Properties

Label 4650.2.a.bk.1.1
Level $4650$
Weight $2$
Character 4650.1
Self dual yes
Analytic conductor $37.130$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4650,2,Mod(1,4650)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4650, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4650.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4650.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(37.1304369399\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 930)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 4650.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.00000 q^{6} -3.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} +3.00000 q^{11} +1.00000 q^{12} +2.00000 q^{13} -3.00000 q^{14} +1.00000 q^{16} -8.00000 q^{17} +1.00000 q^{18} -7.00000 q^{19} -3.00000 q^{21} +3.00000 q^{22} -7.00000 q^{23} +1.00000 q^{24} +2.00000 q^{26} +1.00000 q^{27} -3.00000 q^{28} -8.00000 q^{29} -1.00000 q^{31} +1.00000 q^{32} +3.00000 q^{33} -8.00000 q^{34} +1.00000 q^{36} +4.00000 q^{37} -7.00000 q^{38} +2.00000 q^{39} -3.00000 q^{42} -1.00000 q^{43} +3.00000 q^{44} -7.00000 q^{46} -6.00000 q^{47} +1.00000 q^{48} +2.00000 q^{49} -8.00000 q^{51} +2.00000 q^{52} -5.00000 q^{53} +1.00000 q^{54} -3.00000 q^{56} -7.00000 q^{57} -8.00000 q^{58} +6.00000 q^{59} +2.00000 q^{61} -1.00000 q^{62} -3.00000 q^{63} +1.00000 q^{64} +3.00000 q^{66} -10.0000 q^{67} -8.00000 q^{68} -7.00000 q^{69} +9.00000 q^{71} +1.00000 q^{72} -1.00000 q^{73} +4.00000 q^{74} -7.00000 q^{76} -9.00000 q^{77} +2.00000 q^{78} +13.0000 q^{79} +1.00000 q^{81} +16.0000 q^{83} -3.00000 q^{84} -1.00000 q^{86} -8.00000 q^{87} +3.00000 q^{88} -3.00000 q^{89} -6.00000 q^{91} -7.00000 q^{92} -1.00000 q^{93} -6.00000 q^{94} +1.00000 q^{96} -6.00000 q^{97} +2.00000 q^{98} +3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) 1.00000 0.408248
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.00000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) −3.00000 −0.801784
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −8.00000 −1.94029 −0.970143 0.242536i \(-0.922021\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 1.00000 0.235702
\(19\) −7.00000 −1.60591 −0.802955 0.596040i \(-0.796740\pi\)
−0.802955 + 0.596040i \(0.796740\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 3.00000 0.639602
\(23\) −7.00000 −1.45960 −0.729800 0.683660i \(-0.760387\pi\)
−0.729800 + 0.683660i \(0.760387\pi\)
\(24\) 1.00000 0.204124
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 1.00000 0.192450
\(28\) −3.00000 −0.566947
\(29\) −8.00000 −1.48556 −0.742781 0.669534i \(-0.766494\pi\)
−0.742781 + 0.669534i \(0.766494\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.179605
\(32\) 1.00000 0.176777
\(33\) 3.00000 0.522233
\(34\) −8.00000 −1.37199
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) 4.00000 0.657596 0.328798 0.944400i \(-0.393356\pi\)
0.328798 + 0.944400i \(0.393356\pi\)
\(38\) −7.00000 −1.13555
\(39\) 2.00000 0.320256
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) −3.00000 −0.462910
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −7.00000 −1.03209
\(47\) −6.00000 −0.875190 −0.437595 0.899172i \(-0.644170\pi\)
−0.437595 + 0.899172i \(0.644170\pi\)
\(48\) 1.00000 0.144338
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −8.00000 −1.12022
\(52\) 2.00000 0.277350
\(53\) −5.00000 −0.686803 −0.343401 0.939189i \(-0.611579\pi\)
−0.343401 + 0.939189i \(0.611579\pi\)
\(54\) 1.00000 0.136083
\(55\) 0 0
\(56\) −3.00000 −0.400892
\(57\) −7.00000 −0.927173
\(58\) −8.00000 −1.05045
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −1.00000 −0.127000
\(63\) −3.00000 −0.377964
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 3.00000 0.369274
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) −8.00000 −0.970143
\(69\) −7.00000 −0.842701
\(70\) 0 0
\(71\) 9.00000 1.06810 0.534052 0.845452i \(-0.320669\pi\)
0.534052 + 0.845452i \(0.320669\pi\)
\(72\) 1.00000 0.117851
\(73\) −1.00000 −0.117041 −0.0585206 0.998286i \(-0.518638\pi\)
−0.0585206 + 0.998286i \(0.518638\pi\)
\(74\) 4.00000 0.464991
\(75\) 0 0
\(76\) −7.00000 −0.802955
\(77\) −9.00000 −1.02565
\(78\) 2.00000 0.226455
\(79\) 13.0000 1.46261 0.731307 0.682048i \(-0.238911\pi\)
0.731307 + 0.682048i \(0.238911\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 16.0000 1.75623 0.878114 0.478451i \(-0.158802\pi\)
0.878114 + 0.478451i \(0.158802\pi\)
