# Properties

 Label 4650.2.a.bi Level $4650$ Weight $2$ Character orbit 4650.a Self dual yes Analytic conductor $37.130$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [4650,2,Mod(1,4650)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(4650, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("4650.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$4650 = 2 \cdot 3 \cdot 5^{2} \cdot 31$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 4650.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$37.1304369399$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 930) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{3} + q^{4} + q^{6} - 5 q^{7} + q^{8} + q^{9}+O(q^{10})$$ q + q^2 + q^3 + q^4 + q^6 - 5 * q^7 + q^8 + q^9 $$q + q^{2} + q^{3} + q^{4} + q^{6} - 5 q^{7} + q^{8} + q^{9} - q^{11} + q^{12} - 5 q^{14} + q^{16} + 4 q^{17} + q^{18} + 3 q^{19} - 5 q^{21} - q^{22} + q^{23} + q^{24} + q^{27} - 5 q^{28} + 6 q^{29} - q^{31} + q^{32} - q^{33} + 4 q^{34} + q^{36} + 4 q^{37} + 3 q^{38} + 2 q^{41} - 5 q^{42} + q^{43} - q^{44} + q^{46} - 4 q^{47} + q^{48} + 18 q^{49} + 4 q^{51} - 3 q^{53} + q^{54} - 5 q^{56} + 3 q^{57} + 6 q^{58} - 14 q^{59} + 14 q^{61} - q^{62} - 5 q^{63} + q^{64} - q^{66} - 10 q^{67} + 4 q^{68} + q^{69} + 9 q^{71} + q^{72} + 7 q^{73} + 4 q^{74} + 3 q^{76} + 5 q^{77} + 15 q^{79} + q^{81} + 2 q^{82} + 10 q^{83} - 5 q^{84} + q^{86} + 6 q^{87} - q^{88} - q^{89} + q^{92} - q^{93} - 4 q^{94} + q^{96} - 10 q^{97} + 18 q^{98} - q^{99}+O(q^{100})$$ q + q^2 + q^3 + q^4 + q^6 - 5 * q^7 + q^8 + q^9 - q^11 + q^12 - 5 * q^14 + q^16 + 4 * q^17 + q^18 + 3 * q^19 - 5 * q^21 - q^22 + q^23 + q^24 + q^27 - 5 * q^28 + 6 * q^29 - q^31 + q^32 - q^33 + 4 * q^34 + q^36 + 4 * q^37 + 3 * q^38 + 2 * q^41 - 5 * q^42 + q^43 - q^44 + q^46 - 4 * q^47 + q^48 + 18 * q^49 + 4 * q^51 - 3 * q^53 + q^54 - 5 * q^56 + 3 * q^57 + 6 * q^58 - 14 * q^59 + 14 * q^61 - q^62 - 5 * q^63 + q^64 - q^66 - 10 * q^67 + 4 * q^68 + q^69 + 9 * q^71 + q^72 + 7 * q^73 + 4 * q^74 + 3 * q^76 + 5 * q^77 + 15 * q^79 + q^81 + 2 * q^82 + 10 * q^83 - 5 * q^84 + q^86 + 6 * q^87 - q^88 - q^89 + q^92 - q^93 - 4 * q^94 + q^96 - 10 * q^97 + 18 * q^98 - q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 1.00000 1.00000 0 1.00000 −5.00000 1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$31$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4650.2.a.bi 1
5.b even 2 1 4650.2.a.m 1
5.c odd 4 2 930.2.d.c 2
15.e even 4 2 2790.2.d.e 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
930.2.d.c 2 5.c odd 4 2
2790.2.d.e 2 15.e even 4 2
4650.2.a.m 1 5.b even 2 1
4650.2.a.bi 1 1.a even 1 1 trivial

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(4650))$$:

 $$T_{7} + 5$$ T7 + 5 $$T_{11} + 1$$ T11 + 1 $$T_{13}$$ T13 $$T_{19} - 3$$ T19 - 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T + 5$$
$11$ $$T + 1$$
$13$ $$T$$
$17$ $$T - 4$$
$19$ $$T - 3$$
$23$ $$T - 1$$
$29$ $$T - 6$$
$31$ $$T + 1$$
$37$ $$T - 4$$
$41$ $$T - 2$$
$43$ $$T - 1$$
$47$ $$T + 4$$
$53$ $$T + 3$$
$59$ $$T + 14$$
$61$ $$T - 14$$
$67$ $$T + 10$$
$71$ $$T - 9$$
$73$ $$T - 7$$
$79$ $$T - 15$$
$83$ $$T - 10$$
$89$ $$T + 1$$
$97$ $$T + 10$$