147 1.14035
\(819\) 12.9418 0.452223
\(820\) 0 0
\(821\) −32.3049 −1.12745 −0.563724 0.825963i \(-0.690632\pi\)
−0.563724 + 0.825963i \(0.690632\pi\)
\(822\) −9.67293 −0.337382
\(823\) 12.8922 0.449394 0.224697 0.974429i \(-0.427861\pi\)
0.224697 + 0.974429i \(0.427861\pi\)
\(824\) −6.00000 −0.209020
\(825\) 0 0
\(826\) −14.3049 −0.497730
\(827\) −13.4734 −0.468515 −0.234258 0.972175i \(-0.575266\pi\)
−0.234258 + 0.972175i \(0.575266\pi\)
\(828\) −6.94179 −0.241244
\(829\) 50.2827 1.74639 0.873195 0.487371i \(-0.162044\pi\)
0.873195 + 0.487371i \(0.162044\pi\)
\(830\) 0 0
\(831\) 7.41269 0.257143
\(832\) −6.47090 −0.224338
\(833\) 21.1413 0.732504
\(834\) 5.05821 0.175151
\(835\) 0 0
\(836\) 3.31846 0.114771
\(837\) 1.00000 0.0345651
\(838\) −10.9418 −0.377978
\(839\) −6.20569 −0.214244 −0.107122 0.994246i \(-0.534164\pi\)
−0.107122 + 0.994246i \(0.534164\pi\)
\(840\) 0 0
\(841\) 19.1885 0.661671
\(842\) 22.4213 0.772689
\(843\) 11.8836 0.409292
\(844\) 2.11642 0.0728501
\(845\) 0 0
\(846\) −7.04712 −0.242285
\(847\) 21.5565 0.740691
\(848\) 3.15244 0.108255
\(849\) −22.9864 −0.788892
\(850\) 0 0
\(851\) −12.4213 −0.425797
\(852\) −0.260246 −0.00891589
\(853\) −45.2245 −1.54846 −0.774228 0.632906i \(-0.781862\pi\)
−0.774228 + 0.632906i \(0.781862\pi\)
\(854\) 22.5155 0.770466
\(855\) 0 0
\(856\) 16.7311 0.571859
\(857\) 4.51553 0.154248 0.0771238 0.997022i \(-0.475426\pi\)
0.0771238 + 0.997022i \(0.475426\pi\)
\(858\) 3.04712 0.104027
\(859\) −11.6951 −0.399032 −0.199516 0.979895i \(-0.563937\pi\)
−0.199516 + 0.979895i \(0.563937\pi\)
\(860\) 0 0
\(861\) 4.00000 0.136320
\(862\) −33.1303 −1.12842
\(863\) −3.38528 −0.115236 −0.0576181 0.998339i \(-0.518351\pi\)
−0.0576181 + 0.998339i \(0.518351\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −9.78935 −0.332656
\(867\) −32.6618 −1.10925
\(868\) 2.00000 0.0678844
\(869\) 0.892194 0.0302656
\(870\) 0 0
\(871\) −53.4512 −1.81112
\(872\) 11.1524 0.377669
\(873\) 3.52910 0.119442
\(874\) −48.9196 −1.65473
\(875\) 0 0
\(876\) 11.8836 0.401509
\(877\) −37.0582 −1.25137 −0.625683 0.780077i \(-0.715180\pi\)
−0.625683 + 0.780077i \(0.715180\pi\)
\(878\) 22.6147 0.763210
\(879\) 14.4213 0.486418
\(880\) 0 0
\(881\) −35.5020 −1.19609 −0.598046 0.801462i \(-0.704056\pi\)
−0.598046 + 0.801462i \(0.704056\pi\)
\(882\) 3.00000 0.101015
\(883\) −27.0138 −0.909088 −0.454544 0.890724i \(-0.650198\pi\)
−0.454544 + 0.890724i \(0.650198\pi\)
\(884\) 45.6011 1.53373
\(885\) 0 0
\(886\) 0.210649 0.00707690
\(887\) −36.6098 −1.22924 −0.614618 0.788825i \(-0.710690\pi\)
−0.614618 + 0.788825i \(0.710690\pi\)
\(888\) 1.78935 0.0600467
\(889\) 1.88358 0.0631733
\(890\) 0 0
\(891\) −0.470896 −0.0157756
\(892\) 2.58731 0.0866297
\(893\) −49.6618 −1.66187
\(894\) 13.4127 0.448587
\(895\) 0 0
\(896\) 2.00000 0.0668153
\(897\) −44.9196 −1.49982
\(898\) 27.4127 0.914773
\(899\) 6.94179 0.231522
\(900\) 0 0
\(901\) −22.2156 −0.740109
\(902\) 0.941791 0.0313582
\(903\) 0.421299 0.0140199
\(904\) 16.3049 0.542292
\(905\) 0 0
\(906\) 19.5676 0.650090
\(907\) −57.8118 −1.91961 −0.959805 0.280669i \(-0.909444\pi\)
−0.959805 + 0.280669i \(0.909444\pi\)
\(908\) −4.94179 −0.163999
\(909\) 0 0
\(910\) 0 0
\(911\) −49.8836 −1.65272 −0.826358 0.563145i \(-0.809591\pi\)
−0.826358 + 0.563145i \(0.809591\pi\)
\(912\) 7.04712 0.233353
\(913\) −5.54633 −0.183557
\(914\) 26.9196 0.890421