\(84\) −3.00000 −0.327327
\(85\) 0 0
\(86\) −1.00000 −0.107833
\(87\) −8.00000 −0.857690
\(88\) 3.00000 0.319801
\(89\) −3.00000 −0.317999 −0.159000 0.987279i \(-0.550827\pi\)
−0.159000 + 0.987279i \(0.550827\pi\)
\(90\) 0 0
\(91\) −6.00000 −0.628971
\(92\) −7.00000 −0.729800
\(93\) −1.00000 −0.103695
\(94\) −6.00000 −0.618853
\(95\) 0 0
\(96\) 1.00000 0.102062
\(97\) −6.00000 −0.609208 −0.304604 0.952479i \(-0.598524\pi\)
−0.304604 + 0.952479i \(0.598524\pi\)
\(98\) 2.00000 0.202031
\(99\) 3.00000 0.301511
\(100\) 0 0
\(101\) 5.00000 0.497519 0.248759 0.968565i \(-0.419977\pi\)
0.248759 + 0.968565i \(0.419977\pi\)
\(102\) −8.00000 −0.792118
\(103\) −8.00000 −0.788263 −0.394132 0.919054i \(-0.628955\pi\)
−0.394132 + 0.919054i \(0.628955\pi\)
\(104\) 2.00000 0.196116
\(105\) 0 0
\(106\) −5.00000 −0.485643
\(107\) 3.00000 0.290021 0.145010 0.989430i \(-0.453678\pi\)
0.145010 + 0.989430i \(0.453678\pi\)
\(108\) 1.00000 0.0962250
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 4.00000 0.379663
\(112\) −3.00000 −0.283473
\(113\) −1.00000 −0.0940721 −0.0470360 0.998893i \(-0.514978\pi\)
−0.0470360 + 0.998893i \(0.514978\pi\)
\(114\) −7.00000 −0.655610
\(115\) 0 0
\(116\) −8.00000 −0.742781
\(117\) 2.00000 0.184900
\(118\) 6.00000 0.552345
\(119\) 24.0000 2.20008
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 2.00000 0.181071
\(123\) 0 0
\(124\) −1.00000 −0.0898027
\(125\) 0 0
\(126\) −3.00000 −0.267261
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) 6.00000 0.524222 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(132\) 3.00000 0.261116
\(133\) 21.0000 1.82093
\(134\) −10.0000 −0.863868
\(135\) 0 0
\(136\) −8.00000 −0.685994
\(137\) −10.0000 −0.854358 −0.427179 0.904167i \(-0.640493\pi\)
−0.427179 + 0.904167i \(0.640493\pi\)
\(138\) −7.00000 −0.595880
\(139\) −10.0000 −0.848189 −0.424094 0.905618i \(-0.639408\pi\)
−0.424094 + 0.905618i \(0.639408\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 9.00000 0.755263
\(143\) 6.00000 0.501745
\(144\) 1.00000 0.0833333
\(145\) 0 0
\(146\) −1.00000 −0.0827606
\(147\) 2.00000 0.164957
\(148\) 4.00000 0.328798
\(149\) −9.00000 −0.737309 −0.368654 0.929567i \(-0.620181\pi\)
−0.368654 + 0.929567i \(0.620181\pi\)
\(150\) 0 0
\(151\) −8.00000 −0.651031 −0.325515 0.945537i \(-0.605538\pi\)
−0.325515 + 0.945537i \(0.605538\pi\)
\(152\) −7.00000 −0.567775
\(153\) −8.00000 −0.646762
\(154\) −9.00000 −0.725241
\(155\) 0 0
\(156\) 2.00000 0.160128
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 13.0000 1.03422
\(159\) −5.00000 −0.396526
\(160\) 0 0
\(161\) 21.0000 1.65503
\(162\) 1.00000 0.0785674
\(163\) −18.0000 −1.40987 −0.704934 0.709273i \(-0.749024\pi\)
−0.704934 + 0.709273i \(0.749024\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 16.0000 1.24184
\(167\) −15.0000 −1.16073 −0.580367 0.814355i \(-0.697091\pi\)
−0.580367 + 0.814355i \(0.697091\pi\)
\(168\) −3.00000 −0.231455
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) −7.00000 −0.535303
\(172\) −1.00000 −0.0762493
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) −8.00000 −0.606478
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 6.00000 0.450988
\(178\) −3.00000 −0.224860
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) −21.0000 −1.56092 −0.780459 0.625207i \(-0.785014\pi\)
−0.780459 + 0.625207i \(0.785014\pi\)
\(182\) −6.00000 −0.444750
\(183\) 2.00000 0.147844
\(184\) −7.00000 −0.516047
\(185\) 0 0
\(186\) −1.00000 −0.0733236
\(187\) −24.0000 −1.75505
\(188\) −6.00000 −0.437595
\(189\) −3.00000 −0.218218
\(190\) 0 0
\(191\) −24.0000 −1.73658 −0.868290 0.496058i \(-0.834780\pi\)
−0.868290 + 0.496058i \(0.834780\pi\)
\(192\) 1.00000 0.0721688
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) −6.00000 −0.430775
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) −6.00000 −0.427482 −0.213741 0.976890i \(-0.568565\pi\)
−0.213741 + 0.976890i \(0.568565\pi\)
\(198\) 3.00000 0.213201
\(199\) −3.00000 −0.212664 −0.106332 0.994331i \(-0.533911\pi\)
−0.106332 + 0.994331i \(0.533911\pi\)
\(200\) 0 0
\(201\) −10.0000 −0.705346
\(202\) 5.00000 0.351799
\(203\) 24.0000 1.68447
\(204\) −8.00000 −0.560112
\(205\) 0 0
\(206\) −8.00000 −0.557386
\(207\) −7.00000 −0.486534
\(208\) 2.00000 0.138675
\(209\) −21.0000 −1.45260
\(210\) 0 0
\(211\) 17.0000 1.17033 0.585164 0.810915i \(-0.301030\pi\)
0.585164 + 0.810915i \(0.301030\pi\)
\(212\) −5.00000 −0.343401
