# Properties

 Label 4650.2.a.bu Level $4650$ Weight $2$ Character orbit 4650.a Self dual yes Analytic conductor $37.130$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4650,2,Mod(1,4650)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4650, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4650.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4650.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$37.1304369399$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} + 3 q^{7} + q^{8} + q^{9}+O(q^{10})$$ q + q^2 + q^3 + q^4 + q^6 + 3 * q^7 + q^8 + q^9 $$q + q^{2} + q^{3} + q^{4} + q^{6} + 3 q^{7} + q^{8} + q^{9} - 3 q^{11} + q^{12} - q^{13} + 3 q^{14} + q^{16} - 2 q^{17} + q^{18} + 3 q^{21} - 3 q^{22} + 4 q^{23} + q^{24} - q^{26} + q^{27} + 3 q^{28} + 10 q^{29} + q^{31} + q^{32} - 3 q^{33} - 2 q^{34} + q^{36} + 3 q^{37} - q^{39} + 7 q^{41} + 3 q^{42} - q^{43} - 3 q^{44} + 4 q^{46} - 7 q^{47} + q^{48} + 2 q^{49} - 2 q^{51} - q^{52} + 9 q^{53} + q^{54} + 3 q^{56} + 10 q^{58} + 7 q^{61} + q^{62} + 3 q^{63} + q^{64} - 3 q^{66} - 2 q^{67} - 2 q^{68} + 4 q^{69} + 7 q^{71} + q^{72} + 4 q^{73} + 3 q^{74} - 9 q^{77} - q^{78} - 10 q^{79} + q^{81} + 7 q^{82} + 9 q^{83} + 3 q^{84} - q^{86} + 10 q^{87} - 3 q^{88} + 10 q^{89} - 3 q^{91} + 4 q^{92} + q^{93} - 7 q^{94} + q^{96} - 2 q^{97} + 2 q^{98} - 3 q^{99}+O(q^{100})$$ q + q^2 + q^3 + q^4 + q^6 + 3 * q^7 + q^8 + q^9 - 3 * q^11 + q^12 - q^13 + 3 * q^14 + q^16 - 2 * q^17 + q^18 + 3 * q^21 - 3 * q^22 + 4 * q^23 + q^24 - q^26 + q^27 + 3 * q^28 + 10 * q^29 + q^31 + q^32 - 3 * q^33 - 2 * q^34 + q^36 + 3 * q^37 - q^39 + 7 * q^41 + 3 * q^42 - q^43 - 3 * q^44 + 4 * q^46 - 7 * q^47 + q^48 + 2 * q^49 - 2 * q^51 - q^52 + 9 * q^53 + q^54 + 3 * q^56 + 10 * q^58 + 7 * q^61 + q^62 + 3 * q^63 + q^64 - 3 * q^66 - 2 * q^67 - 2 * q^68 + 4 * q^69 + 7 * q^71 + q^72 + 4 * q^73 + 3 * q^74 - 9 * q^77 - q^78 - 10 * q^79 + q^81 + 7 * q^82 + 9 * q^83 + 3 * q^84 - q^86 + 10 * q^87 - 3 * q^88 + 10 * q^89 - 3 * q^91 + 4 * q^92 + q^93 - 7 * q^94 + q^96 - 2 * q^97 + 2 * q^98 - 3 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 1.00000 0 1.00000 3.00000 1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$+1$$
$$31$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4650.2.a.bu yes 1
5.b even 2 1 4650.2.a.b 1
5.c odd 4 2 4650.2.d.q 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4650.2.a.b 1 5.b even 2 1
4650.2.a.bu yes 1 1.a even 1 1 trivial
4650.2.d.q 2 5.c odd 4 2

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4650))$$:

 $$T_{7} - 3$$ T7 - 3 $$T_{11} + 3$$ T11 + 3 $$T_{13} + 1$$ T13 + 1 $$T_{19}$$ T19

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T - 3$$
$11$ $$T + 3$$
$13$ $$T + 1$$
$17$ $$T + 2$$
$19$ $$T$$
$23$ $$T - 4$$
$29$ $$T - 10$$
$31$ $$T - 1$$
$37$ $$T - 3$$
$41$ $$T - 7$$
$43$ $$T + 1$$
$47$ $$T + 7$$
$53$ $$T - 9$$
$59$ $$T$$
$61$ $$T - 7$$
$67$ $$T + 2$$
$71$ $$T - 7$$
$73$ $$T - 4$$
$79$ $$T + 10$$
$83$ $$T - 9$$
$89$ $$T - 10$$
$97$ $$T + 2$$