\(915\) 0 0
\(916\) −11.6791 −0.385887
\(917\) 6.30488 0.208206
\(918\) −7.04712 −0.232589
\(919\) 50.3819 1.66195 0.830973 0.556313i \(-0.187785\pi\)
0.830973 + 0.556313i \(0.187785\pi\)
\(920\) 0 0
\(921\) −24.9418 −0.821860
\(922\) −29.0360 −0.956250
\(923\) −1.68403 −0.0554304
\(924\) −0.941791 −0.0309827
\(925\) 0 0
\(926\) −16.8922 −0.555112
\(927\) 6.00000 0.197066
\(928\) 6.94179 0.227875
\(929\) 8.93683 0.293208 0.146604 0.989195i \(-0.453166\pi\)
0.146604 + 0.989195i \(0.453166\pi\)
\(930\) 0 0
\(931\) 21.1413 0.692880
\(932\) −13.7894 −0.451685
\(933\) 24.4487 0.800415
\(934\) 7.76716 0.254149
\(935\) 0 0
\(936\) 6.47090 0.211508
\(937\) 3.42991 0.112050 0.0560251 0.998429i \(-0.482157\pi\)
0.0560251 + 0.998429i \(0.482157\pi\)
\(938\) 16.5205 0.539413
\(939\) 14.1885 0.463023
\(940\) 0 0
\(941\) 45.2467 1.47500 0.737500 0.675347i \(-0.236006\pi\)
0.737500 + 0.675347i \(0.236006\pi\)
\(942\) 21.2467 0.692254
\(943\) −13.8836 −0.452112
\(944\) −7.15244 −0.232792
\(945\) 0 0
\(946\) 0.0991938 0.00322507
\(947\) 8.41021 0.273295 0.136647 0.990620i \(-0.456367\pi\)
0.136647 + 0.990620i \(0.456367\pi\)
\(948\) 1.89468 0.0615362
\(949\) 76.8974 2.49620
\(950\) 0 0
\(951\) −21.9889 −0.713039
\(952\) −14.0942 −0.456797
\(953\) −9.37418 −0.303660 −0.151830 0.988407i \(-0.548517\pi\)
−0.151830 + 0.988407i \(0.548517\pi\)
\(954\) −3.15244 −0.102064
\(955\) 0 0
\(956\) −12.7311 −0.411755
\(957\) −3.26886 −0.105667
\(958\) −32.4487 −1.04837
\(959\) 19.3459 0.624711
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 11.5787 0.373312
\(963\) −16.7311 −0.539154
\(964\) −3.15244 −0.101533
\(965\) 0 0
\(966\) 13.8836 0.446697
\(967\) 27.8168 0.894527 0.447263 0.894402i \(-0.352399\pi\)
0.447263 + 0.894402i \(0.352399\pi\)
\(968\) 10.7783 0.346426
\(969\) −49.6618 −1.59537
\(970\) 0 0
\(971\) 45.6557 1.46516 0.732581 0.680680i \(-0.238316\pi\)
0.732581 + 0.680680i \(0.238316\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −10.1164 −0.324317
\(974\) 35.4847 1.13700
\(975\) 0 0
\(976\) 11.2578 0.360352
\(977\) 19.0410 0.609175 0.304588 0.952484i \(-0.401481\pi\)
0.304588 + 0.952484i \(0.401481\pi\)
\(978\) 4.26025 0.136228
\(979\) −5.69512 −0.182017
\(980\) 0 0
\(981\) −11.1524 −0.356070
\(982\) −25.9828 −0.829144
\(983\) −17.4795 −0.557510 −0.278755 0.960362i \(-0.589922\pi\)
−0.278755 + 0.960362i \(0.589922\pi\)
\(984\) 2.00000 0.0637577
\(985\) 0 0
\(986\) −48.9196 −1.55792
\(987\) 14.0942 0.448624
\(988\) 45.6011 1.45077
\(989\) −1.46228 −0.0464979
\(990\) 0 0
\(991\) −3.34587 −0.106285 −0.0531425 0.998587i \(-0.516924\pi\)
−0.0531425 + 0.998587i \(0.516924\pi\)
\(992\) 1.00000 0.0317500
\(993\) 15.3631 0.487533
\(994\) 0.520492 0.0165090
\(995\) 0 0
\(996\) −11.7783 −0.373208
\(997\) −41.6458 −1.31894 −0.659468 0.751733i \(-0.729218\pi\)
−0.659468 + 0.751733i \(0.729218\pi\)
\(998\) −7.90577 −0.250253
\(999\) −1.78935 −0.0566126
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.a.ci.1.1 3
5.2 odd 4 930.2.d.i.559.1 6
5.3 odd 4 930.2.d.i.559.4 yes 6
5.4 even 2 4650.2.a.cp.1.1 3
15.2 even 4 2790.2.d.j.559.6 6
15.8 even 4 2790.2.d.j.559.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.d.i.559.1 6 5.2 odd 4
930.2.d.i.559.4 yes 6 5.3 odd 4
2790.2.d.j.559.3 6 15.8 even 4
2790.2.d.j.559.6 6 15.2 even 4
4650.2.a.ci.1.1 3 1.1 even 1 trivial
4650.2.a.cp.1.1 3 5.4 even 2