\(213\) 9.00000 0.616670
\(214\) 3.00000 0.205076
\(215\) 0 0
\(216\) 1.00000 0.0680414
\(217\) 3.00000 0.203653
\(218\) 4.00000 0.270914
\(219\) −1.00000 −0.0675737
\(220\) 0 0
\(221\) −16.0000 −1.07628
\(222\) 4.00000 0.268462
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) −3.00000 −0.200446
\(225\) 0 0
\(226\) −1.00000 −0.0665190
\(227\) −25.0000 −1.65931 −0.829654 0.558278i \(-0.811462\pi\)
−0.829654 + 0.558278i \(0.811462\pi\)
\(228\) −7.00000 −0.463586
\(229\) −13.0000 −0.859064 −0.429532 0.903052i \(-0.641321\pi\)
−0.429532 + 0.903052i \(0.641321\pi\)
\(230\) 0 0
\(231\) −9.00000 −0.592157
\(232\) −8.00000 −0.525226
\(233\) 25.0000 1.63780 0.818902 0.573933i \(-0.194583\pi\)
0.818902 + 0.573933i \(0.194583\pi\)
\(234\) 2.00000 0.130744
\(235\) 0 0
\(236\) 6.00000 0.390567
\(237\) 13.0000 0.844441
\(238\) 24.0000 1.55569
\(239\) 8.00000 0.517477 0.258738 0.965947i \(-0.416693\pi\)
0.258738 + 0.965947i \(0.416693\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) −2.00000 −0.128565
\(243\) 1.00000 0.0641500
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) −14.0000 −0.890799
\(248\) −1.00000 −0.0635001
\(249\) 16.0000 1.01396
\(250\) 0 0
\(251\) 20.0000 1.26239 0.631194 0.775625i \(-0.282565\pi\)
0.631194 + 0.775625i \(0.282565\pi\)
\(252\) −3.00000 −0.188982
\(253\) −21.0000 −1.32026
\(254\) 12.0000 0.752947
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 23.0000 1.43470 0.717350 0.696713i \(-0.245355\pi\)
0.717350 + 0.696713i \(0.245355\pi\)
\(258\) −1.00000 −0.0622573
\(259\) −12.0000 −0.745644
\(260\) 0 0
\(261\) −8.00000 −0.495188
\(262\) 6.00000 0.370681
\(263\) −24.0000 −1.47990 −0.739952 0.672660i \(-0.765152\pi\)
−0.739952 + 0.672660i \(0.765152\pi\)
\(264\) 3.00000 0.184637
\(265\) 0 0
\(266\) 21.0000 1.28759
\(267\) −3.00000 −0.183597
\(268\) −10.0000 −0.610847
\(269\) −18.0000 −1.09748 −0.548740 0.835993i \(-0.684892\pi\)
−0.548740 + 0.835993i \(0.684892\pi\)
\(270\) 0 0
\(271\) 7.00000 0.425220 0.212610 0.977137i \(-0.431804\pi\)
0.212610 + 0.977137i \(0.431804\pi\)
\(272\) −8.00000 −0.485071
\(273\) −6.00000 −0.363137
\(274\) −10.0000 −0.604122
\(275\) 0 0
\(276\) −7.00000 −0.421350
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) −10.0000 −0.599760
\(279\) −1.00000 −0.0598684
\(280\) 0 0
\(281\) −28.0000 −1.67034 −0.835170 0.549992i \(-0.814631\pi\)
−0.835170 + 0.549992i \(0.814631\pi\)
\(282\) −6.00000 −0.357295
\(283\) 16.0000 0.951101 0.475551 0.879688i \(-0.342249\pi\)
0.475551 + 0.879688i \(0.342249\pi\)
\(284\) 9.00000 0.534052
\(285\) 0 0
\(286\) 6.00000 0.354787
\(287\) 0 0
\(288\) 1.00000 0.0589256
\(289\) 47.0000 2.76471
\(290\) 0 0
\(291\) −6.00000 −0.351726
\(292\) −1.00000 −0.0585206
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 2.00000 0.116642
\(295\) 0 0
\(296\) 4.00000 0.232495
\(297\) 3.00000 0.174078
\(298\) −9.00000 −0.521356
\(299\) −14.0000 −0.809641
\(300\) 0 0
\(301\) 3.00000 0.172917
\(302\) −8.00000 −0.460348
\(303\) 5.00000 0.287242
\(304\) −7.00000 −0.401478
\(305\) 0 0
\(306\) −8.00000 −0.457330
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) −9.00000 −0.512823
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) −16.0000 −0.907277 −0.453638 0.891186i \(-0.649874\pi\)
−0.453638 + 0.891186i \(0.649874\pi\)
\(312\) 2.00000 0.113228
\(313\) 10.0000 0.565233 0.282617 0.959233i \(-0.408798\pi\)
0.282617 + 0.959233i \(0.408798\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) 13.0000 0.731307
\(317\) −24.0000 −1.34797 −0.673987 0.738743i \(-0.735420\pi\)
−0.673987 + 0.738743i \(0.735420\pi\)
\(318\) −5.00000 −0.280386
\(319\) −24.0000 −1.34374
\(320\) 0 0
\(321\) 3.00000 0.167444
\(322\) 21.0000 1.17028
\(323\) 56.0000 3.11592
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −18.0000 −0.996928
\(327\) 4.00000 0.221201
\(328\) 0 0
\(329\) 18.0000 0.992372
\(330\) 0 0
\(331\) 32.0000 1.75888 0.879440 0.476011i \(-0.157918\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) 16.0000 0.878114
\(333\) 4.00000 0.219199
\(334\) −15.0000 −0.820763
\(335\) 0 0
\(336\) −3.00000 −0.163663
\(337\) 10.0000 0.544735 0.272367 0.962193i \(-0.412193\pi\)
0.272367 + 0.962193i \(0.412193\pi\)
\(338\) −9.00000 −0.489535
\(339\) −1.00000 −0.0543125
\(340\) 0 0
\(341\) −3.00000 −0.162459
\(342\) −7.00000 −0.378517
\(343\) 15.0000 0.809924
\(344\) −1.00000 −0.0539164
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −8.00000 −0.428845
\(349\) 20.0000 1.07058 0.535288 0.844670i \(-0.320203\pi\)
0.535288 + 0.844670i \(0.320203\pi\)
\(350\) 0 0
\(351\) 2.00000 0.106752
\(352\) 3.00000 0.159901
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 6.00000 0.318896
\(355\) 0 0
\(356\) −3.00000 −0.159000
\(357\) 24.0000 1.27021
\(358\) 4.00000 0.211407
\(359\) 1.00000 0.0527780 0.0263890 0.999652i \(-0.491599\pi\)
0.0263890 + 0.999652i \(0.491599\pi\)
\(360\) 0 0
\(361\) 30.0000 1.57895
\(362\) −21.0000 −1.10374
\(363\) −2.00000 −0.104973
\(364\) −6.00000 −0.314485
\(365\) 0 0
\(366\) 2.00000 0.104542
\(367\) 18.0000 0.939592 0.469796 0.882775i \(-0.344327\pi\)
0.469796 + 0.882775i \(0.344327\pi\)
\(368\) −7.00000 −0.364900
\(369\) 0 0
\(370\) 0 0
\(371\) 15.0000 0.778761
\(372\) −1.00000 −0.0518476
\(373\) −13.0000 −0.673114 −0.336557 0.941663i \(-0.609263\pi\)
−0.336557 + 0.941663i \(0.609263\pi\)
\(374\) −24.0000 −1.24101
\(375\) 0 0
\(376\) −6.00000 −0.309426
\(377\) −16.0000 −0.824042
\(378\) −3.00000 −0.154303
\(379\) 19.0000 0.975964 0.487982 0.872854i \(-0.337733\pi\)
0.487982 + 0.872854i \(0.337733\pi\)
\(380\) 0 0
\(381\) 12.0000 0.614779
\(382\) −24.0000 −1.22795
\(383\) 36.0000 1.83951 0.919757 0.392488i \(-0.128386\pi\)
0.919757 + 0.392488i \(0.128386\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 14.0000 0.712581
\(387\) −1.00000 −0.0508329
\(388\) −6.00000 −0.304604
\(389\) −22.0000 −1.11544 −0.557722 0.830028i \(-0.688325\pi\)
−0.557722 + 0.830028i \(0.688325\pi\)
\(390\) 0 0
\(391\) 56.0000 2.83204
\(392\) 2.00000 0.101015
\(393\) 6.00000 0.302660
\(394\) −6.00000 −0.302276
\(395\) 0 0
\(396\) 3.00000 0.150756
\(397\) −25.0000 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(398\) −3.00000 −0.150376
\(399\) 21.0000 1.05131
\(400\) 0 0
\(401\) −35.0000 −1.74782 −0.873908 0.486091i \(-0.838422\pi\)
−0.873908 + 0.486091i \(0.838422\pi\)
\(402\) −10.0000 −0.498755
\(403\) −2.00000 −0.0996271
\(404\) 5.00000 0.248759
\(405\) 0 0
\(406\) 24.0000 1.19110
\(407\) 12.0000 0.594818
\(408\) −8.00000 −0.396059
\(409\) 12.0000 0.593362 0.296681 0.954977i \(-0.404120\pi\)
0.296681 + 0.954977i \(0.404120\pi\)
\(410\) 0 0
\(411\) −10.0000 −0.493264
\(412\) −8.00000 −0.394132
\(413\) −18.0000 −0.885722
\(414\) −7.00000 −0.344031
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) −10.0000 −0.489702
\(418\) −21.0000 −1.02714
\(419\) 16.0000 0.781651 0.390826 0.920465i \(-0.372190\pi\)
0.390826 + 0.920465i \(0.372190\pi\)
\(420\) 0 0
\(421\) 34.0000 1.65706 0.828529 0.559946i \(-0.189178\pi\)
0.828529 + 0.559946i \(0.189178\pi\)
\(422\) 17.0000 0.827547
\(423\) −6.00000 −0.291730
\(424\) −5.00000 −0.242821
\(425\) 0 0
\(426\) 9.00000 0.436051
\(427\) −6.00000 −0.290360
\(428\) 3.00000 0.145010
\(429\) 6.00000 0.289683
\(430\) 0 0
\(431\) 32.0000 1.54139 0.770693 0.637207i \(-0.219910\pi\)
0.770693 + 0.637207i \(0.219910\pi\)
\(432\) 1.00000 0.0481125
\(433\) −19.0000 −0.913082 −0.456541 0.889702i \(-0.650912\pi\)
−0.456541 + 0.889702i \(0.650912\pi\)
\(434\) 3.00000 0.144005
\(435\) 0 0
\(436\) 4.00000 0.191565
\(437\) 49.0000 2.34399
\(438\) −1.00000 −0.0477818
\(439\) −26.0000 −1.24091 −0.620456 0.784241i \(-0.713053\pi\)
−0.620456 + 0.784241i \(0.713053\pi\)
\(440\) 0 0
\(441\) 2.00000 0.0952381
\(442\) −16.0000 −0.761042
\(443\) −19.0000 −0.902717 −0.451359 0.892343i \(-0.649060\pi\)
−0.451359 + 0.892343i \(0.649060\pi\)
\(444\) 4.00000 0.189832
\(445\) 0 0
\(446\) 10.0000 0.473514
\(447\) −9.00000 −0.425685
\(448\) −3.00000 −0.141737
\(449\) 34.0000 1.60456 0.802280 0.596948i \(-0.203620\pi\)
0.802280 + 0.596948i \(0.203620\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) −1.00000 −0.0470360
\(453\) −8.00000 −0.375873
\(454\) −25.0000 −1.17331
\(455\) 0 0
\(456\) −7.00000 −0.327805
\(457\) 38.0000 1.77757 0.888783 0.458329i \(-0.151552\pi\)
0.888783 + 0.458329i \(0.151552\pi\)
\(458\) −13.0000 −0.607450
\(459\) −8.00000 −0.373408
\(460\) 0 0
\(461\) −20.0000 −0.931493 −0.465746 0.884918i \(-0.654214\pi\)
−0.465746 + 0.884918i \(0.654214\pi\)
\(462\) −9.00000 −0.418718
\(463\) 40.0000 1.85896 0.929479 0.368875i \(-0.120257\pi\)
0.929479 + 0.368875i \(0.120257\pi\)
\(464\) −8.00000 −0.371391
\(465\) 0 0
\(466\) 25.0000 1.15810
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 2.00000 0.0924500
\(469\) 30.0000 1.38527
\(470\) 0 0
\(471\) 7.00000 0.322543
\(472\) 6.00000 0.276172
\(473\) −3.00000 −0.137940
\(474\) 13.0000 0.597110
\(475\) 0 0
\(476\) 24.0000 1.10004
\(477\) −5.00000 −0.228934
\(478\) 8.00000 0.365911
\(479\) −27.0000 −1.23366 −0.616831 0.787096i \(-0.711584\pi\)
−0.616831 + 0.787096i \(0.711584\pi\)
\(480\) 0 0
\(481\) 8.00000 0.364769
\(482\) −22.0000 −1.00207
\(483\) 21.0000 0.955533
\(484\) −2.00000 −0.0909091
\(485\) 0 0
\(486\) 1.00000 0.0453609
\(487\) 20.0000 0.906287 0.453143 0.891438i \(-0.350303\pi\)
0.453143 + 0.891438i \(0.350303\pi\)
\(488\) 2.00000 0.0905357
\(489\) −18.0000 −0.813988
\(490\) 0 0
\(491\) −29.0000 −1.30875 −0.654376 0.756169i \(-0.727069\pi\)
−0.654376 + 0.756169i \(0.727069\pi\)
\(492\) 0 0
\(493\) 64.0000 2.88242
\(494\) −14.0000 −0.629890
\(495\) 0 0
\(496\) −1.00000 −0.0449013
\(497\) −27.0000 −1.21112
\(498\) 16.0000 0.716977
\(499\) −20.0000 −0.895323 −0.447661 0.894203i \(-0.647743\pi\)
−0.447661 + 0.894203i \(0.647743\pi\)
\(500\) 0 0
\(501\) −15.0000 −0.670151
\(502\) 20.0000 0.892644
\(503\) −32.0000 −1.42681 −0.713405 0.700752i \(-0.752848\pi\)
−0.713405 + 0.700752i \(0.752848\pi\)
\(504\) −3.00000 −0.133631
\(505\) 0 0
\(506\) −21.0000 −0.933564
\(507\) −9.00000 −0.399704
\(508\) 12.0000 0.532414
\(509\) −24.0000 −1.06378 −0.531891 0.846813i \(-0.678518\pi\)
−0.531891 + 0.846813i \(0.678518\pi\)
\(510\) 0 0
\(511\) 3.00000 0.132712
\(512\) 1.00000 0.0441942
\(513\) −7.00000 −0.309058
\(514\) 23.0000 1.01449
\(515\) 0 0
\(516\) −1.00000 −0.0440225
\(517\) −18.0000 −0.791639
\(518\) −12.0000 −0.527250
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) −8.00000 −0.350150
\(523\) −29.0000 −1.26808 −0.634041 0.773300i \(-0.718605\pi\)
−0.634041 + 0.773300i \(0.718605\pi\)
\(524\) 6.00000 0.262111
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) 8.00000 0.348485
\(528\) 3.00000 0.130558
\(529\) 26.0000 1.13043
\(530\) 0 0
\(531\) 6.00000 0.260378
\(532\) 21.0000 0.910465
\(533\) 0 0
\(534\) −3.00000 −0.129823
\(535\) 0 0
\(536\) −10.0000 −0.431934
\(537\) 4.00000 0.172613
\(538\) −18.0000 −0.776035
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 14.0000 0.601907 0.300954 0.953639i \(-0.402695\pi\)
0.300954 + 0.953639i \(0.402695\pi\)
\(542\) 7.00000 0.300676
\(543\) −21.0000 −0.901196
\(544\) −8.00000 −0.342997
\(545\) 0 0
\(546\) −6.00000 −0.256776
\(547\) 14.0000 0.598597 0.299298 0.954160i \(-0.403247\pi\)
0.299298 + 0.954160i \(0.403247\pi\)
\(548\) −10.0000 −0.427179
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) 56.0000 2.38568
\(552\) −7.00000 −0.297940
\(553\) −39.0000 −1.65845
\(554\) 8.00000 0.339887
\(555\) 0 0
\(556\) −10.0000 −0.424094
\(557\) −17.0000 −0.720313 −0.360157 0.932892i \(-0.617277\pi\)
−0.360157 + 0.932892i \(0.617277\pi\)
\(558\) −1.00000 −0.0423334
\(559\) −2.00000 −0.0845910
\(560\) 0 0
\(561\) −24.0000 −1.01328
\(562\) −28.0000 −1.18111
\(563\) 36.0000 1.51722 0.758610 0.651546i \(-0.225879\pi\)
0.758610 + 0.651546i \(0.225879\pi\)
\(564\) −6.00000 −0.252646
\(565\) 0 0
\(566\) 16.0000 0.672530
\(567\) −3.00000 −0.125988
\(568\) 9.00000 0.377632
\(569\) 37.0000 1.55112 0.775560 0.631273i \(-0.217467\pi\)
0.775560 + 0.631273i \(0.217467\pi\)
\(570\) 0 0
\(571\) −22.0000 −0.920671 −0.460336 0.887745i \(-0.652271\pi\)
−0.460336 + 0.887745i \(0.652271\pi\)
\(572\) 6.00000 0.250873
\(573\) −24.0000 −1.00261
\(574\) 0 0
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 8.00000 0.333044 0.166522 0.986038i \(-0.446746\pi\)
0.166522 + 0.986038i \(0.446746\pi\)
\(578\) 47.0000 1.95494
\(579\) 14.0000 0.581820
\(580\) 0 0
\(581\) −48.0000 −1.99138
\(582\) −6.00000 −0.248708
\(583\) −15.0000 −0.621237
\(584\) −1.00000 −0.0413803
\(585\) 0 0
\(586\) −14.0000 −0.578335
\(587\) −16.0000 −0.660391 −0.330195 0.943913i \(-0.607115\pi\)
−0.330195 + 0.943913i \(0.607115\pi\)
\(588\) 2.00000 0.0824786
\(589\) 7.00000 0.288430
\(590\) 0 0
\(591\) −6.00000 −0.246807
\(592\) 4.00000 0.164399
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 3.00000 0.123091
\(595\) 0 0
\(596\) −9.00000 −0.368654
\(597\) −3.00000 −0.122782
\(598\) −14.0000 −0.572503
\(599\) 35.0000 1.43006 0.715031 0.699093i \(-0.246413\pi\)
0.715031 + 0.699093i \(0.246413\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 3.00000 0.122271
\(603\) −10.0000 −0.407231
\(604\) −8.00000 −0.325515
\(605\) 0 0
\(606\) 5.00000 0.203111
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) −7.00000 −0.283887
\(609\) 24.0000 0.972529
\(610\) 0 0
\(611\) −12.0000 −0.485468
\(612\) −8.00000 −0.323381
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) 12.0000 0.484281
\(615\) 0 0
\(616\) −9.00000 −0.362620
\(617\) 3.00000 0.120775 0.0603877 0.998175i \(-0.480766\pi\)
0.0603877 + 0.998175i \(0.480766\pi\)
\(618\) −8.00000 −0.321807
\(619\) −18.0000 −0.723481 −0.361741 0.932279i \(-0.617817\pi\)
−0.361741 + 0.932279i \(0.617817\pi\)
\(620\) 0 0
\(621\) −7.00000 −0.280900
\(622\) −16.0000 −0.641542
\(623\) 9.00000 0.360577
\(624\) 2.00000 0.0800641
\(625\) 0 0
\(626\) 10.0000 0.399680
\(627\) −21.0000 −0.838659
\(628\) 7.00000 0.279330
\(629\) −32.0000 −1.27592
\(630\) 0 0
\(631\) −5.00000 −0.199047 −0.0995234 0.995035i \(-0.531732\pi\)
−0.0995234 + 0.995035i \(0.531732\pi\)
\(632\) 13.0000 0.517112
\(633\) 17.0000 0.675689
\(634\) −24.0000 −0.953162
\(635\) 0 0
\(636\) −5.00000 −0.198263
\(637\) 4.00000 0.158486
\(638\) −24.0000 −0.950169
\(639\) 9.00000 0.356034
\(640\) 0 0
\(641\) −30.0000 −1.18493 −0.592464 0.805597i \(-0.701845\pi\)
−0.592464 + 0.805597i \(0.701845\pi\)
\(642\) 3.00000 0.118401
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 21.0000 0.827516
\(645\) 0 0
\(646\) 56.0000 2.20329
\(647\) −49.0000 −1.92639 −0.963194 0.268806i \(-0.913371\pi\)
−0.963194 + 0.268806i \(0.913371\pi\)
\(648\) 1.00000 0.0392837
\(649\) 18.0000 0.706562
\(650\) 0 0
\(651\) 3.00000 0.117579
\(652\) −18.0000 −0.704934
\(653\) 6.00000 0.234798 0.117399 0.993085i \(-0.462544\pi\)
0.117399 + 0.993085i \(0.462544\pi\)
\(654\) 4.00000 0.156412
\(655\) 0 0
\(656\) 0 0
\(657\) −1.00000 −0.0390137
\(658\) 18.0000 0.701713
\(659\) −32.0000 −1.24654 −0.623272 0.782006i \(-0.714197\pi\)
−0.623272 + 0.782006i \(0.714197\pi\)
\(660\) 0 0
\(661\) −46.0000 −1.78919 −0.894596 0.446875i \(-0.852537\pi\)
−0.894596 + 0.446875i \(0.852537\pi\)
\(662\) 32.0000 1.24372
\(663\) −16.0000 −0.621389
\(664\) 16.0000 0.620920
\(665\) 0 0
\(666\) 4.00000 0.154997
\(667\) 56.0000 2.16833
\(668\) −15.0000 −0.580367
\(669\) 10.0000 0.386622
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) −3.00000 −0.115728
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) 10.0000 0.385186
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 43.0000 1.65262 0.826312 0.563212i \(-0.190435\pi\)
0.826312 + 0.563212i \(0.190435\pi\)
\(678\) −1.00000 −0.0384048
\(679\) 18.0000 0.690777
\(680\) 0 0
\(681\) −25.0000 −0.958002
\(682\) −3.00000 −0.114876
\(683\) 15.0000 0.573959 0.286980 0.957937i \(-0.407349\pi\)
0.286980 + 0.957937i \(0.407349\pi\)
\(684\) −7.00000 −0.267652
\(685\) 0 0
\(686\) 15.0000 0.572703
\(687\) −13.0000 −0.495981
\(688\) −1.00000 −0.0381246
\(689\) −10.0000 −0.380970
\(690\) 0 0
\(691\) 5.00000 0.190209 0.0951045 0.995467i \(-0.469681\pi\)
0.0951045 + 0.995467i \(0.469681\pi\)
\(692\) 6.00000 0.228086
\(693\) −9.00000 −0.341882
\(694\) 12.0000 0.455514
\(695\) 0 0
\(696\) −8.00000 −0.303239
\(697\) 0 0
\(698\) 20.0000 0.757011
\(699\) 25.0000 0.945587
\(700\) 0 0
\(701\) 33.0000 1.24639 0.623196 0.782065i \(-0.285834\pi\)
0.623196 + 0.782065i \(0.285834\pi\)
\(702\) 2.00000 0.0754851
\(703\) −28.0000 −1.05604
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) 18.0000 0.677439
\(707\) −15.0000 −0.564133
\(708\) 6.00000 0.225494
\(709\) −15.0000 −0.563337 −0.281668 0.959512i \(-0.590888\pi\)
−0.281668 + 0.959512i \(0.590888\pi\)
\(710\) 0 0
\(711\) 13.0000 0.487538
\(712\) −3.00000 −0.112430
\(713\) 7.00000 0.262152
\(714\) 24.0000 0.898177
\(715\) 0 0
\(716\) 4.00000 0.149487
\(717\) 8.00000 0.298765
\(718\) 1.00000 0.0373197
\(719\) −30.0000 −1.11881 −0.559406 0.828894i \(-0.688971\pi\)
−0.559406 + 0.828894i \(0.688971\pi\)
\(720\) 0 0
\(721\) 24.0000 0.893807
\(722\) 30.0000 1.11648
\(723\) −22.0000 −0.818189
\(724\) −21.0000 −0.780459
\(725\) 0 0
\(726\) −2.00000 −0.0742270
\(727\) 29.0000 1.07555 0.537775 0.843088i \(-0.319265\pi\)
0.537775 + 0.843088i \(0.319265\pi\)
\(728\) −6.00000 −0.222375
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) 8.00000 0.295891
\(732\) 2.00000 0.0739221
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 18.0000 0.664392
\(735\) 0 0
\(736\) −7.00000 −0.258023
\(737\) −30.0000 −1.10506
\(738\) 0 0
\(739\) −40.0000 −1.47142 −0.735712 0.677295i \(-0.763152\pi\)
−0.735712 + 0.677295i \(0.763152\pi\)
\(740\) 0 0
\(741\) −14.0000 −0.514303
\(742\) 15.0000 0.550667
\(743\) −1.00000 −0.0366864 −0.0183432 0.999832i \(-0.505839\pi\)
−0.0183432 + 0.999832i \(0.505839\pi\)
\(744\) −1.00000 −0.0366618
\(745\) 0 0
\(746\) −13.0000 −0.475964
\(747\) 16.0000 0.585409
\(748\) −24.0000 −0.877527
\(749\) −9.00000 −0.328853
\(750\) 0 0
\(751\) 6.00000 0.218943 0.109472 0.993990i \(-0.465084\pi\)
0.109472 + 0.993990i \(0.465084\pi\)
\(752\) −6.00000 −0.218797
\(753\) 20.0000 0.728841
\(754\) −16.0000 −0.582686
\(755\) 0 0
\(756\) −3.00000 −0.109109
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 19.0000 0.690111
\(759\) −21.0000 −0.762252
\(760\) 0 0
\(761\) 49.0000 1.77625 0.888124 0.459603i \(-0.152008\pi\)
0.888124 + 0.459603i \(0.152008\pi\)
\(762\) 12.0000 0.434714
\(763\) −12.0000 −0.434429
\(764\) −24.0000 −0.868290
\(765\) 0 0
\(766\) 36.0000 1.30073
\(767\) 12.0000 0.433295
\(768\) 1.00000 0.0360844
\(769\) 9.00000 0.324548 0.162274 0.986746i \(-0.448117\pi\)
0.162274 + 0.986746i \(0.448117\pi\)
\(770\) 0 0
\(771\) 23.0000 0.828325
\(772\) 14.0000 0.503871
\(773\) 1.00000 0.0359675 0.0179838 0.999838i \(-0.494275\pi\)
0.0179838 + 0.999838i \(0.494275\pi\)
\(774\) −1.00000 −0.0359443
\(775\) 0 0
\(776\) −6.00000 −0.215387
\(777\) −12.0000 −0.430498
\(778\) −22.0000 −0.788738
\(779\) 0 0
\(780\) 0 0
\(781\) 27.0000 0.966136
\(782\) 56.0000 2.00256
\(783\) −8.00000 −0.285897
\(784\) 2.00000 0.0714286
\(785\) 0 0
\(786\) 6.00000 0.214013
\(787\) 27.0000 0.962446 0.481223 0.876598i \(-0.340193\pi\)
0.481223 + 0.876598i \(0.340193\pi\)
\(788\) −6.00000 −0.213741
\(789\) −24.0000 −0.854423
\(790\) 0 0
\(791\) 3.00000 0.106668
\(792\) 3.00000 0.106600
\(793\) 4.00000 0.142044
\(794\) −25.0000 −0.887217
\(795\) 0 0
\(796\) −3.00000 −0.106332
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 21.0000 0.743392
\(799\) 48.0000 1.69812
\(800\) 0 0
\(801\) −3.00000 −0.106000
\(802\) −35.0000 −1.23589
\(803\) −3.00000 −0.105868
\(804\) −10.0000 −0.352673
\(805\) 0 0
\(806\) −2.00000 −0.0704470
\(807\) −18.0000 −0.633630
\(808\) 5.00000 0.175899
\(809\) 13.0000 0.457056 0.228528 0.973537i \(-0.426609\pi\)
0.228528 + 0.973537i \(0.426609\pi\)
\(810\) 0 0
\(811\) −23.0000 −0.807639 −0.403820 0.914839i \(-0.632318\pi\)
−0.403820 + 0.914839i \(0.632318\pi\)
\(812\) 24.0000 0.842235
\(813\) 7.00000 0.245501
\(814\) 12.0000 0.420600
\(815\) 0 0
\(816\) −8.00000 −0.280056
\(817\) 7.00000 0.244899
\(818\) 12.0000 0.419570
\(819\) −6.00000 −0.209657
\(820\) 0 0
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) −10.0000 −0.348790
\(823\) −14.0000 −0.488009 −0.244005 0.969774i \(-0.578461\pi\)
−0.244005 + 0.969774i \(0.578461\pi\)
\(824\) −8.00000 −0.278693
\(825\) 0 0
\(826\) −18.0000 −0.626300
\(827\) 44.0000 1.53003 0.765015 0.644013i \(-0.222732\pi\)
0.765015 + 0.644013i \(0.222732\pi\)
\(828\) −7.00000 −0.243267
\(829\) −21.0000 −0.729360 −0.364680 0.931133i \(-0.618822\pi\)
−0.364680 + 0.931133i \(0.618822\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 2.00000 0.0693375
\(833\) −16.0000 −0.554367
\(834\) −10.0000 −0.346272
\(835\) 0 0
\(836\) −21.0000 −0.726300
\(837\) −1.00000 −0.0345651
\(838\) 16.0000 0.552711
\(839\) −27.0000 −0.932144 −0.466072 0.884747i \(-0.654331\pi\)
−0.466072 + 0.884747i \(0.654331\pi\)
\(840\) 0 0
\(841\) 35.0000 1.20690
\(842\) 34.0000 1.17172
\(843\) −28.0000 −0.964371
\(844\) 17.0000 0.585164
\(845\) 0 0
\(846\) −6.00000 −0.206284
\(847\) 6.00000 0.206162
\(848\) −5.00000 −0.171701
\(849\) 16.0000 0.549119
\(850\) 0 0
\(851\) −28.0000 −0.959828
\(852\) 9.00000 0.308335
\(853\) −45.0000 −1.54077 −0.770385 0.637579i \(-0.779936\pi\)
−0.770385 + 0.637579i \(0.779936\pi\)
\(854\) −6.00000 −0.205316
\(855\) 0 0
\(856\) 3.00000 0.102538
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 6.00000 0.204837
\(859\) −24.0000 −0.818869 −0.409435 0.912339i \(-0.634274\pi\)
−0.409435 + 0.912339i \(0.634274\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 32.0000 1.08992
\(863\) 31.0000 1.05525 0.527626 0.849477i \(-0.323082\pi\)
0.527626 + 0.849477i \(0.323082\pi\)
\(864\) 1.00000 0.0340207
\(865\) 0 0
\(866\) −19.0000 −0.645646
\(867\) 47.0000 1.59620
\(868\) 3.00000 0.101827
\(869\) 39.0000 1.32298
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 4.00000 0.135457
\(873\) −6.00000 −0.203069
\(874\) 49.0000 1.65745
\(875\) 0 0
\(876\) −1.00000 −0.0337869
\(877\) −2.00000 −0.0675352 −0.0337676 0.999430i \(-0.510751\pi\)
−0.0337676 + 0.999430i \(0.510751\pi\)
\(878\) −26.0000 −0.877457
\(879\) −14.0000 −0.472208
\(880\) 0 0
\(881\) 18.0000 0.606435 0.303218 0.952921i \(-0.401939\pi\)
0.303218 + 0.952921i \(0.401939\pi\)
\(882\) 2.00000 0.0673435
\(883\) 13.0000 0.437485 0.218742 0.975783i \(-0.429805\pi\)
0.218742 + 0.975783i \(0.429805\pi\)
\(884\) −16.0000 −0.538138
\(885\) 0 0
\(886\) −19.0000 −0.638317
\(887\) −22.0000 −0.738688 −0.369344 0.929293i \(-0.620418\pi\)
−0.369344 + 0.929293i \(0.620418\pi\)
\(888\) 4.00000 0.134231
\(889\) −36.0000 −1.20740
\(890\) 0 0
\(891\) 3.00000 0.100504
\(892\) 10.0000 0.334825
\(893\) 42.0000 1.40548
\(894\) −9.00000 −0.301005
\(895\) 0 0
\(896\) −3.00000 −0.100223
\(897\) −14.0000 −0.467446
\(898\) 34.0000 1.13459
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 40.0000 1.33259
\(902\) 0 0
\(903\) 3.00000 0.0998337
\(904\) −1.00000 −0.0332595
\(905\) 0 0
\(906\) −8.00000 −0.265782
\(907\) 40.0000 1.32818 0.664089 0.747653i \(-0.268820\pi\)
0.664089 + 0.747653i \(0.268820\pi\)
\(908\) −25.0000 −0.829654
\(909\) 5.00000 0.165840
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) −7.00000 −0.231793
\(913\) 48.0000 1.58857
\(914\) 38.0000 1.25693
\(915\) 0 0
\(916\) −13.0000 −0.429532
\(917\) −18.0000 −0.594412
\(918\) −8.00000 −0.264039
\(919\) −10.0000 −0.329870 −0.164935 0.986304i \(-0.552741\pi\)
−0.164935 + 0.986304i \(0.552741\pi\)
\(920\) 0 0
\(921\) 12.0000 0.395413
\(922\) −20.0000 −0.658665
\(923\) 18.0000 0.592477
\(924\) −9.00000 −0.296078
\(925\) 0 0
\(926\) 40.0000 1.31448
\(927\) −8.00000 −0.262754
\(928\) −8.00000 −0.262613
\(929\) 3.00000 0.0984268 0.0492134 0.998788i \(-0.484329\pi\)
0.0492134 + 0.998788i \(0.484329\pi\)
\(930\) 0 0
\(931\) −14.0000 −0.458831
\(932\) 25.0000 0.818902
\(933\) −16.0000 −0.523816
\(934\) 0 0
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) 16.0000 0.522697 0.261349 0.965244i \(-0.415833\pi\)
0.261349 + 0.965244i \(0.415833\pi\)
\(938\) 30.0000 0.979535
\(939\) 10.0000 0.326338
\(940\) 0 0
\(941\) −28.0000 −0.912774 −0.456387 0.889781i \(-0.650857\pi\)
−0.456387 + 0.889781i \(0.650857\pi\)
\(942\) 7.00000 0.228072
\(943\) 0 0
\(944\) 6.00000 0.195283
\(945\) 0 0
\(946\) −3.00000 −0.0975384
\(947\) −38.0000 −1.23483 −0.617417 0.786636i \(-0.711821\pi\)
−0.617417 + 0.786636i \(0.711821\pi\)
\(948\) 13.0000 0.422220
\(949\) −2.00000 −0.0649227
\(950\) 0 0
\(951\) −24.0000 −0.778253
\(952\) 24.0000 0.777844
\(953\) −12.0000 −0.388718 −0.194359 0.980930i \(-0.562263\pi\)
−0.194359 + 0.980930i \(0.562263\pi\)
\(954\) −5.00000 −0.161881
\(955\) 0 0
\(956\) 8.00000 0.258738
\(957\) −24.0000 −0.775810
\(958\) −27.0000 −0.872330
\(959\) 30.0000 0.968751
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 8.00000 0.257930
\(963\) 3.00000 0.0966736
\(964\) −22.0000 −0.708572
\(965\) 0 0
\(966\) 21.0000 0.675664
\(967\) 32.0000 1.02905 0.514525 0.857475i \(-0.327968\pi\)
0.514525 + 0.857475i \(0.327968\pi\)
\(968\) −2.00000 −0.0642824
\(969\) 56.0000 1.79898
\(970\) 0 0
\(971\) −54.0000 −1.73294 −0.866471 0.499227i \(-0.833617\pi\)
−0.866471 + 0.499227i \(0.833617\pi\)
\(972\) 1.00000 0.0320750
\(973\) 30.0000 0.961756
\(974\) 20.0000 0.640841
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) −46.0000 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(978\) −18.0000 −0.575577
\(979\) −9.00000 −0.287641
\(980\) 0 0
\(981\) 4.00000 0.127710
\(982\) −29.0000 −0.925427
\(983\) −48.0000 −1.53096 −0.765481 0.643458i \(-0.777499\pi\)
−0.765481 + 0.643458i \(0.777499\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 64.0000 2.03818
\(987\) 18.0000 0.572946
\(988\) −14.0000 −0.445399
\(989\) 7.00000 0.222587
\(990\) 0 0
\(991\) 5.00000 0.158830 0.0794151 0.996842i \(-0.474695\pi\)
0.0794151 + 0.996842i \(0.474695\pi\)
\(992\) −1.00000 −0.0317500
\(993\) 32.0000 1.01549
\(994\) −27.0000 −0.856388
\(995\) 0 0
\(996\) 16.0000 0.506979
\(997\) 6.00000 0.190022 0.0950110 0.995476i \(-0.469711\pi\)
0.0950110 + 0.995476i \(0.469711\pi\)
\(998\) −20.0000 −0.633089
\(999\) 4.00000 0.126554
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4650.2.a.bk.1.1 1
5.2 odd 4 4650.2.d.ba.3349.2 2
5.3 odd 4 4650.2.d.ba.3349.1 2
5.4 even 2 930.2.a.e.1.1 1
15.14 odd 2 2790.2.a.u.1.1 1
20.19 odd 2 7440.2.a.x.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
930.2.a.e.1.1 1 5.4 even 2
2790.2.a.u.1.1 1 15.14 odd 2
4650.2.a.bk.1.1 1 1.1 even 1 trivial
4650.2.d.ba.3349.1 2 5.3 odd 4
4650.2.d.ba.3349.2 2 5.2 odd 4
7440.2.a.x.1.1 1 20.19 odd 2